blob: 1956d6ef93c40d04051c98dd2301806fc8be1130 [file] [log] [blame]
/*
* Universal Flash Storage Host controller driver
*
* This code is based on drivers/scsi/ufs/ufshcd.h
* Copyright (C) 2011-2013 Samsung India Software Operations
* Copyright (c) 2013-2017, The Linux Foundation. All rights reserved.
*
* Authors:
* Santosh Yaraganavi <santosh.sy@samsung.com>
* Vinayak Holikatti <h.vinayak@samsung.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* See the COPYING file in the top-level directory or visit
* <http://www.gnu.org/licenses/gpl-2.0.html>
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* This program is provided "AS IS" and "WITH ALL FAULTS" and
* without warranty of any kind. You are solely responsible for
* determining the appropriateness of using and distributing
* the program and assume all risks associated with your exercise
* of rights with respect to the program, including but not limited
* to infringement of third party rights, the risks and costs of
* program errors, damage to or loss of data, programs or equipment,
* and unavailability or interruption of operations. Under no
* circumstances will the contributor of this Program be liable for
* any damages of any kind arising from your use or distribution of
* this program.
*/
#ifndef _UFSHCD_H
#define _UFSHCD_H
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/hrtimer.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/rwsem.h>
#include <linux/workqueue.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <linux/bitops.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/extcon.h>
#include "unipro.h"
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_eh.h>
#include <linux/fault-inject.h>
#include "ufs.h"
#include "ufshci.h"
#define UFSHCD "ufshcd"
#define UFSHCD_DRIVER_VERSION "0.3"
#define UFS_BIT(x) BIT(x)
#define UFS_MASK(x, y) (x << ((y) % BITS_PER_LONG))
struct ufs_hba;
enum dev_cmd_type {
DEV_CMD_TYPE_NOP = 0x0,
DEV_CMD_TYPE_QUERY = 0x1,
};
/**
* struct uic_command - UIC command structure
* @command: UIC command
* @argument1: UIC command argument 1
* @argument2: UIC command argument 2
* @argument3: UIC command argument 3
* @cmd_active: Indicate if UIC command is outstanding
* @result: UIC command result
* @done: UIC command completion
*/
struct uic_command {
u32 command;
u32 argument1;
u32 argument2;
u32 argument3;
int cmd_active;
int result;
struct completion done;
};
/* Used to differentiate the power management options */
enum ufs_pm_op {
UFS_RUNTIME_PM,
UFS_SYSTEM_PM,
UFS_SHUTDOWN_PM,
};
#define ufshcd_is_runtime_pm(op) ((op) == UFS_RUNTIME_PM)
#define ufshcd_is_system_pm(op) ((op) == UFS_SYSTEM_PM)
#define ufshcd_is_shutdown_pm(op) ((op) == UFS_SHUTDOWN_PM)
/* Host <-> Device UniPro Link state */
enum uic_link_state {
UIC_LINK_OFF_STATE = 0, /* Link powered down or disabled */
UIC_LINK_ACTIVE_STATE = 1, /* Link is in Fast/Slow/Sleep state */
UIC_LINK_HIBERN8_STATE = 2, /* Link is in Hibernate state */
};
#define ufshcd_is_link_off(hba) ((hba)->uic_link_state == UIC_LINK_OFF_STATE)
#define ufshcd_is_link_active(hba) ((hba)->uic_link_state == \
UIC_LINK_ACTIVE_STATE)
#define ufshcd_is_link_hibern8(hba) ((hba)->uic_link_state == \
UIC_LINK_HIBERN8_STATE)
#define ufshcd_set_link_off(hba) ((hba)->uic_link_state = UIC_LINK_OFF_STATE)
#define ufshcd_set_link_active(hba) ((hba)->uic_link_state = \
UIC_LINK_ACTIVE_STATE)
#define ufshcd_set_link_hibern8(hba) ((hba)->uic_link_state = \
UIC_LINK_HIBERN8_STATE)
enum {
/* errors which require the host controller reset for recovery */
UFS_ERR_HIBERN8_EXIT,
UFS_ERR_VOPS_SUSPEND,
UFS_ERR_EH,
UFS_ERR_CLEAR_PEND_XFER_TM,
UFS_ERR_INT_FATAL_ERRORS,
UFS_ERR_INT_UIC_ERROR,
UFS_ERR_CRYPTO_ENGINE,
/* other errors */
UFS_ERR_HIBERN8_ENTER,
UFS_ERR_RESUME,
UFS_ERR_SUSPEND,
UFS_ERR_LINKSTARTUP,
UFS_ERR_POWER_MODE_CHANGE,
UFS_ERR_TASK_ABORT,
UFS_ERR_MAX,
};
/*
* UFS Power management levels.
* Each level is in increasing order of power savings.
*/
enum ufs_pm_level {
UFS_PM_LVL_0, /* UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE */
UFS_PM_LVL_1, /* UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE */
UFS_PM_LVL_2, /* UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE */
UFS_PM_LVL_3, /* UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE */
UFS_PM_LVL_4, /* UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE */
UFS_PM_LVL_5, /* UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE */
UFS_PM_LVL_MAX
};
struct ufs_pm_lvl_states {
enum ufs_dev_pwr_mode dev_state;
enum uic_link_state link_state;
};
/**
* struct ufshcd_lrb - local reference block
* @utr_descriptor_ptr: UTRD address of the command
* @ucd_req_ptr: UCD address of the command
* @ucd_rsp_ptr: Response UPIU address for this command
* @ucd_prdt_ptr: PRDT address of the command
* @utrd_dma_addr: UTRD dma address for debug
* @ucd_prdt_dma_addr: PRDT dma address for debug
* @ucd_rsp_dma_addr: UPIU response dma address for debug
* @ucd_req_dma_addr: UPIU request dma address for debug
* @cmd: pointer to SCSI command
* @sense_buffer: pointer to sense buffer address of the SCSI command
* @sense_bufflen: Length of the sense buffer
* @scsi_status: SCSI status of the command
* @command_type: SCSI, UFS, Query.
* @task_tag: Task tag of the command
* @lun: LUN of the command
* @intr_cmd: Interrupt command (doesn't participate in interrupt aggregation)
* @issue_time_stamp: time stamp for debug purposes
* @complete_time_stamp: time stamp for statistics
* @req_abort_skip: skip request abort task flag
*/
struct ufshcd_lrb {
struct utp_transfer_req_desc *utr_descriptor_ptr;
struct utp_upiu_req *ucd_req_ptr;
struct utp_upiu_rsp *ucd_rsp_ptr;
struct ufshcd_sg_entry *ucd_prdt_ptr;
dma_addr_t utrd_dma_addr;
dma_addr_t ucd_req_dma_addr;
dma_addr_t ucd_rsp_dma_addr;
dma_addr_t ucd_prdt_dma_addr;
struct scsi_cmnd *cmd;
u8 *sense_buffer;
unsigned int sense_bufflen;
int scsi_status;
int command_type;
int task_tag;
u8 lun; /* UPIU LUN id field is only 8-bit wide */
bool intr_cmd;
ktime_t issue_time_stamp;
ktime_t complete_time_stamp;
bool req_abort_skip;
};
/**
* struct ufs_query - holds relevent data structures for query request
* @request: request upiu and function
* @descriptor: buffer for sending/receiving descriptor
* @response: response upiu and response
*/
struct ufs_query {
struct ufs_query_req request;
u8 *descriptor;
struct ufs_query_res response;
};
/**
* struct ufs_dev_cmd - all assosiated fields with device management commands
* @type: device management command type - Query, NOP OUT
* @lock: lock to allow one command at a time
* @complete: internal commands completion
* @tag_wq: wait queue until free command slot is available
*/
struct ufs_dev_cmd {
enum dev_cmd_type type;
struct mutex lock;
struct completion *complete;
wait_queue_head_t tag_wq;
struct ufs_query query;
};
struct ufs_desc_size {
int dev_desc;
int pwr_desc;
int geom_desc;
int interc_desc;
int unit_desc;
int conf_desc;
};
/**
* struct ufs_clk_info - UFS clock related info
* @list: list headed by hba->clk_list_head
* @clk: clock node
* @name: clock name
* @max_freq: maximum frequency supported by the clock
* @min_freq: min frequency that can be used for clock scaling
* @curr_freq: indicates the current frequency that it is set to
* @enabled: variable to check against multiple enable/disable
*/
struct ufs_clk_info {
struct list_head list;
struct clk *clk;
const char *name;
u32 max_freq;
u32 min_freq;
u32 curr_freq;
bool enabled;
};
enum ufs_notify_change_status {
PRE_CHANGE,
POST_CHANGE,
};
struct ufs_pa_layer_attr {
u32 gear_rx;
u32 gear_tx;
u32 lane_rx;
u32 lane_tx;
u32 pwr_rx;
u32 pwr_tx;
u32 hs_rate;
};
struct ufs_pwr_mode_info {
bool is_valid;
struct ufs_pa_layer_attr info;
};
/**
* struct ufs_hba_variant_ops - variant specific callbacks
* @init: called when the driver is initialized
* @exit: called to cleanup everything done in init
* @get_ufs_hci_version: called to get UFS HCI version
* @clk_scale_notify: notifies that clks are scaled up/down
* @setup_clocks: called before touching any of the controller registers
* @setup_regulators: called before accessing the host controller
* @hce_enable_notify: called before and after HCE enable bit is set to allow
* variant specific Uni-Pro initialization.
* @link_startup_notify: called before and after Link startup is carried out
* to allow variant specific Uni-Pro initialization.
* @pwr_change_notify: called before and after a power mode change
* is carried out to allow vendor spesific capabilities
* to be set.
* @apply_dev_quirks: called to apply device specific quirks
* @suspend: called during host controller PM callback
* @resume: called during host controller PM callback
* @full_reset: called during link recovery for handling variant specific
* implementations of resetting the hci
* @dbg_register_dump: used to dump controller debug information
* @update_sec_cfg: called to restore host controller secure configuration
* @get_scale_down_gear: called to get the minimum supported gear to
* scale down
* @set_bus_vote: called to vote for the required bus bandwidth
* @add_debugfs: used to add debugfs entries
* @remove_debugfs: used to remove debugfs entries
*/
struct ufs_hba_variant_ops {
int (*init)(struct ufs_hba *);
void (*exit)(struct ufs_hba *);
u32 (*get_ufs_hci_version)(struct ufs_hba *);
int (*clk_scale_notify)(struct ufs_hba *, bool,
enum ufs_notify_change_status);
int (*setup_clocks)(struct ufs_hba *, bool, bool);
int (*setup_regulators)(struct ufs_hba *, bool);
int (*hce_enable_notify)(struct ufs_hba *,
enum ufs_notify_change_status);
int (*link_startup_notify)(struct ufs_hba *,
enum ufs_notify_change_status);
int (*pwr_change_notify)(struct ufs_hba *,
enum ufs_notify_change_status status,
struct ufs_pa_layer_attr *,
struct ufs_pa_layer_attr *);
int (*apply_dev_quirks)(struct ufs_hba *);
int (*suspend)(struct ufs_hba *, enum ufs_pm_op);
int (*resume)(struct ufs_hba *, enum ufs_pm_op);
int (*full_reset)(struct ufs_hba *);
void (*dbg_register_dump)(struct ufs_hba *hba, bool no_sleep);
int (*phy_initialization)(struct ufs_hba *);
int (*update_sec_cfg)(struct ufs_hba *hba, bool restore_sec_cfg);
u32 (*get_scale_down_gear)(struct ufs_hba *);
int (*set_bus_vote)(struct ufs_hba *, bool);
#ifdef CONFIG_DEBUG_FS
void (*add_debugfs)(struct ufs_hba *hba, struct dentry *root);
void (*remove_debugfs)(struct ufs_hba *hba);
#endif
};
/**
* struct ufs_hba_crypto_variant_ops - variant specific crypto callbacks
* @crypto_req_setup: retreieve the necessary cryptographic arguments to setup
a requests's transfer descriptor.
* @crypto_engine_cfg_start: start configuring cryptographic engine
* according to tag
* parameter
* @crypto_engine_cfg_end: end configuring cryptographic engine
* according to tag parameter
* @crypto_engine_reset: perform reset to the cryptographic engine
* @crypto_engine_get_status: get errors status of the cryptographic engine
*/
struct ufs_hba_crypto_variant_ops {
int (*crypto_req_setup)(struct ufs_hba *, struct ufshcd_lrb *lrbp,
u8 *cc_index, bool *enable, u64 *dun);
int (*crypto_engine_cfg_start)(struct ufs_hba *, unsigned int);
int (*crypto_engine_cfg_end)(struct ufs_hba *, struct ufshcd_lrb *,
struct request *);
int (*crypto_engine_reset)(struct ufs_hba *);
int (*crypto_engine_get_status)(struct ufs_hba *, u32 *);
};
/**
* struct ufs_hba_pm_qos_variant_ops - variant specific PM QoS callbacks
*/
struct ufs_hba_pm_qos_variant_ops {
void (*req_start)(struct ufs_hba *, struct request *);
void (*req_end)(struct ufs_hba *, struct request *, bool);
};
/**
* struct ufs_hba_variant - variant specific parameters
* @name: variant name
*/
struct ufs_hba_variant {
struct device *dev;
const char *name;
struct ufs_hba_variant_ops *vops;
struct ufs_hba_crypto_variant_ops *crypto_vops;
struct ufs_hba_pm_qos_variant_ops *pm_qos_vops;
int (*suspend)(struct ufs_hba *, enum ufs_pm_op);
int (*resume)(struct ufs_hba *, enum ufs_pm_op);
void (*dbg_register_dump)(struct ufs_hba *hba);
};
/* clock gating state */
enum clk_gating_state {
CLKS_OFF,
CLKS_ON,
REQ_CLKS_OFF,
REQ_CLKS_ON,
};
/**
* struct ufs_clk_gating - UFS clock gating related info
* @gate_hrtimer: hrtimer to invoke @gate_work after some delay as
* specified in @delay_ms
* @gate_work: worker to turn off clocks
* @ungate_work: worker to turn on clocks that will be used in case of
* interrupt context
* @state: the current clocks state
* @delay_ms: current gating delay in ms
* @delay_ms_pwr_save: gating delay (in ms) in power save mode
* @delay_ms_perf: gating delay (in ms) in performance mode
* @is_suspended: clk gating is suspended when set to 1 which can be used
* during suspend/resume
* @delay_attr: sysfs attribute to control delay_ms if clock scaling is disabled
* @delay_pwr_save_attr: sysfs attribute to control delay_ms_pwr_save
* @delay_perf_attr: sysfs attribute to control delay_ms_perf
* @enable_attr: sysfs attribute to enable/disable clock gating
* @is_enabled: Indicates the current status of clock gating
* @active_reqs: number of requests that are pending and should be waited for
* completion before gating clocks.
*/
struct ufs_clk_gating {
struct hrtimer gate_hrtimer;
struct work_struct gate_work;
struct work_struct ungate_work;
enum clk_gating_state state;
unsigned long delay_ms;
unsigned long delay_ms_pwr_save;
unsigned long delay_ms_perf;
bool is_suspended;
struct device_attribute delay_attr;
struct device_attribute delay_pwr_save_attr;
struct device_attribute delay_perf_attr;
struct device_attribute enable_attr;
bool is_enabled;
int active_reqs;
struct workqueue_struct *clk_gating_workq;
};
/* Hibern8 state */
enum ufshcd_hibern8_on_idle_state {
HIBERN8_ENTERED,
HIBERN8_EXITED,
REQ_HIBERN8_ENTER,
REQ_HIBERN8_EXIT,
AUTO_HIBERN8,
};
/**
* struct ufs_hibern8_on_idle - UFS Hibern8 on idle related data
* @enter_work: worker to put UFS link in hibern8 after some delay as
* specified in delay_ms
* @exit_work: worker to bring UFS link out of hibern8
* @state: the current hibern8 state
* @delay_ms: hibern8 enter delay in ms
* @is_suspended: hibern8 enter is suspended when set to 1 which can be used
* during suspend/resume
* @active_reqs: number of requests that are pending and should be waited for
* completion before scheduling delayed "enter_work".
* @delay_attr: sysfs attribute to control delay_attr
* @enable_attr: sysfs attribute to enable/disable hibern8 on idle
* @is_enabled: Indicates the current status of hibern8
*/
struct ufs_hibern8_on_idle {
struct delayed_work enter_work;
struct work_struct exit_work;
enum ufshcd_hibern8_on_idle_state state;
unsigned long delay_ms;
bool is_suspended;
int active_reqs;
struct device_attribute delay_attr;
struct device_attribute enable_attr;
bool is_enabled;
};
struct ufs_saved_pwr_info {
struct ufs_pa_layer_attr info;
bool is_valid;
};
/**
* struct ufs_clk_scaling - UFS clock scaling related data
* @active_reqs: number of requests that are pending. If this is zero when
* devfreq ->target() function is called then schedule "suspend_work" to
* suspend devfreq.
* @tot_busy_t: Total busy time in current polling window
* @window_start_t: Start time (in jiffies) of the current polling window
* @busy_start_t: Start time of current busy period
* @enable_attr: sysfs attribute to enable/disable clock scaling
* @saved_pwr_info: UFS power mode may also be changed during scaling and this
* one keeps track of previous power mode.
* @workq: workqueue to schedule devfreq suspend/resume work
* @suspend_work: worker to suspend devfreq
* @resume_work: worker to resume devfreq
* @is_allowed: tracks if scaling is currently allowed or not
* @is_busy_started: tracks if busy period has started or not
* @is_suspended: tracks if devfreq is suspended or not
* @is_scaled_up: tracks if we are currently scaled up or scaled down
*/
struct ufs_clk_scaling {
int active_reqs;
unsigned long tot_busy_t;
unsigned long window_start_t;
ktime_t busy_start_t;
struct device_attribute enable_attr;
struct ufs_saved_pwr_info saved_pwr_info;
struct workqueue_struct *workq;
struct work_struct suspend_work;
struct work_struct resume_work;
bool is_allowed;
bool is_busy_started;
bool is_suspended;
bool is_scaled_up;
};
#define UIC_ERR_REG_HIST_LENGTH 20
/**
* struct ufs_uic_err_reg_hist - keeps history of uic errors
* @pos: index to indicate cyclic buffer position
* @reg: cyclic buffer for registers value
* @tstamp: cyclic buffer for time stamp
*/
struct ufs_uic_err_reg_hist {
int pos;
u32 reg[UIC_ERR_REG_HIST_LENGTH];
ktime_t tstamp[UIC_ERR_REG_HIST_LENGTH];
};
#ifdef CONFIG_DEBUG_FS
struct debugfs_files {
struct dentry *debugfs_root;
struct dentry *stats_folder;
struct dentry *tag_stats;
struct dentry *err_stats;
struct dentry *show_hba;
struct dentry *host_regs;
struct dentry *dump_dev_desc;
struct dentry *power_mode;
struct dentry *dme_local_read;
struct dentry *dme_peer_read;
struct dentry *dbg_print_en;
struct dentry *req_stats;
struct dentry *query_stats;
u32 dme_local_attr_id;
u32 dme_peer_attr_id;
struct dentry *reset_controller;
struct dentry *err_state;
bool err_occurred;
#ifdef CONFIG_UFS_FAULT_INJECTION
struct dentry *err_inj_scenario;
struct dentry *err_inj_stats;
u32 err_inj_scenario_mask;
struct fault_attr fail_attr;
#endif
bool is_sys_suspended;
};
/* tag stats statistics types */
enum ts_types {
TS_NOT_SUPPORTED = -1,
TS_TAG = 0,
TS_READ = 1,
TS_WRITE = 2,
TS_URGENT_READ = 3,
TS_URGENT_WRITE = 4,
TS_FLUSH = 5,
TS_NUM_STATS = 6,
};
/**
* struct ufshcd_req_stat - statistics for request handling times (in usec)
* @min: shortest time measured
* @max: longest time measured
* @sum: sum of all the handling times measured (used for average calculation)
* @count: number of measurements taken
*/
struct ufshcd_req_stat {
u64 min;
u64 max;
u64 sum;
u64 count;
};
#endif
enum ufshcd_ctx {
QUEUE_CMD,
ERR_HNDLR_WORK,
H8_EXIT_WORK,
UIC_CMD_SEND,
PWRCTL_CMD_SEND,
TM_CMD_SEND,
XFR_REQ_COMPL,
CLK_SCALE_WORK,
};
struct ufshcd_clk_ctx {
ktime_t ts;
enum ufshcd_ctx ctx;
};
/**
* struct ufs_stats - keeps usage/err statistics
* @enabled: enable tag stats for debugfs
* @tag_stats: pointer to tag statistic counters
* @q_depth: current amount of busy slots
* @err_stats: counters to keep track of various errors
* @req_stats: request handling time statistics per request type
* @query_stats_arr: array that holds query statistics
* @hibern8_exit_cnt: Counter to keep track of number of exits,
* reset this after link-startup.
* @last_hibern8_exit_tstamp: Set time after the hibern8 exit.
* Clear after the first successful command completion.
* @pa_err: tracks pa-uic errors
* @dl_err: tracks dl-uic errors
* @nl_err: tracks nl-uic errors
* @tl_err: tracks tl-uic errors
* @dme_err: tracks dme errors
*/
struct ufs_stats {
#ifdef CONFIG_DEBUG_FS
bool enabled;
u64 **tag_stats;
int q_depth;
int err_stats[UFS_ERR_MAX];
struct ufshcd_req_stat req_stats[TS_NUM_STATS];
int query_stats_arr[UPIU_QUERY_OPCODE_MAX][MAX_QUERY_IDN];
#endif
u32 last_intr_status;
ktime_t last_intr_ts;
struct ufshcd_clk_ctx clk_hold;
struct ufshcd_clk_ctx clk_rel;
u32 hibern8_exit_cnt;
ktime_t last_hibern8_exit_tstamp;
u32 power_mode_change_cnt;
struct ufs_uic_err_reg_hist pa_err;
struct ufs_uic_err_reg_hist dl_err;
struct ufs_uic_err_reg_hist nl_err;
struct ufs_uic_err_reg_hist tl_err;
struct ufs_uic_err_reg_hist dme_err;
};
/* UFS Host Controller debug print bitmask */
#define UFSHCD_DBG_PRINT_CLK_FREQ_EN UFS_BIT(0)
#define UFSHCD_DBG_PRINT_UIC_ERR_HIST_EN UFS_BIT(1)
#define UFSHCD_DBG_PRINT_HOST_REGS_EN UFS_BIT(2)
#define UFSHCD_DBG_PRINT_TRS_EN UFS_BIT(3)
#define UFSHCD_DBG_PRINT_TMRS_EN UFS_BIT(4)
#define UFSHCD_DBG_PRINT_PWR_EN UFS_BIT(5)
#define UFSHCD_DBG_PRINT_HOST_STATE_EN UFS_BIT(6)
#define UFSHCD_DBG_PRINT_ALL \
(UFSHCD_DBG_PRINT_CLK_FREQ_EN | \
UFSHCD_DBG_PRINT_UIC_ERR_HIST_EN | \
UFSHCD_DBG_PRINT_HOST_REGS_EN | UFSHCD_DBG_PRINT_TRS_EN | \
UFSHCD_DBG_PRINT_TMRS_EN | UFSHCD_DBG_PRINT_PWR_EN | \
UFSHCD_DBG_PRINT_HOST_STATE_EN)
struct ufshcd_cmd_log_entry {
char *str; /* context like "send", "complete" */
char *cmd_type; /* "scsi", "query", "nop", "dme" */
u8 lun;
u8 cmd_id;
sector_t lba;
int transfer_len;
u8 idn; /* used only for query idn */
u32 doorbell;
u32 outstanding_reqs;
u32 seq_num;
unsigned int tag;
ktime_t tstamp;
};
struct ufshcd_cmd_log {
struct ufshcd_cmd_log_entry *entries;
int pos;
u32 seq_num;
};
/* UFS card state - hotplug state */
enum ufshcd_card_state {
UFS_CARD_STATE_UNKNOWN = 0,
UFS_CARD_STATE_ONLINE = 1,
UFS_CARD_STATE_OFFLINE = 2,
};
/**
* struct ufs_hba - per adapter private structure
* @mmio_base: UFSHCI base register address
* @ucdl_base_addr: UFS Command Descriptor base address
* @utrdl_base_addr: UTP Transfer Request Descriptor base address
* @utmrdl_base_addr: UTP Task Management Descriptor base address
* @ucdl_dma_addr: UFS Command Descriptor DMA address
* @utrdl_dma_addr: UTRDL DMA address
* @utmrdl_dma_addr: UTMRDL DMA address
* @host: Scsi_Host instance of the driver
* @dev: device handle
* @lrb: local reference block
* @lrb_in_use: lrb in use
* @outstanding_tasks: Bits representing outstanding task requests
* @outstanding_reqs: Bits representing outstanding transfer requests
* @capabilities: UFS Controller Capabilities
* @nutrs: Transfer Request Queue depth supported by controller
* @nutmrs: Task Management Queue depth supported by controller
* @ufs_version: UFS Version to which controller complies
* @var: pointer to variant specific data
* @priv: pointer to variant specific private data
* @irq: Irq number of the controller
* @active_uic_cmd: handle of active UIC command
* @uic_cmd_mutex: mutex for uic command
* @tm_wq: wait queue for task management
* @tm_tag_wq: wait queue for free task management slots
* @tm_slots_in_use: bit map of task management request slots in use
* @pwr_done: completion for power mode change
* @tm_condition: condition variable for task management
* @ufshcd_state: UFSHCD states
* @eh_flags: Error handling flags
* @intr_mask: Interrupt Mask Bits
* @ee_ctrl_mask: Exception event control mask
* @is_powered: flag to check if HBA is powered
* @eh_work: Worker to handle UFS errors that require s/w attention
* @eeh_work: Worker to handle exception events
* @errors: HBA errors
* @uic_error: UFS interconnect layer error status
* @saved_err: sticky error mask
* @saved_uic_err: sticky UIC error mask
* @dev_cmd: ufs device management command information
* @last_dme_cmd_tstamp: time stamp of the last completed DME command
* @auto_bkops_enabled: to track whether bkops is enabled in device
* @ufs_stats: ufshcd statistics to be used via debugfs
* @debugfs_files: debugfs files associated with the ufs stats
* @ufshcd_dbg_print: Bitmask for enabling debug prints
* @extcon: pointer to external connector device
* @card_detect_nb: card detector notifier registered with @extcon
* @card_detect_work: work to exectute the card detect function
* @card_state: card state event, enum ufshcd_card_state defines possible states
* @vreg_info: UFS device voltage regulator information
* @clk_list_head: UFS host controller clocks list node head
* @pwr_info: holds current power mode
* @max_pwr_info: keeps the device max valid pwm
* @hibern8_on_idle: UFS Hibern8 on idle related data
* @urgent_bkops_lvl: keeps track of urgent bkops level for device
* @is_urgent_bkops_lvl_checked: keeps track if the urgent bkops level for
* device is known or not.
* @scsi_block_reqs_cnt: reference counting for scsi block requests
* @desc_size: descriptor sizes reported by device
*/
struct ufs_hba {
void __iomem *mmio_base;
/* Virtual memory reference */
struct utp_transfer_cmd_desc *ucdl_base_addr;
struct utp_transfer_req_desc *utrdl_base_addr;
struct utp_task_req_desc *utmrdl_base_addr;
/* DMA memory reference */
dma_addr_t ucdl_dma_addr;
dma_addr_t utrdl_dma_addr;
dma_addr_t utmrdl_dma_addr;
struct Scsi_Host *host;
struct device *dev;
/*
* This field is to keep a reference to "scsi_device" corresponding to
* "UFS device" W-LU.
*/
struct scsi_device *sdev_ufs_device;
enum ufs_dev_pwr_mode curr_dev_pwr_mode;
enum uic_link_state uic_link_state;
/* Desired UFS power management level during runtime PM */
int rpm_lvl;
/* Desired UFS power management level during system PM */
int spm_lvl;
struct device_attribute rpm_lvl_attr;
struct device_attribute spm_lvl_attr;
int pm_op_in_progress;
struct ufshcd_lrb *lrb;
unsigned long lrb_in_use;
unsigned long outstanding_tasks;
unsigned long outstanding_reqs;
u32 capabilities;
int nutrs;
int nutmrs;
u32 ufs_version;
struct ufs_hba_variant *var;
void *priv;
unsigned int irq;
bool is_irq_enabled;
u32 dev_ref_clk_freq;
/* Interrupt aggregation support is broken */
#define UFSHCD_QUIRK_BROKEN_INTR_AGGR UFS_BIT(0)
/*
* delay before each dme command is required as the unipro
* layer has shown instabilities
*/
#define UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS UFS_BIT(1)
/*
* If UFS host controller is having issue in processing LCC (Line
* Control Command) coming from device then enable this quirk.
* When this quirk is enabled, host controller driver should disable
* the LCC transmission on UFS device (by clearing TX_LCC_ENABLE
* attribute of device to 0).
*/
#define UFSHCD_QUIRK_BROKEN_LCC UFS_BIT(2)
/*
* The attribute PA_RXHSUNTERMCAP specifies whether or not the
* inbound Link supports unterminated line in HS mode. Setting this
* attribute to 1 fixes moving to HS gear.
*/
#define UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP UFS_BIT(3)
/*
* This quirk needs to be enabled if the host contoller only allows
* accessing the peer dme attributes in AUTO mode (FAST AUTO or
* SLOW AUTO).
*/
#define UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE UFS_BIT(4)
/*
* This quirk needs to be enabled if the host contoller doesn't
* advertise the correct version in UFS_VER register. If this quirk
* is enabled, standard UFS host driver will call the vendor specific
* ops (get_ufs_hci_version) to get the correct version.
*/
#define UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION UFS_BIT(5)
/* Auto hibern8 support is broken */
#define UFSHCD_QUIRK_BROKEN_AUTO_HIBERN8 UFS_BIT(6)
/*
* This quirk needs to be enabled if the host contoller regards
* resolution of the values of PRDTO and PRDTL in UTRD as byte.
*/
#define UFSHCD_QUIRK_PRDT_BYTE_GRAN UFS_BIT(7)
unsigned int quirks; /* Deviations from standard UFSHCI spec. */
wait_queue_head_t tm_wq;
wait_queue_head_t tm_tag_wq;
unsigned long tm_condition;
unsigned long tm_slots_in_use;
struct uic_command *active_uic_cmd;
struct mutex uic_cmd_mutex;
struct completion *uic_async_done;
u32 ufshcd_state;
u32 eh_flags;
u32 intr_mask;
u16 ee_ctrl_mask;
bool is_powered;
/* Work Queues */
struct work_struct eh_work;
struct work_struct eeh_work;
struct work_struct rls_work;
/* HBA Errors */
u32 errors;
u32 uic_error;
u32 ce_error; /* crypto engine errors */
u32 saved_err;
u32 saved_uic_err;
u32 saved_ce_err;
bool silence_err_logs;
bool force_host_reset;
bool auto_h8_err;
/* Device management request data */
struct ufs_dev_cmd dev_cmd;
ktime_t last_dme_cmd_tstamp;
/* Keeps information of the UFS device connected to this host */
struct ufs_dev_info dev_info;
bool auto_bkops_enabled;
struct ufs_stats ufs_stats;
#ifdef CONFIG_DEBUG_FS
struct debugfs_files debugfs_files;
#endif
struct ufs_vreg_info vreg_info;
struct list_head clk_list_head;
bool wlun_dev_clr_ua;
/* Number of requests aborts */
int req_abort_count;
/* Number of lanes available (1 or 2) for Rx/Tx */
u32 lanes_per_direction;
/* Gear limits */
u32 limit_tx_hs_gear;
u32 limit_rx_hs_gear;
u32 limit_tx_pwm_gear;
u32 limit_rx_pwm_gear;
u32 scsi_cmd_timeout;
/* Bitmask for enabling debug prints */
u32 ufshcd_dbg_print;
struct extcon_dev *extcon;
struct notifier_block card_detect_nb;
struct work_struct card_detect_work;
atomic_t card_state;
struct ufs_pa_layer_attr pwr_info;
struct ufs_pwr_mode_info max_pwr_info;
struct ufs_clk_gating clk_gating;
struct ufs_hibern8_on_idle hibern8_on_idle;
struct ufshcd_cmd_log cmd_log;
/* Control to enable/disable host capabilities */
u32 caps;
/* Allow dynamic clk gating */
#define UFSHCD_CAP_CLK_GATING (1 << 0)
/* Allow hiberb8 with clk gating */
#define UFSHCD_CAP_HIBERN8_WITH_CLK_GATING (1 << 1)
/* Allow dynamic clk scaling */
#define UFSHCD_CAP_CLK_SCALING (1 << 2)
/* Allow auto bkops to enabled during runtime suspend */
#define UFSHCD_CAP_AUTO_BKOPS_SUSPEND (1 << 3)
/*
* This capability allows host controller driver to use the UFS HCI's
* interrupt aggregation capability.
* CAUTION: Enabling this might reduce overall UFS throughput.
*/
#define UFSHCD_CAP_INTR_AGGR (1 << 4)
/* Allow standalone Hibern8 enter on idle */
#define UFSHCD_CAP_HIBERN8_ENTER_ON_IDLE (1 << 5)
/*
* This capability allows the device auto-bkops to be always enabled
* except during suspend (both runtime and suspend).
* Enabling this capability means that device will always be allowed
* to do background operation when it's active but it might degrade
* the performance of ongoing read/write operations.
*/
#define UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND (1 << 6)
/*
* If host controller hardware can be power collapsed when UFS link is
* in hibern8 then enable this cap.
*/
#define UFSHCD_CAP_POWER_COLLAPSE_DURING_HIBERN8 (1 << 7)
struct devfreq *devfreq;
struct ufs_clk_scaling clk_scaling;
bool is_sys_suspended;
enum bkops_status urgent_bkops_lvl;
bool is_urgent_bkops_lvl_checked;
/* sync b/w diff contexts */
struct rw_semaphore lock;
unsigned long shutdown_in_prog;
struct reset_control *core_reset;
/* If set, don't gate device ref_clk during clock gating */
bool no_ref_clk_gating;
int scsi_block_reqs_cnt;
bool full_init_linereset;
struct pinctrl *pctrl;
int latency_hist_enabled;
struct io_latency_state io_lat_read;
struct io_latency_state io_lat_write;
struct ufs_desc_size desc_size;
bool restore_needed;
};
static inline void ufshcd_mark_shutdown_ongoing(struct ufs_hba *hba)
{
set_bit(0, &hba->shutdown_in_prog);
}
static inline bool ufshcd_is_shutdown_ongoing(struct ufs_hba *hba)
{
return !!(test_bit(0, &hba->shutdown_in_prog));
}
/* Returns true if clocks can be gated. Otherwise false */
static inline bool ufshcd_is_clkgating_allowed(struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_CLK_GATING;
}
static inline bool ufshcd_can_hibern8_during_gating(struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
}
static inline int ufshcd_is_clkscaling_supported(struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_CLK_SCALING;
}
static inline bool ufshcd_can_autobkops_during_suspend(struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
}
static inline bool ufshcd_is_hibern8_on_idle_allowed(struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_HIBERN8_ENTER_ON_IDLE;
}
static inline bool ufshcd_is_power_collapse_during_hibern8_allowed(
struct ufs_hba *hba)
{
return !!(hba->caps & UFSHCD_CAP_POWER_COLLAPSE_DURING_HIBERN8);
}
static inline bool ufshcd_keep_autobkops_enabled_except_suspend(
struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND;
}
static inline bool ufshcd_is_intr_aggr_allowed(struct ufs_hba *hba)
{
if ((hba->caps & UFSHCD_CAP_INTR_AGGR) &&
!(hba->quirks & UFSHCD_QUIRK_BROKEN_INTR_AGGR))
return true;
else
return false;
}
static inline bool ufshcd_is_auto_hibern8_supported(struct ufs_hba *hba)
{
return !!((hba->capabilities & MASK_AUTO_HIBERN8_SUPPORT) &&
!(hba->quirks & UFSHCD_QUIRK_BROKEN_AUTO_HIBERN8));
}
static inline bool ufshcd_is_crypto_supported(struct ufs_hba *hba)
{
return !!(hba->capabilities & MASK_CRYPTO_SUPPORT);
}
#define ufshcd_writel(hba, val, reg) \
writel_relaxed((val), (hba)->mmio_base + (reg))
#define ufshcd_readl(hba, reg) \
readl_relaxed((hba)->mmio_base + (reg))
/**
* ufshcd_rmwl - read modify write into a register
* @hba - per adapter instance
* @mask - mask to apply on read value
* @val - actual value to write
* @reg - register address
*/
static inline void ufshcd_rmwl(struct ufs_hba *hba, u32 mask, u32 val, u32 reg)
{
u32 tmp;
tmp = ufshcd_readl(hba, reg);
tmp &= ~mask;
tmp |= (val & mask);
ufshcd_writel(hba, tmp, reg);
}
int ufshcd_alloc_host(struct device *, struct ufs_hba **);
void ufshcd_dealloc_host(struct ufs_hba *);
int ufshcd_init(struct ufs_hba * , void __iomem * , unsigned int);
void ufshcd_remove(struct ufs_hba *);
int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
u32 val, unsigned long interval_us,
unsigned long timeout_ms, bool can_sleep);
int ufshcd_uic_hibern8_enter(struct ufs_hba *hba);
int ufshcd_uic_hibern8_exit(struct ufs_hba *hba);
/**
* ufshcd_set_variant - set variant specific data to the hba
* @hba - per adapter instance
* @variant - pointer to variant specific data
*/
static inline void ufshcd_set_variant(struct ufs_hba *hba, void *variant)
{
BUG_ON(!hba);
hba->priv = variant;
}
/**
* ufshcd_get_variant - get variant specific data from the hba
* @hba - per adapter instance
*/
static inline void *ufshcd_get_variant(struct ufs_hba *hba)
{
BUG_ON(!hba);
return hba->priv;
}
extern int ufshcd_runtime_suspend(struct ufs_hba *hba);
extern int ufshcd_runtime_resume(struct ufs_hba *hba);
extern int ufshcd_runtime_idle(struct ufs_hba *hba);
extern int ufshcd_system_suspend(struct ufs_hba *hba);
extern int ufshcd_system_resume(struct ufs_hba *hba);
extern int ufshcd_shutdown(struct ufs_hba *hba);
extern int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
u8 attr_set, u32 mib_val, u8 peer);
extern int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
u32 *mib_val, u8 peer);
/* UIC command interfaces for DME primitives */
#define DME_LOCAL 0
#define DME_PEER 1
#define ATTR_SET_NOR 0 /* NORMAL */
#define ATTR_SET_ST 1 /* STATIC */
static inline int ufshcd_dme_set(struct ufs_hba *hba, u32 attr_sel,
u32 mib_val)
{
return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_NOR,
mib_val, DME_LOCAL);
}
static inline int ufshcd_dme_st_set(struct ufs_hba *hba, u32 attr_sel,
u32 mib_val)
{
return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_ST,
mib_val, DME_LOCAL);
}
static inline int ufshcd_dme_peer_set(struct ufs_hba *hba, u32 attr_sel,
u32 mib_val)
{
return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_NOR,
mib_val, DME_PEER);
}
static inline int ufshcd_dme_peer_st_set(struct ufs_hba *hba, u32 attr_sel,
u32 mib_val)
{
return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_ST,
mib_val, DME_PEER);
}
static inline int ufshcd_dme_get(struct ufs_hba *hba,
u32 attr_sel, u32 *mib_val)
{
return ufshcd_dme_get_attr(hba, attr_sel, mib_val, DME_LOCAL);
}
static inline int ufshcd_dme_peer_get(struct ufs_hba *hba,
u32 attr_sel, u32 *mib_val)
{
return ufshcd_dme_get_attr(hba, attr_sel, mib_val, DME_PEER);
}
/**
* ufshcd_dme_rmw - get modify set a dme attribute
* @hba - per adapter instance
* @mask - mask to apply on read value
* @val - actual value to write
* @attr - dme attribute
*/
static inline int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask,
u32 val, u32 attr)
{
u32 cfg = 0;
int err = 0;
err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg);
if (err)
goto out;
cfg &= ~mask;
cfg |= (val & mask);
err = ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg);
out:
return err;
}
int ufshcd_read_device_desc(struct ufs_hba *hba, u8 *buf, u32 size);
static inline bool ufshcd_is_hs_mode(struct ufs_pa_layer_attr *pwr_info)
{
return (pwr_info->pwr_rx == FAST_MODE ||
pwr_info->pwr_rx == FASTAUTO_MODE) &&
(pwr_info->pwr_tx == FAST_MODE ||
pwr_info->pwr_tx == FASTAUTO_MODE);
}
static inline bool ufshcd_is_embedded_dev(struct ufs_hba *hba)
{
if ((hba->dev_info.b_device_sub_class == UFS_DEV_EMBEDDED_BOOTABLE) ||
(hba->dev_info.b_device_sub_class == UFS_DEV_EMBEDDED_NON_BOOTABLE))
return true;
return false;
}
#ifdef CONFIG_DEBUG_FS
static inline void ufshcd_init_req_stats(struct ufs_hba *hba)
{
memset(hba->ufs_stats.req_stats, 0, sizeof(hba->ufs_stats.req_stats));
}
#else
static inline void ufshcd_init_req_stats(struct ufs_hba *hba) {}
#endif
#define ASCII_STD true
#define UTF16_STD false
int ufshcd_read_string_desc(struct ufs_hba *hba, int desc_index, u8 *buf,
u32 size, bool ascii);
/* Expose Query-Request API */
int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
enum flag_idn idn, bool *flag_res);
int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
enum attr_idn idn, u8 index, u8 selector, u32 *attr_val);
int ufshcd_query_descriptor(struct ufs_hba *hba, enum query_opcode opcode,
enum desc_idn idn, u8 index, u8 selector, u8 *desc_buf, int *buf_len);
int ufshcd_hold(struct ufs_hba *hba, bool async);
void ufshcd_release(struct ufs_hba *hba, bool no_sched);
int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, u64 wait_timeout_us);
int ufshcd_change_power_mode(struct ufs_hba *hba,
struct ufs_pa_layer_attr *pwr_mode);
void ufshcd_abort_outstanding_transfer_requests(struct ufs_hba *hba,
int result);
int ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
int *desc_length);
u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba);
void ufshcd_scsi_block_requests(struct ufs_hba *hba);
void ufshcd_scsi_unblock_requests(struct ufs_hba *hba);
/* Wrapper functions for safely calling variant operations */
static inline const char *ufshcd_get_var_name(struct ufs_hba *hba)
{
if (hba->var && hba->var->name)
return hba->var->name;
return "";
}
static inline int ufshcd_vops_init(struct ufs_hba *hba)
{
if (hba->var && hba->var->vops && hba->var->vops->init)
return hba->var->vops->init(hba);
return 0;
}
static inline void ufshcd_vops_exit(struct ufs_hba *hba)
{
if (hba->var && hba->var->vops && hba->var->vops->exit)
hba->var->vops->exit(hba);
}
static inline u32 ufshcd_vops_get_ufs_hci_version(struct ufs_hba *hba)
{
if (hba->var && hba->var->vops && hba->var->vops->get_ufs_hci_version)
return hba->var->vops->get_ufs_hci_version(hba);
return ufshcd_readl(hba, REG_UFS_VERSION);
}
static inline int ufshcd_vops_clk_scale_notify(struct ufs_hba *hba,
bool up, enum ufs_notify_change_status status)
{
if (hba->var && hba->var->vops && hba->var->vops->clk_scale_notify)
return hba->var->vops->clk_scale_notify(hba, up, status);
return 0;
}
static inline int ufshcd_vops_setup_clocks(struct ufs_hba *hba, bool on,
bool is_gating_context)
{
if (hba->var && hba->var->vops && hba->var->vops->setup_clocks)
return hba->var->vops->setup_clocks(hba, on, is_gating_context);
return 0;
}
static inline int ufshcd_vops_setup_regulators(struct ufs_hba *hba, bool status)
{
if (hba->var && hba->var->vops && hba->var->vops->setup_regulators)
return hba->var->vops->setup_regulators(hba, status);
return 0;
}
static inline int ufshcd_vops_hce_enable_notify(struct ufs_hba *hba,
bool status)
{
if (hba->var && hba->var->vops && hba->var->vops->hce_enable_notify)
hba->var->vops->hce_enable_notify(hba, status);
return 0;
}
static inline int ufshcd_vops_link_startup_notify(struct ufs_hba *hba,
bool status)
{
if (hba->var && hba->var->vops && hba->var->vops->link_startup_notify)
return hba->var->vops->link_startup_notify(hba, status);
return 0;
}
static inline int ufshcd_vops_pwr_change_notify(struct ufs_hba *hba,
bool status,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
if (hba->var && hba->var->vops && hba->var->vops->pwr_change_notify)
return hba->var->vops->pwr_change_notify(hba, status,
dev_max_params, dev_req_params);
return -ENOTSUPP;
}
static inline int ufshcd_vops_apply_dev_quirks(struct ufs_hba *hba)
{
if (hba->var && hba->var->vops && hba->var->vops->apply_dev_quirks)
return hba->var->vops->apply_dev_quirks(hba);
return 0;
}
static inline int ufshcd_vops_suspend(struct ufs_hba *hba, enum ufs_pm_op op)
{
if (hba->var && hba->var->vops && hba->var->vops->suspend)
return hba->var->vops->suspend(hba, op);
return 0;
}
static inline int ufshcd_vops_resume(struct ufs_hba *hba, enum ufs_pm_op op)
{
if (hba->var && hba->var->vops && hba->var->vops->resume)
return hba->var->vops->resume(hba, op);
return 0;
}
static inline int ufshcd_vops_full_reset(struct ufs_hba *hba)
{
if (hba->var && hba->var->vops && hba->var->vops->full_reset)
return hba->var->vops->full_reset(hba);
return 0;
}
static inline void ufshcd_vops_dbg_register_dump(struct ufs_hba *hba,
bool no_sleep)
{
if (hba->var && hba->var->vops && hba->var->vops->dbg_register_dump)
hba->var->vops->dbg_register_dump(hba, no_sleep);
}
static inline int ufshcd_vops_update_sec_cfg(struct ufs_hba *hba,
bool restore_sec_cfg)
{
if (hba->var && hba->var->vops && hba->var->vops->update_sec_cfg)
return hba->var->vops->update_sec_cfg(hba, restore_sec_cfg);
return 0;
}
static inline u32 ufshcd_vops_get_scale_down_gear(struct ufs_hba *hba)
{
if (hba->var && hba->var->vops && hba->var->vops->get_scale_down_gear)
return hba->var->vops->get_scale_down_gear(hba);
/* Default to lowest high speed gear */
return UFS_HS_G1;
}
static inline int ufshcd_vops_set_bus_vote(struct ufs_hba *hba, bool on)
{
if (hba->var && hba->var->vops && hba->var->vops->set_bus_vote)
return hba->var->vops->set_bus_vote(hba, on);
return 0;
}
#ifdef CONFIG_DEBUG_FS
static inline void ufshcd_vops_add_debugfs(struct ufs_hba *hba,
struct dentry *root)
{
if (hba->var && hba->var->vops && hba->var->vops->add_debugfs)
hba->var->vops->add_debugfs(hba, root);
}
static inline void ufshcd_vops_remove_debugfs(struct ufs_hba *hba)
{
if (hba->var && hba->var->vops && hba->var->vops->remove_debugfs)
hba->var->vops->remove_debugfs(hba);
}
#endif
static inline int ufshcd_vops_crypto_req_setup(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, u8 *cc_index, bool *enable, u64 *dun)
{
if (hba->var && hba->var->crypto_vops &&
hba->var->crypto_vops->crypto_req_setup)
return hba->var->crypto_vops->crypto_req_setup(hba, lrbp,
cc_index, enable, dun);
return 0;
}
static inline int ufshcd_vops_crypto_engine_cfg_start(struct ufs_hba *hba,
unsigned int task_tag)
{
if (hba->var && hba->var->crypto_vops &&
hba->var->crypto_vops->crypto_engine_cfg_start)
return hba->var->crypto_vops->crypto_engine_cfg_start
(hba, task_tag);
return 0;
}
static inline int ufshcd_vops_crypto_engine_cfg_end(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp,
struct request *req)
{
if (hba->var && hba->var->crypto_vops &&
hba->var->crypto_vops->crypto_engine_cfg_end)
return hba->var->crypto_vops->crypto_engine_cfg_end
(hba, lrbp, req);
return 0;
}
static inline int ufshcd_vops_crypto_engine_reset(struct ufs_hba *hba)
{
if (hba->var && hba->var->crypto_vops &&
hba->var->crypto_vops->crypto_engine_reset)
return hba->var->crypto_vops->crypto_engine_reset(hba);
return 0;
}
static inline int ufshcd_vops_crypto_engine_get_status(struct ufs_hba *hba,
u32 *status)
{
if (hba->var && hba->var->crypto_vops &&
hba->var->crypto_vops->crypto_engine_get_status)
return hba->var->crypto_vops->crypto_engine_get_status(hba,
status);
return 0;
}
static inline void ufshcd_vops_pm_qos_req_start(struct ufs_hba *hba,
struct request *req)
{
if (hba->var && hba->var->pm_qos_vops &&
hba->var->pm_qos_vops->req_start)
hba->var->pm_qos_vops->req_start(hba, req);
}
static inline void ufshcd_vops_pm_qos_req_end(struct ufs_hba *hba,
struct request *req, bool lock)
{
if (hba->var && hba->var->pm_qos_vops && hba->var->pm_qos_vops->req_end)
hba->var->pm_qos_vops->req_end(hba, req, lock);
}
#endif /* End of Header */