| /*---------------------------------------------------------------------------+ |
| | fpu_entry.c | |
| | | |
| | The entry functions for wm-FPU-emu | |
| | | |
| | Copyright (C) 1992,1993,1994,1996,1997 | |
| | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | |
| | E-mail billm@suburbia.net | |
| | | |
| | See the files "README" and "COPYING" for further copyright and warranty | |
| | information. | |
| | | |
| +---------------------------------------------------------------------------*/ |
| |
| /*---------------------------------------------------------------------------+ |
| | Note: | |
| | The file contains code which accesses user memory. | |
| | Emulator static data may change when user memory is accessed, due to | |
| | other processes using the emulator while swapping is in progress. | |
| +---------------------------------------------------------------------------*/ |
| |
| /*---------------------------------------------------------------------------+ |
| | math_emulate(), restore_i387_soft() and save_i387_soft() are the only | |
| | entry points for wm-FPU-emu. | |
| +---------------------------------------------------------------------------*/ |
| |
| #include <linux/signal.h> |
| #include <linux/regset.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/traps.h> |
| #include <asm/user.h> |
| #include <asm/fpu/internal.h> |
| |
| #include "fpu_system.h" |
| #include "fpu_emu.h" |
| #include "exception.h" |
| #include "control_w.h" |
| #include "status_w.h" |
| |
| #define __BAD__ FPU_illegal /* Illegal on an 80486, causes SIGILL */ |
| |
| #ifndef NO_UNDOC_CODE /* Un-documented FPU op-codes supported by default. */ |
| |
| /* WARNING: These codes are not documented by Intel in their 80486 manual |
| and may not work on FPU clones or later Intel FPUs. */ |
| |
| /* Changes to support the un-doc codes provided by Linus Torvalds. */ |
| |
| #define _d9_d8_ fstp_i /* unofficial code (19) */ |
| #define _dc_d0_ fcom_st /* unofficial code (14) */ |
| #define _dc_d8_ fcompst /* unofficial code (1c) */ |
| #define _dd_c8_ fxch_i /* unofficial code (0d) */ |
| #define _de_d0_ fcompst /* unofficial code (16) */ |
| #define _df_c0_ ffreep /* unofficial code (07) ffree + pop */ |
| #define _df_c8_ fxch_i /* unofficial code (0f) */ |
| #define _df_d0_ fstp_i /* unofficial code (17) */ |
| #define _df_d8_ fstp_i /* unofficial code (1f) */ |
| |
| static FUNC const st_instr_table[64] = { |
| fadd__, fld_i_, __BAD__, __BAD__, fadd_i, ffree_, faddp_, _df_c0_, |
| fmul__, fxch_i, __BAD__, __BAD__, fmul_i, _dd_c8_, fmulp_, _df_c8_, |
| fcom_st, fp_nop, __BAD__, __BAD__, _dc_d0_, fst_i_, _de_d0_, _df_d0_, |
| fcompst, _d9_d8_, __BAD__, __BAD__, _dc_d8_, fstp_i, fcompp, _df_d8_, |
| fsub__, FPU_etc, __BAD__, finit_, fsubri, fucom_, fsubrp, fstsw_, |
| fsubr_, fconst, fucompp, __BAD__, fsub_i, fucomp, fsubp_, __BAD__, |
| fdiv__, FPU_triga, __BAD__, __BAD__, fdivri, __BAD__, fdivrp, __BAD__, |
| fdivr_, FPU_trigb, __BAD__, __BAD__, fdiv_i, __BAD__, fdivp_, __BAD__, |
| }; |
| |
| #else /* Support only documented FPU op-codes */ |
| |
| static FUNC const st_instr_table[64] = { |
| fadd__, fld_i_, __BAD__, __BAD__, fadd_i, ffree_, faddp_, __BAD__, |
| fmul__, fxch_i, __BAD__, __BAD__, fmul_i, __BAD__, fmulp_, __BAD__, |
| fcom_st, fp_nop, __BAD__, __BAD__, __BAD__, fst_i_, __BAD__, __BAD__, |
| fcompst, __BAD__, __BAD__, __BAD__, __BAD__, fstp_i, fcompp, __BAD__, |
| fsub__, FPU_etc, __BAD__, finit_, fsubri, fucom_, fsubrp, fstsw_, |
| fsubr_, fconst, fucompp, __BAD__, fsub_i, fucomp, fsubp_, __BAD__, |
| fdiv__, FPU_triga, __BAD__, __BAD__, fdivri, __BAD__, fdivrp, __BAD__, |
| fdivr_, FPU_trigb, __BAD__, __BAD__, fdiv_i, __BAD__, fdivp_, __BAD__, |
| }; |
| |
| #endif /* NO_UNDOC_CODE */ |
| |
| #define _NONE_ 0 /* Take no special action */ |
| #define _REG0_ 1 /* Need to check for not empty st(0) */ |
| #define _REGI_ 2 /* Need to check for not empty st(0) and st(rm) */ |
| #define _REGi_ 0 /* Uses st(rm) */ |
| #define _PUSH_ 3 /* Need to check for space to push onto stack */ |
| #define _null_ 4 /* Function illegal or not implemented */ |
| #define _REGIi 5 /* Uses st(0) and st(rm), result to st(rm) */ |
| #define _REGIp 6 /* Uses st(0) and st(rm), result to st(rm) then pop */ |
| #define _REGIc 0 /* Compare st(0) and st(rm) */ |
| #define _REGIn 0 /* Uses st(0) and st(rm), but handle checks later */ |
| |
| #ifndef NO_UNDOC_CODE |
| |
| /* Un-documented FPU op-codes supported by default. (see above) */ |
| |
| static u_char const type_table[64] = { |
| _REGI_, _NONE_, _null_, _null_, _REGIi, _REGi_, _REGIp, _REGi_, |
| _REGI_, _REGIn, _null_, _null_, _REGIi, _REGI_, _REGIp, _REGI_, |
| _REGIc, _NONE_, _null_, _null_, _REGIc, _REG0_, _REGIc, _REG0_, |
| _REGIc, _REG0_, _null_, _null_, _REGIc, _REG0_, _REGIc, _REG0_, |
| _REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_, |
| _REGI_, _NONE_, _REGIc, _null_, _REGIi, _REGIc, _REGIp, _null_, |
| _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_, |
| _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_ |
| }; |
| |
| #else /* Support only documented FPU op-codes */ |
| |
| static u_char const type_table[64] = { |
| _REGI_, _NONE_, _null_, _null_, _REGIi, _REGi_, _REGIp, _null_, |
| _REGI_, _REGIn, _null_, _null_, _REGIi, _null_, _REGIp, _null_, |
| _REGIc, _NONE_, _null_, _null_, _null_, _REG0_, _null_, _null_, |
| _REGIc, _null_, _null_, _null_, _null_, _REG0_, _REGIc, _null_, |
| _REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_, |
| _REGI_, _NONE_, _REGIc, _null_, _REGIi, _REGIc, _REGIp, _null_, |
| _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_, |
| _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_ |
| }; |
| |
| #endif /* NO_UNDOC_CODE */ |
| |
| #ifdef RE_ENTRANT_CHECKING |
| u_char emulating = 0; |
| #endif /* RE_ENTRANT_CHECKING */ |
| |
| static int valid_prefix(u_char *Byte, u_char __user ** fpu_eip, |
| overrides * override); |
| |
| void math_emulate(struct math_emu_info *info) |
| { |
| u_char FPU_modrm, byte1; |
| unsigned short code; |
| fpu_addr_modes addr_modes; |
| int unmasked; |
| FPU_REG loaded_data; |
| FPU_REG *st0_ptr; |
| u_char loaded_tag, st0_tag; |
| void __user *data_address; |
| struct address data_sel_off; |
| struct address entry_sel_off; |
| unsigned long code_base = 0; |
| unsigned long code_limit = 0; /* Initialized to stop compiler warnings */ |
| struct desc_struct code_descriptor; |
| struct fpu *fpu = ¤t->thread.fpu; |
| |
| fpu__activate_curr(fpu); |
| |
| #ifdef RE_ENTRANT_CHECKING |
| if (emulating) { |
| printk("ERROR: wm-FPU-emu is not RE-ENTRANT!\n"); |
| } |
| RE_ENTRANT_CHECK_ON; |
| #endif /* RE_ENTRANT_CHECKING */ |
| |
| FPU_info = info; |
| |
| FPU_ORIG_EIP = FPU_EIP; |
| |
| if ((FPU_EFLAGS & 0x00020000) != 0) { |
| /* Virtual 8086 mode */ |
| addr_modes.default_mode = VM86; |
| FPU_EIP += code_base = FPU_CS << 4; |
| code_limit = code_base + 0xffff; /* Assumes code_base <= 0xffff0000 */ |
| } else if (FPU_CS == __USER_CS && FPU_DS == __USER_DS) { |
| addr_modes.default_mode = 0; |
| } else if (FPU_CS == __KERNEL_CS) { |
| printk("math_emulate: %04x:%08lx\n", FPU_CS, FPU_EIP); |
| panic("Math emulation needed in kernel"); |
| } else { |
| |
| if ((FPU_CS & 4) != 4) { /* Must be in the LDT */ |
| /* Can only handle segmented addressing via the LDT |
| for now, and it must be 16 bit */ |
| printk("FPU emulator: Unsupported addressing mode\n"); |
| math_abort(FPU_info, SIGILL); |
| } |
| |
| code_descriptor = FPU_get_ldt_descriptor(FPU_CS); |
| if (SEG_D_SIZE(code_descriptor)) { |
| /* The above test may be wrong, the book is not clear */ |
| /* Segmented 32 bit protected mode */ |
| addr_modes.default_mode = SEG32; |
| } else { |
| /* 16 bit protected mode */ |
| addr_modes.default_mode = PM16; |
| } |
| FPU_EIP += code_base = SEG_BASE_ADDR(code_descriptor); |
| code_limit = code_base |
| + (SEG_LIMIT(code_descriptor) + |
| 1) * SEG_GRANULARITY(code_descriptor) |
| - 1; |
| if (code_limit < code_base) |
| code_limit = 0xffffffff; |
| } |
| |
| FPU_lookahead = !(FPU_EFLAGS & X86_EFLAGS_TF); |
| |
| if (!valid_prefix(&byte1, (u_char __user **) & FPU_EIP, |
| &addr_modes.override)) { |
| RE_ENTRANT_CHECK_OFF; |
| printk |
| ("FPU emulator: Unknown prefix byte 0x%02x, probably due to\n" |
| "FPU emulator: self-modifying code! (emulation impossible)\n", |
| byte1); |
| RE_ENTRANT_CHECK_ON; |
| EXCEPTION(EX_INTERNAL | 0x126); |
| math_abort(FPU_info, SIGILL); |
| } |
| |
| do_another_FPU_instruction: |
| |
| no_ip_update = 0; |
| |
| FPU_EIP++; /* We have fetched the prefix and first code bytes. */ |
| |
| if (addr_modes.default_mode) { |
| /* This checks for the minimum instruction bytes. |
| We also need to check any extra (address mode) code access. */ |
| if (FPU_EIP > code_limit) |
| math_abort(FPU_info, SIGSEGV); |
| } |
| |
| if ((byte1 & 0xf8) != 0xd8) { |
| if (byte1 == FWAIT_OPCODE) { |
| if (partial_status & SW_Summary) |
| goto do_the_FPU_interrupt; |
| else |
| goto FPU_fwait_done; |
| } |
| #ifdef PARANOID |
| EXCEPTION(EX_INTERNAL | 0x128); |
| math_abort(FPU_info, SIGILL); |
| #endif /* PARANOID */ |
| } |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_code_access_ok(1); |
| FPU_get_user(FPU_modrm, (u_char __user *) FPU_EIP); |
| RE_ENTRANT_CHECK_ON; |
| FPU_EIP++; |
| |
| if (partial_status & SW_Summary) { |
| /* Ignore the error for now if the current instruction is a no-wait |
| control instruction */ |
| /* The 80486 manual contradicts itself on this topic, |
| but a real 80486 uses the following instructions: |
| fninit, fnstenv, fnsave, fnstsw, fnstenv, fnclex. |
| */ |
| code = (FPU_modrm << 8) | byte1; |
| if (!((((code & 0xf803) == 0xe003) || /* fnclex, fninit, fnstsw */ |
| (((code & 0x3003) == 0x3001) && /* fnsave, fnstcw, fnstenv, |
| fnstsw */ |
| ((code & 0xc000) != 0xc000))))) { |
| /* |
| * We need to simulate the action of the kernel to FPU |
| * interrupts here. |
| */ |
| do_the_FPU_interrupt: |
| |
| FPU_EIP = FPU_ORIG_EIP; /* Point to current FPU instruction. */ |
| |
| RE_ENTRANT_CHECK_OFF; |
| current->thread.trap_nr = X86_TRAP_MF; |
| current->thread.error_code = 0; |
| send_sig(SIGFPE, current, 1); |
| return; |
| } |
| } |
| |
| entry_sel_off.offset = FPU_ORIG_EIP; |
| entry_sel_off.selector = FPU_CS; |
| entry_sel_off.opcode = (byte1 << 8) | FPU_modrm; |
| entry_sel_off.empty = 0; |
| |
| FPU_rm = FPU_modrm & 7; |
| |
| if (FPU_modrm < 0300) { |
| /* All of these instructions use the mod/rm byte to get a data address */ |
| |
| if ((addr_modes.default_mode & SIXTEEN) |
| ^ (addr_modes.override.address_size == ADDR_SIZE_PREFIX)) |
| data_address = |
| FPU_get_address_16(FPU_modrm, &FPU_EIP, |
| &data_sel_off, addr_modes); |
| else |
| data_address = |
| FPU_get_address(FPU_modrm, &FPU_EIP, &data_sel_off, |
| addr_modes); |
| |
| if (addr_modes.default_mode) { |
| if (FPU_EIP - 1 > code_limit) |
| math_abort(FPU_info, SIGSEGV); |
| } |
| |
| if (!(byte1 & 1)) { |
| unsigned short status1 = partial_status; |
| |
| st0_ptr = &st(0); |
| st0_tag = FPU_gettag0(); |
| |
| /* Stack underflow has priority */ |
| if (NOT_EMPTY_ST0) { |
| if (addr_modes.default_mode & PROTECTED) { |
| /* This table works for 16 and 32 bit protected mode */ |
| if (access_limit < |
| data_sizes_16[(byte1 >> 1) & 3]) |
| math_abort(FPU_info, SIGSEGV); |
| } |
| |
| unmasked = 0; /* Do this here to stop compiler warnings. */ |
| switch ((byte1 >> 1) & 3) { |
| case 0: |
| unmasked = |
| FPU_load_single((float __user *) |
| data_address, |
| &loaded_data); |
| loaded_tag = unmasked & 0xff; |
| unmasked &= ~0xff; |
| break; |
| case 1: |
| loaded_tag = |
| FPU_load_int32((long __user *) |
| data_address, |
| &loaded_data); |
| break; |
| case 2: |
| unmasked = |
| FPU_load_double((double __user *) |
| data_address, |
| &loaded_data); |
| loaded_tag = unmasked & 0xff; |
| unmasked &= ~0xff; |
| break; |
| case 3: |
| default: /* Used here to suppress gcc warnings. */ |
| loaded_tag = |
| FPU_load_int16((short __user *) |
| data_address, |
| &loaded_data); |
| break; |
| } |
| |
| /* No more access to user memory, it is safe |
| to use static data now */ |
| |
| /* NaN operands have the next priority. */ |
| /* We have to delay looking at st(0) until after |
| loading the data, because that data might contain an SNaN */ |
| if (((st0_tag == TAG_Special) && isNaN(st0_ptr)) |
| || ((loaded_tag == TAG_Special) |
| && isNaN(&loaded_data))) { |
| /* Restore the status word; we might have loaded a |
| denormal. */ |
| partial_status = status1; |
| if ((FPU_modrm & 0x30) == 0x10) { |
| /* fcom or fcomp */ |
| EXCEPTION(EX_Invalid); |
| setcc(SW_C3 | SW_C2 | SW_C0); |
| if ((FPU_modrm & 0x08) |
| && (control_word & |
| CW_Invalid)) |
| FPU_pop(); /* fcomp, masked, so we pop. */ |
| } else { |
| if (loaded_tag == TAG_Special) |
| loaded_tag = |
| FPU_Special |
| (&loaded_data); |
| #ifdef PECULIAR_486 |
| /* This is not really needed, but gives behaviour |
| identical to an 80486 */ |
| if ((FPU_modrm & 0x28) == 0x20) |
| /* fdiv or fsub */ |
| real_2op_NaN |
| (&loaded_data, |
| loaded_tag, 0, |
| &loaded_data); |
| else |
| #endif /* PECULIAR_486 */ |
| /* fadd, fdivr, fmul, or fsubr */ |
| real_2op_NaN |
| (&loaded_data, |
| loaded_tag, 0, |
| st0_ptr); |
| } |
| goto reg_mem_instr_done; |
| } |
| |
| if (unmasked && !((FPU_modrm & 0x30) == 0x10)) { |
| /* Is not a comparison instruction. */ |
| if ((FPU_modrm & 0x38) == 0x38) { |
| /* fdivr */ |
| if ((st0_tag == TAG_Zero) && |
| ((loaded_tag == TAG_Valid) |
| || (loaded_tag == |
| TAG_Special |
| && |
| isdenormal |
| (&loaded_data)))) { |
| if (FPU_divide_by_zero |
| (0, |
| getsign |
| (&loaded_data)) |
| < 0) { |
| /* We use the fact here that the unmasked |
| exception in the loaded data was for a |
| denormal operand */ |
| /* Restore the state of the denormal op bit */ |
| partial_status |
| &= |
| ~SW_Denorm_Op; |
| partial_status |
| |= |
| status1 & |
| SW_Denorm_Op; |
| } else |
| setsign(st0_ptr, |
| getsign |
| (&loaded_data)); |
| } |
| } |
| goto reg_mem_instr_done; |
| } |
| |
| switch ((FPU_modrm >> 3) & 7) { |
| case 0: /* fadd */ |
| clear_C1(); |
| FPU_add(&loaded_data, loaded_tag, 0, |
| control_word); |
| break; |
| case 1: /* fmul */ |
| clear_C1(); |
| FPU_mul(&loaded_data, loaded_tag, 0, |
| control_word); |
| break; |
| case 2: /* fcom */ |
| FPU_compare_st_data(&loaded_data, |
| loaded_tag); |
| break; |
| case 3: /* fcomp */ |
| if (!FPU_compare_st_data |
| (&loaded_data, loaded_tag) |
| && !unmasked) |
| FPU_pop(); |
| break; |
| case 4: /* fsub */ |
| clear_C1(); |
| FPU_sub(LOADED | loaded_tag, |
| (int)&loaded_data, |
| control_word); |
| break; |
| case 5: /* fsubr */ |
| clear_C1(); |
| FPU_sub(REV | LOADED | loaded_tag, |
| (int)&loaded_data, |
| control_word); |
| break; |
| case 6: /* fdiv */ |
| clear_C1(); |
| FPU_div(LOADED | loaded_tag, |
| (int)&loaded_data, |
| control_word); |
| break; |
| case 7: /* fdivr */ |
| clear_C1(); |
| if (st0_tag == TAG_Zero) |
| partial_status = status1; /* Undo any denorm tag, |
| zero-divide has priority. */ |
| FPU_div(REV | LOADED | loaded_tag, |
| (int)&loaded_data, |
| control_word); |
| break; |
| } |
| } else { |
| if ((FPU_modrm & 0x30) == 0x10) { |
| /* The instruction is fcom or fcomp */ |
| EXCEPTION(EX_StackUnder); |
| setcc(SW_C3 | SW_C2 | SW_C0); |
| if ((FPU_modrm & 0x08) |
| && (control_word & CW_Invalid)) |
| FPU_pop(); /* fcomp */ |
| } else |
| FPU_stack_underflow(); |
| } |
| reg_mem_instr_done: |
| operand_address = data_sel_off; |
| } else { |
| if (!(no_ip_update = |
| FPU_load_store(((FPU_modrm & 0x38) | (byte1 & 6)) |
| >> 1, addr_modes, data_address))) { |
| operand_address = data_sel_off; |
| } |
| } |
| |
| } else { |
| /* None of these instructions access user memory */ |
| u_char instr_index = (FPU_modrm & 0x38) | (byte1 & 7); |
| |
| #ifdef PECULIAR_486 |
| /* This is supposed to be undefined, but a real 80486 seems |
| to do this: */ |
| operand_address.offset = 0; |
| operand_address.selector = FPU_DS; |
| #endif /* PECULIAR_486 */ |
| |
| st0_ptr = &st(0); |
| st0_tag = FPU_gettag0(); |
| switch (type_table[(int)instr_index]) { |
| case _NONE_: /* also _REGIc: _REGIn */ |
| break; |
| case _REG0_: |
| if (!NOT_EMPTY_ST0) { |
| FPU_stack_underflow(); |
| goto FPU_instruction_done; |
| } |
| break; |
| case _REGIi: |
| if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) { |
| FPU_stack_underflow_i(FPU_rm); |
| goto FPU_instruction_done; |
| } |
| break; |
| case _REGIp: |
| if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) { |
| FPU_stack_underflow_pop(FPU_rm); |
| goto FPU_instruction_done; |
| } |
| break; |
| case _REGI_: |
| if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) { |
| FPU_stack_underflow(); |
| goto FPU_instruction_done; |
| } |
| break; |
| case _PUSH_: /* Only used by the fld st(i) instruction */ |
| break; |
| case _null_: |
| FPU_illegal(); |
| goto FPU_instruction_done; |
| default: |
| EXCEPTION(EX_INTERNAL | 0x111); |
| goto FPU_instruction_done; |
| } |
| (*st_instr_table[(int)instr_index]) (); |
| |
| FPU_instruction_done: |
| ; |
| } |
| |
| if (!no_ip_update) |
| instruction_address = entry_sel_off; |
| |
| FPU_fwait_done: |
| |
| #ifdef DEBUG |
| RE_ENTRANT_CHECK_OFF; |
| FPU_printall(); |
| RE_ENTRANT_CHECK_ON; |
| #endif /* DEBUG */ |
| |
| if (FPU_lookahead && !need_resched()) { |
| FPU_ORIG_EIP = FPU_EIP - code_base; |
| if (valid_prefix(&byte1, (u_char __user **) & FPU_EIP, |
| &addr_modes.override)) |
| goto do_another_FPU_instruction; |
| } |
| |
| if (addr_modes.default_mode) |
| FPU_EIP -= code_base; |
| |
| RE_ENTRANT_CHECK_OFF; |
| } |
| |
| /* Support for prefix bytes is not yet complete. To properly handle |
| all prefix bytes, further changes are needed in the emulator code |
| which accesses user address space. Access to separate segments is |
| important for msdos emulation. */ |
| static int valid_prefix(u_char *Byte, u_char __user **fpu_eip, |
| overrides * override) |
| { |
| u_char byte; |
| u_char __user *ip = *fpu_eip; |
| |
| *override = (overrides) { |
| 0, 0, PREFIX_DEFAULT}; /* defaults */ |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_code_access_ok(1); |
| FPU_get_user(byte, ip); |
| RE_ENTRANT_CHECK_ON; |
| |
| while (1) { |
| switch (byte) { |
| case ADDR_SIZE_PREFIX: |
| override->address_size = ADDR_SIZE_PREFIX; |
| goto do_next_byte; |
| |
| case OP_SIZE_PREFIX: |
| override->operand_size = OP_SIZE_PREFIX; |
| goto do_next_byte; |
| |
| case PREFIX_CS: |
| override->segment = PREFIX_CS_; |
| goto do_next_byte; |
| case PREFIX_ES: |
| override->segment = PREFIX_ES_; |
| goto do_next_byte; |
| case PREFIX_SS: |
| override->segment = PREFIX_SS_; |
| goto do_next_byte; |
| case PREFIX_FS: |
| override->segment = PREFIX_FS_; |
| goto do_next_byte; |
| case PREFIX_GS: |
| override->segment = PREFIX_GS_; |
| goto do_next_byte; |
| case PREFIX_DS: |
| override->segment = PREFIX_DS_; |
| goto do_next_byte; |
| |
| /* lock is not a valid prefix for FPU instructions, |
| let the cpu handle it to generate a SIGILL. */ |
| /* case PREFIX_LOCK: */ |
| |
| /* rep.. prefixes have no meaning for FPU instructions */ |
| case PREFIX_REPE: |
| case PREFIX_REPNE: |
| |
| do_next_byte: |
| ip++; |
| RE_ENTRANT_CHECK_OFF; |
| FPU_code_access_ok(1); |
| FPU_get_user(byte, ip); |
| RE_ENTRANT_CHECK_ON; |
| break; |
| case FWAIT_OPCODE: |
| *Byte = byte; |
| return 1; |
| default: |
| if ((byte & 0xf8) == 0xd8) { |
| *Byte = byte; |
| *fpu_eip = ip; |
| return 1; |
| } else { |
| /* Not a valid sequence of prefix bytes followed by |
| an FPU instruction. */ |
| *Byte = byte; /* Needed for error message. */ |
| return 0; |
| } |
| } |
| } |
| } |
| |
| void math_abort(struct math_emu_info *info, unsigned int signal) |
| { |
| FPU_EIP = FPU_ORIG_EIP; |
| current->thread.trap_nr = X86_TRAP_MF; |
| current->thread.error_code = 0; |
| send_sig(signal, current, 1); |
| RE_ENTRANT_CHECK_OFF; |
| __asm__("movl %0,%%esp ; ret": :"g"(((long)info) - 4)); |
| #ifdef PARANOID |
| printk("ERROR: wm-FPU-emu math_abort failed!\n"); |
| #endif /* PARANOID */ |
| } |
| |
| #define S387 ((struct swregs_state *)s387) |
| #define sstatus_word() \ |
| ((S387->swd & ~SW_Top & 0xffff) | ((S387->ftop << SW_Top_Shift) & SW_Top)) |
| |
| int fpregs_soft_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| struct swregs_state *s387 = &target->thread.fpu.state.soft; |
| void *space = s387->st_space; |
| int ret; |
| int offset, other, i, tags, regnr, tag, newtop; |
| |
| RE_ENTRANT_CHECK_OFF; |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, s387, 0, |
| offsetof(struct swregs_state, st_space)); |
| RE_ENTRANT_CHECK_ON; |
| |
| if (ret) |
| return ret; |
| |
| S387->ftop = (S387->swd >> SW_Top_Shift) & 7; |
| offset = (S387->ftop & 7) * 10; |
| other = 80 - offset; |
| |
| RE_ENTRANT_CHECK_OFF; |
| |
| /* Copy all registers in stack order. */ |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| space + offset, 0, other); |
| if (!ret && offset) |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| space, 0, offset); |
| |
| RE_ENTRANT_CHECK_ON; |
| |
| /* The tags may need to be corrected now. */ |
| tags = S387->twd; |
| newtop = S387->ftop; |
| for (i = 0; i < 8; i++) { |
| regnr = (i + newtop) & 7; |
| if (((tags >> ((regnr & 7) * 2)) & 3) != TAG_Empty) { |
| /* The loaded data over-rides all other cases. */ |
| tag = |
| FPU_tagof((FPU_REG *) ((u_char *) S387->st_space + |
| 10 * regnr)); |
| tags &= ~(3 << (regnr * 2)); |
| tags |= (tag & 3) << (regnr * 2); |
| } |
| } |
| S387->twd = tags; |
| |
| return ret; |
| } |
| |
| int fpregs_soft_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| struct swregs_state *s387 = &target->thread.fpu.state.soft; |
| const void *space = s387->st_space; |
| int ret; |
| int offset = (S387->ftop & 7) * 10, other = 80 - offset; |
| |
| RE_ENTRANT_CHECK_OFF; |
| |
| #ifdef PECULIAR_486 |
| S387->cwd &= ~0xe080; |
| /* An 80486 sets nearly all of the reserved bits to 1. */ |
| S387->cwd |= 0xffff0040; |
| S387->swd = sstatus_word() | 0xffff0000; |
| S387->twd |= 0xffff0000; |
| S387->fcs &= ~0xf8000000; |
| S387->fos |= 0xffff0000; |
| #endif /* PECULIAR_486 */ |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, s387, 0, |
| offsetof(struct swregs_state, st_space)); |
| |
| /* Copy all registers in stack order. */ |
| if (!ret) |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| space + offset, 0, other); |
| if (!ret) |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| space, 0, offset); |
| |
| RE_ENTRANT_CHECK_ON; |
| |
| return ret; |
| } |