blob: 33b8d3d9b0af461fd9bbb75950316d9b54012d85 [file] [log] [blame]
/*
* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* PFK Key Cache
*
* Key Cache used internally in PFK.
* The purpose of the cache is to save access time to QSEE when loading keys.
* Currently the cache is the same size as the total number of keys that can
* be loaded to ICE. Since this number is relatively small, the algorithms for
* cache eviction are simple, linear and based on last usage timestamp, i.e
* the node that will be evicted is the one with the oldest timestamp.
* Empty entries always have the oldest timestamp.
*/
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <crypto/ice.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include "pfk_kc.h"
#include "pfk_ice.h"
/** the first available index in ice engine */
#define PFK_KC_STARTING_INDEX 2
/** currently the only supported key and salt sizes */
#define PFK_KC_KEY_SIZE 32
#define PFK_KC_SALT_SIZE 32
/** Table size */
/* TODO replace by some constant from ice.h */
#define PFK_KC_TABLE_SIZE ((32) - (PFK_KC_STARTING_INDEX))
/** The maximum key and salt size */
#define PFK_MAX_KEY_SIZE PFK_KC_KEY_SIZE
#define PFK_MAX_SALT_SIZE PFK_KC_SALT_SIZE
#define PFK_UFS "ufs"
static DEFINE_SPINLOCK(kc_lock);
static unsigned long flags;
static bool kc_ready;
static char *s_type = "sdcc";
/**
* enum pfk_kc_entry_state - state of the entry inside kc table
*
* @FREE: entry is free
* @ACTIVE_ICE_PRELOAD: entry is actively used by ICE engine
and cannot be used by others. SCM call
to load key to ICE is pending to be performed
* @ACTIVE_ICE_LOADED: entry is actively used by ICE engine and
cannot be used by others. SCM call to load the
key to ICE was successfully executed and key is
now loaded
* @INACTIVE_INVALIDATING: entry is being invalidated during file close
and cannot be used by others until invalidation
is complete
* @INACTIVE: entry's key is already loaded, but is not
currently being used. It can be re-used for
optimization and to avoid SCM call cost or
it can be taken by another key if there are
no FREE entries
* @SCM_ERROR: error occurred while scm call was performed to
load the key to ICE
*/
enum pfk_kc_entry_state {
FREE,
ACTIVE_ICE_PRELOAD,
ACTIVE_ICE_LOADED,
INACTIVE_INVALIDATING,
INACTIVE,
SCM_ERROR
};
struct kc_entry {
unsigned char key[PFK_MAX_KEY_SIZE];
size_t key_size;
unsigned char salt[PFK_MAX_SALT_SIZE];
size_t salt_size;
u64 time_stamp;
u32 key_index;
struct task_struct *thread_pending;
enum pfk_kc_entry_state state;
/* ref count for the number of requests in the HW queue for this key */
int loaded_ref_cnt;
int scm_error;
};
static struct kc_entry kc_table[PFK_KC_TABLE_SIZE];
/**
* kc_is_ready() - driver is initialized and ready.
*
* Return: true if the key cache is ready.
*/
static inline bool kc_is_ready(void)
{
return kc_ready;
}
static inline void kc_spin_lock(void)
{
spin_lock_irqsave(&kc_lock, flags);
}
static inline void kc_spin_unlock(void)
{
spin_unlock_irqrestore(&kc_lock, flags);
}
/**
* pfk_kc_get_storage_type() - return the hardware storage type.
*
* Return: storage type queried during bootup.
*/
const char *pfk_kc_get_storage_type(void)
{
return s_type;
}
/**
* kc_entry_is_available() - checks whether the entry is available
*
* Return true if it is , false otherwise or if invalid
* Should be invoked under spinlock
*/
static bool kc_entry_is_available(const struct kc_entry *entry)
{
if (!entry)
return false;
return (entry->state == FREE || entry->state == INACTIVE);
}
/**
* kc_entry_wait_till_available() - waits till entry is available
*
* Returns 0 in case of success or -ERESTARTSYS if the wait was interrupted
* by signal
*
* Should be invoked under spinlock
*/
static int kc_entry_wait_till_available(struct kc_entry *entry)
{
int res = 0;
while (!kc_entry_is_available(entry)) {
set_current_state(TASK_INTERRUPTIBLE);
if (signal_pending(current)) {
res = -ERESTARTSYS;
break;
}
/* assuming only one thread can try to invalidate
* the same entry
*/
entry->thread_pending = current;
kc_spin_unlock();
schedule();
kc_spin_lock();
}
set_current_state(TASK_RUNNING);
return res;
}
/**
* kc_entry_start_invalidating() - moves entry to state
* INACTIVE_INVALIDATING
* If entry is in use, waits till
* it gets available
* @entry: pointer to entry
*
* Return 0 in case of success, otherwise error
* Should be invoked under spinlock
*/
static int kc_entry_start_invalidating(struct kc_entry *entry)
{
int res;
res = kc_entry_wait_till_available(entry);
if (res)
return res;
entry->state = INACTIVE_INVALIDATING;
return 0;
}
/**
* kc_entry_finish_invalidating() - moves entry to state FREE
* wakes up all the tasks waiting
* on it
*
* @entry: pointer to entry
*
* Return 0 in case of success, otherwise error
* Should be invoked under spinlock
*/
static void kc_entry_finish_invalidating(struct kc_entry *entry)
{
if (!entry)
return;
if (entry->state != INACTIVE_INVALIDATING)
return;
entry->state = FREE;
}
/**
* kc_min_entry() - compare two entries to find one with minimal time
* @a: ptr to the first entry. If NULL the other entry will be returned
* @b: pointer to the second entry
*
* Return the entry which timestamp is the minimal, or b if a is NULL
*/
static inline struct kc_entry *kc_min_entry(struct kc_entry *a,
struct kc_entry *b)
{
if (!a)
return b;
if (time_before64(b->time_stamp, a->time_stamp))
return b;
return a;
}
/**
* kc_entry_at_index() - return entry at specific index
* @index: index of entry to be accessed
*
* Return entry
* Should be invoked under spinlock
*/
static struct kc_entry *kc_entry_at_index(int index)
{
return &(kc_table[index]);
}
/**
* kc_find_key_at_index() - find kc entry starting at specific index
* @key: key to look for
* @key_size: the key size
* @salt: salt to look for
* @salt_size: the salt size
* @sarting_index: index to start search with, if entry found, updated with
* index of that entry
*
* Return entry or NULL in case of error
* Should be invoked under spinlock
*/
static struct kc_entry *kc_find_key_at_index(const unsigned char *key,
size_t key_size, const unsigned char *salt, size_t salt_size,
int *starting_index)
{
struct kc_entry *entry = NULL;
int i = 0;
for (i = *starting_index; i < PFK_KC_TABLE_SIZE; i++) {
entry = kc_entry_at_index(i);
if (salt != NULL) {
if (entry->salt_size != salt_size)
continue;
if (memcmp(entry->salt, salt, salt_size) != 0)
continue;
}
if (entry->key_size != key_size)
continue;
if (memcmp(entry->key, key, key_size) == 0) {
*starting_index = i;
return entry;
}
}
return NULL;
}
/**
* kc_find_key() - find kc entry
* @key: key to look for
* @key_size: the key size
* @salt: salt to look for
* @salt_size: the salt size
*
* Return entry or NULL in case of error
* Should be invoked under spinlock
*/
static struct kc_entry *kc_find_key(const unsigned char *key, size_t key_size,
const unsigned char *salt, size_t salt_size)
{
int index = 0;
return kc_find_key_at_index(key, key_size, salt, salt_size, &index);
}
/**
* kc_find_oldest_entry_non_locked() - finds the entry with minimal timestamp
* that is not locked
*
* Returns entry with minimal timestamp. Empty entries have timestamp
* of 0, therefore they are returned first.
* If all the entries are locked, will return NULL
* Should be invoked under spin lock
*/
static struct kc_entry *kc_find_oldest_entry_non_locked(void)
{
struct kc_entry *curr_min_entry = NULL;
struct kc_entry *entry = NULL;
int i = 0;
for (i = 0; i < PFK_KC_TABLE_SIZE; i++) {
entry = kc_entry_at_index(i);
if (entry->state == FREE)
return entry;
if (entry->state == INACTIVE)
curr_min_entry = kc_min_entry(curr_min_entry, entry);
}
return curr_min_entry;
}
/**
* kc_update_timestamp() - updates timestamp of entry to current
*
* @entry: entry to update
*
*/
static void kc_update_timestamp(struct kc_entry *entry)
{
if (!entry)
return;
entry->time_stamp = get_jiffies_64();
}
/**
* kc_clear_entry() - clear the key from entry and mark entry not in use
*
* @entry: pointer to entry
*
* Should be invoked under spinlock
*/
static void kc_clear_entry(struct kc_entry *entry)
{
if (!entry)
return;
memset(entry->key, 0, entry->key_size);
memset(entry->salt, 0, entry->salt_size);
entry->key_size = 0;
entry->salt_size = 0;
entry->time_stamp = 0;
entry->scm_error = 0;
entry->state = FREE;
entry->loaded_ref_cnt = 0;
entry->thread_pending = NULL;
}
/**
* kc_update_entry() - replaces the key in given entry and
* loads the new key to ICE
*
* @entry: entry to replace key in
* @key: key
* @key_size: key_size
* @salt: salt
* @salt_size: salt_size
* @data_unit: dun size
*
* The previous key is securely released and wiped, the new one is loaded
* to ICE.
* Should be invoked under spinlock
*/
static int kc_update_entry(struct kc_entry *entry, const unsigned char *key,
size_t key_size, const unsigned char *salt, size_t salt_size,
unsigned int data_unit, int ice_rev)
{
int ret;
kc_clear_entry(entry);
memcpy(entry->key, key, key_size);
entry->key_size = key_size;
memcpy(entry->salt, salt, salt_size);
entry->salt_size = salt_size;
/* Mark entry as no longer free before releasing the lock */
entry->state = ACTIVE_ICE_PRELOAD;
kc_spin_unlock();
ret = qti_pfk_ice_set_key(entry->key_index, entry->key,
entry->salt, s_type, data_unit, ice_rev);
kc_spin_lock();
return ret;
}
/**
* pfk_kc_init() - init function
*
* Return 0 in case of success, error otherwise
*/
int pfk_kc_init(void)
{
int i = 0;
struct kc_entry *entry = NULL;
kc_spin_lock();
for (i = 0; i < PFK_KC_TABLE_SIZE; i++) {
entry = kc_entry_at_index(i);
entry->key_index = PFK_KC_STARTING_INDEX + i;
}
kc_ready = true;
kc_spin_unlock();
return 0;
}
/**
* pfk_kc_denit() - deinit function
*
* Return 0 in case of success, error otherwise
*/
int pfk_kc_deinit(void)
{
int res = pfk_kc_clear();
kc_ready = false;
return res;
}
/**
* pfk_kc_load_key_start() - retrieve the key from cache or add it if
* it's not there and return the ICE hw key index in @key_index.
* @key: pointer to the key
* @key_size: the size of the key
* @salt: pointer to the salt
* @salt_size: the size of the salt
* @key_index: the pointer to key_index where the output will be stored
* @async: whether scm calls are allowed in the caller context
*
* If key is present in cache, than the key_index will be retrieved from cache.
* If it is not present, the oldest entry from kc table will be evicted,
* the key will be loaded to ICE via QSEE to the index that is the evicted
* entry number and stored in cache.
* Entry that is going to be used is marked as being used, it will mark
* as not being used when ICE finishes using it and pfk_kc_load_key_end
* will be invoked.
* As QSEE calls can only be done from a non-atomic context, when @async flag
* is set to 'false', it specifies that it is ok to make the calls in the
* current context. Otherwise, when @async is set, the caller should retry the
* call again from a different context, and -EAGAIN error will be returned.
*
* Return 0 in case of success, error otherwise
*/
int pfk_kc_load_key_start(const unsigned char *key, size_t key_size,
const unsigned char *salt, size_t salt_size, u32 *key_index,
bool async, unsigned int data_unit, int ice_rev)
{
int ret = 0;
struct kc_entry *entry = NULL;
bool entry_exists = false;
if (!kc_is_ready())
return -ENODEV;
if (!key || !salt || !key_index) {
pr_err("%s key/salt/key_index NULL\n", __func__);
return -EINVAL;
}
if (key_size != PFK_KC_KEY_SIZE) {
pr_err("unsupported key size %zu\n", key_size);
return -EINVAL;
}
if (salt_size != PFK_KC_SALT_SIZE) {
pr_err("unsupported salt size %zu\n", salt_size);
return -EINVAL;
}
kc_spin_lock();
entry = kc_find_key(key, key_size, salt, salt_size);
if (!entry) {
if (async) {
pr_debug("%s task will populate entry\n", __func__);
kc_spin_unlock();
return -EAGAIN;
}
entry = kc_find_oldest_entry_non_locked();
if (!entry) {
/* could not find a single non locked entry,
* return EBUSY to upper layers so that the
* request will be rescheduled
*/
kc_spin_unlock();
return -EBUSY;
}
} else {
entry_exists = true;
}
pr_debug("entry with index %d is in state %d\n",
entry->key_index, entry->state);
switch (entry->state) {
case (INACTIVE):
if (entry_exists) {
kc_update_timestamp(entry);
entry->state = ACTIVE_ICE_LOADED;
if (!strcmp(s_type, (char *)PFK_UFS)) {
if (async)
entry->loaded_ref_cnt++;
} else {
entry->loaded_ref_cnt++;
}
break;
}
case (FREE):
ret = kc_update_entry(entry, key, key_size, salt, salt_size,
data_unit, ice_rev);
if (ret) {
entry->state = SCM_ERROR;
entry->scm_error = ret;
pr_err("%s: key load error (%d)\n", __func__, ret);
} else {
kc_update_timestamp(entry);
entry->state = ACTIVE_ICE_LOADED;
/*
* In case of UFS only increase ref cnt for async calls,
* sync calls from within work thread do not pass
* requests further to HW
*/
if (!strcmp(s_type, (char *)PFK_UFS)) {
if (async)
entry->loaded_ref_cnt++;
} else {
entry->loaded_ref_cnt++;
}
}
break;
case (ACTIVE_ICE_PRELOAD):
case (INACTIVE_INVALIDATING):
ret = -EAGAIN;
break;
case (ACTIVE_ICE_LOADED):
kc_update_timestamp(entry);
if (!strcmp(s_type, (char *)PFK_UFS)) {
if (async)
entry->loaded_ref_cnt++;
} else {
entry->loaded_ref_cnt++;
}
break;
case(SCM_ERROR):
ret = entry->scm_error;
kc_clear_entry(entry);
entry->state = FREE;
break;
default:
pr_err("invalid state %d for entry with key index %d\n",
entry->state, entry->key_index);
ret = -EINVAL;
}
*key_index = entry->key_index;
kc_spin_unlock();
return ret;
}
/**
* pfk_kc_load_key_end() - finish the process of key loading that was started
* by pfk_kc_load_key_start
* by marking the entry as not
* being in use
* @key: pointer to the key
* @key_size: the size of the key
* @salt: pointer to the salt
* @salt_size: the size of the salt
*
*/
void pfk_kc_load_key_end(const unsigned char *key, size_t key_size,
const unsigned char *salt, size_t salt_size)
{
struct kc_entry *entry = NULL;
struct task_struct *tmp_pending = NULL;
int ref_cnt = 0;
if (!kc_is_ready())
return;
if (!key || !salt)
return;
if (key_size != PFK_KC_KEY_SIZE)
return;
if (salt_size != PFK_KC_SALT_SIZE)
return;
kc_spin_lock();
entry = kc_find_key(key, key_size, salt, salt_size);
if (!entry) {
kc_spin_unlock();
pr_err("internal error, there should an entry to unlock\n");
return;
}
ref_cnt = --entry->loaded_ref_cnt;
if (ref_cnt < 0)
pr_err("internal error, ref count should never be negative\n");
if (!ref_cnt) {
entry->state = INACTIVE;
/*
* wake-up invalidation if it's waiting
* for the entry to be released
*/
if (entry->thread_pending) {
tmp_pending = entry->thread_pending;
entry->thread_pending = NULL;
kc_spin_unlock();
wake_up_process(tmp_pending);
return;
}
}
kc_spin_unlock();
}
/**
* pfk_kc_remove_key() - remove the key from cache and from ICE engine
* @key: pointer to the key
* @key_size: the size of the key
* @salt: pointer to the key
* @salt_size: the size of the key
*
* Return 0 in case of success, error otherwise (also in case of non
* (existing key)
*/
int pfk_kc_remove_key_with_salt(const unsigned char *key, size_t key_size,
const unsigned char *salt, size_t salt_size)
{
struct kc_entry *entry = NULL;
int res = 0;
if (!kc_is_ready())
return -ENODEV;
if (!key)
return -EINVAL;
if (!salt)
return -EINVAL;
if (key_size != PFK_KC_KEY_SIZE)
return -EINVAL;
if (salt_size != PFK_KC_SALT_SIZE)
return -EINVAL;
kc_spin_lock();
entry = kc_find_key(key, key_size, salt, salt_size);
if (!entry) {
pr_debug("%s: key does not exist\n", __func__);
kc_spin_unlock();
return -EINVAL;
}
res = kc_entry_start_invalidating(entry);
if (res != 0) {
kc_spin_unlock();
return res;
}
kc_clear_entry(entry);
kc_spin_unlock();
qti_pfk_ice_invalidate_key(entry->key_index, s_type);
kc_spin_lock();
kc_entry_finish_invalidating(entry);
kc_spin_unlock();
return 0;
}
/**
* pfk_kc_remove_key() - remove the key from cache and from ICE engine
* when no salt is available. Will only search key part, if there are several,
* all will be removed
*
* @key: pointer to the key
* @key_size: the size of the key
*
* Return 0 in case of success, error otherwise (also for non-existing key)
*/
int pfk_kc_remove_key(const unsigned char *key, size_t key_size)
{
struct kc_entry *entry = NULL;
int index = 0;
int temp_indexes[PFK_KC_TABLE_SIZE] = {0};
int temp_indexes_size = 0;
int i = 0;
int res = 0;
if (!kc_is_ready())
return -ENODEV;
if (!key)
return -EINVAL;
if (key_size != PFK_KC_KEY_SIZE)
return -EINVAL;
memset(temp_indexes, -1, sizeof(temp_indexes));
kc_spin_lock();
entry = kc_find_key_at_index(key, key_size, NULL, 0, &index);
if (!entry) {
pr_err("%s: key does not exist\n", __func__);
kc_spin_unlock();
return -EINVAL;
}
res = kc_entry_start_invalidating(entry);
if (res != 0) {
kc_spin_unlock();
return res;
}
temp_indexes[temp_indexes_size++] = index;
kc_clear_entry(entry);
/* let's clean additional entries with the same key if there are any */
do {
index++;
entry = kc_find_key_at_index(key, key_size, NULL, 0, &index);
if (!entry)
break;
res = kc_entry_start_invalidating(entry);
if (res != 0) {
kc_spin_unlock();
goto out;
}
temp_indexes[temp_indexes_size++] = index;
kc_clear_entry(entry);
} while (true);
kc_spin_unlock();
temp_indexes_size--;
for (i = temp_indexes_size; i >= 0 ; i--)
qti_pfk_ice_invalidate_key(
kc_entry_at_index(temp_indexes[i])->key_index,
s_type);
/* fall through */
res = 0;
out:
kc_spin_lock();
for (i = temp_indexes_size; i >= 0 ; i--)
kc_entry_finish_invalidating(
kc_entry_at_index(temp_indexes[i]));
kc_spin_unlock();
return res;
}
/**
* pfk_kc_clear() - clear the table and remove all keys from ICE
*
* Return 0 on success, error otherwise
*
*/
int pfk_kc_clear(void)
{
struct kc_entry *entry = NULL;
int i = 0;
int res = 0;
if (!kc_is_ready())
return -ENODEV;
kc_spin_lock();
for (i = 0; i < PFK_KC_TABLE_SIZE; i++) {
entry = kc_entry_at_index(i);
res = kc_entry_start_invalidating(entry);
if (res != 0) {
kc_spin_unlock();
goto out;
}
kc_clear_entry(entry);
}
kc_spin_unlock();
for (i = 0; i < PFK_KC_TABLE_SIZE; i++)
qti_pfk_ice_invalidate_key(kc_entry_at_index(i)->key_index,
s_type);
/* fall through */
res = 0;
out:
kc_spin_lock();
for (i = 0; i < PFK_KC_TABLE_SIZE; i++)
kc_entry_finish_invalidating(kc_entry_at_index(i));
kc_spin_unlock();
return res;
}
/**
* pfk_kc_clear_on_reset() - clear the table and remove all keys from ICE
* The assumption is that at this point we don't have any pending transactions
* Also, there is no need to clear keys from ICE
*
* Return 0 on success, error otherwise
*
*/
void pfk_kc_clear_on_reset(void)
{
struct kc_entry *entry = NULL;
int i = 0;
if (!kc_is_ready())
return;
kc_spin_lock();
for (i = 0; i < PFK_KC_TABLE_SIZE; i++) {
entry = kc_entry_at_index(i);
kc_clear_entry(entry);
}
kc_spin_unlock();
}
static int pfk_kc_find_storage_type(char **device)
{
char boot[20] = {'\0'};
char *match = (char *)strnstr(saved_command_line,
"androidboot.bootdevice=",
strlen(saved_command_line));
if (match) {
memcpy(boot, (match + strlen("androidboot.bootdevice=")),
sizeof(boot) - 1);
if (strnstr(boot, PFK_UFS, strlen(boot)))
*device = PFK_UFS;
return 0;
}
return -EINVAL;
}
static int __init pfk_kc_pre_init(void)
{
return pfk_kc_find_storage_type(&s_type);
}
static void __exit pfk_kc_exit(void)
{
s_type = NULL;
}
module_init(pfk_kc_pre_init);
module_exit(pfk_kc_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Per-File-Key-KC driver");