blob: 0dfeff04c329401724688d1f6e566c4462c9d5e6 [file] [log] [blame]
/* Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/mhi.h>
#include <linux/types.h>
#include "mhi_internal.h"
static void __mhi_unprepare_channel(struct mhi_controller *mhi_cntrl,
struct mhi_chan *mhi_chan);
int __must_check mhi_read_reg(struct mhi_controller *mhi_cntrl,
void __iomem *base,
u32 offset,
u32 *out)
{
u32 tmp = readl_relaxed(base + offset);
/* unexpected value, query the link status */
if (PCI_INVALID_READ(tmp) &&
mhi_cntrl->link_status(mhi_cntrl, mhi_cntrl->priv_data))
return -EIO;
*out = tmp;
return 0;
}
int __must_check mhi_read_reg_field(struct mhi_controller *mhi_cntrl,
void __iomem *base,
u32 offset,
u32 mask,
u32 shift,
u32 *out)
{
u32 tmp;
int ret;
ret = mhi_read_reg(mhi_cntrl, base, offset, &tmp);
if (ret)
return ret;
*out = (tmp & mask) >> shift;
return 0;
}
int mhi_get_capability_offset(struct mhi_controller *mhi_cntrl,
u32 capability,
u32 *offset)
{
u32 cur_cap, next_offset;
int ret;
/* get the 1st supported capability offset */
ret = mhi_read_reg_field(mhi_cntrl, mhi_cntrl->regs, MISC_OFFSET,
MISC_CAP_MASK, MISC_CAP_SHIFT, offset);
if (ret)
return ret;
do {
ret = mhi_read_reg_field(mhi_cntrl, mhi_cntrl->regs, *offset,
CAP_CAPID_MASK, CAP_CAPID_SHIFT,
&cur_cap);
if (ret)
return ret;
if (cur_cap == capability)
return 0;
ret = mhi_read_reg_field(mhi_cntrl, mhi_cntrl->regs, *offset,
CAP_NEXT_CAP_MASK, CAP_NEXT_CAP_SHIFT,
&next_offset);
if (ret)
return ret;
*offset = next_offset;
if (*offset >= MHI_REG_SIZE)
return -ENXIO;
} while (next_offset);
return -ENXIO;
}
void mhi_write_reg(struct mhi_controller *mhi_cntrl,
void __iomem *base,
u32 offset,
u32 val)
{
writel_relaxed(val, base + offset);
}
void mhi_write_reg_field(struct mhi_controller *mhi_cntrl,
void __iomem *base,
u32 offset,
u32 mask,
u32 shift,
u32 val)
{
int ret;
u32 tmp;
ret = mhi_read_reg(mhi_cntrl, base, offset, &tmp);
if (ret)
return;
tmp &= ~mask;
tmp |= (val << shift);
mhi_write_reg(mhi_cntrl, base, offset, tmp);
}
void mhi_write_db(struct mhi_controller *mhi_cntrl,
void __iomem *db_addr,
dma_addr_t wp)
{
mhi_write_reg(mhi_cntrl, db_addr, 4, upper_32_bits(wp));
mhi_write_reg(mhi_cntrl, db_addr, 0, lower_32_bits(wp));
}
void mhi_db_brstmode(struct mhi_controller *mhi_cntrl,
struct db_cfg *db_cfg,
void __iomem *db_addr,
dma_addr_t wp)
{
if (db_cfg->db_mode) {
db_cfg->db_val = wp;
mhi_write_db(mhi_cntrl, db_addr, wp);
db_cfg->db_mode = 0;
}
}
void mhi_db_brstmode_disable(struct mhi_controller *mhi_cntrl,
struct db_cfg *db_cfg,
void __iomem *db_addr,
dma_addr_t wp)
{
db_cfg->db_val = wp;
mhi_write_db(mhi_cntrl, db_addr, wp);
}
void mhi_ring_er_db(struct mhi_event *mhi_event)
{
struct mhi_ring *ring = &mhi_event->ring;
mhi_event->db_cfg.process_db(mhi_event->mhi_cntrl, &mhi_event->db_cfg,
ring->db_addr, *ring->ctxt_wp);
}
void mhi_ring_cmd_db(struct mhi_controller *mhi_cntrl, struct mhi_cmd *mhi_cmd)
{
dma_addr_t db;
struct mhi_ring *ring = &mhi_cmd->ring;
db = ring->iommu_base + (ring->wp - ring->base);
*ring->ctxt_wp = db;
mhi_write_db(mhi_cntrl, ring->db_addr, db);
}
void mhi_ring_chan_db(struct mhi_controller *mhi_cntrl,
struct mhi_chan *mhi_chan)
{
struct mhi_ring *ring = &mhi_chan->tre_ring;
dma_addr_t db;
db = ring->iommu_base + (ring->wp - ring->base);
*ring->ctxt_wp = db;
mhi_chan->db_cfg.process_db(mhi_cntrl, &mhi_chan->db_cfg, ring->db_addr,
db);
}
static enum mhi_ee mhi_translate_dev_ee(struct mhi_controller *mhi_cntrl,
u32 dev_ee)
{
enum mhi_ee i;
for (i = MHI_EE_PBL; i < MHI_EE_MAX; i++)
if (mhi_cntrl->ee_table[i] == dev_ee)
return i;
return MHI_EE_NOT_SUPPORTED;
}
enum mhi_ee mhi_get_exec_env(struct mhi_controller *mhi_cntrl)
{
u32 exec;
int ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_EXECENV, &exec);
return (ret) ? MHI_EE_MAX : mhi_translate_dev_ee(mhi_cntrl, exec);
}
enum mhi_dev_state mhi_get_mhi_state(struct mhi_controller *mhi_cntrl)
{
u32 state;
int ret = mhi_read_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS,
MHISTATUS_MHISTATE_MASK,
MHISTATUS_MHISTATE_SHIFT, &state);
return ret ? MHI_STATE_MAX : state;
}
int mhi_queue_sclist(struct mhi_device *mhi_dev,
struct mhi_chan *mhi_chan,
void *buf,
size_t len,
enum MHI_FLAGS mflags)
{
return -EINVAL;
}
int mhi_queue_nop(struct mhi_device *mhi_dev,
struct mhi_chan *mhi_chan,
void *buf,
size_t len,
enum MHI_FLAGS mflags)
{
return -EINVAL;
}
static void mhi_add_ring_element(struct mhi_controller *mhi_cntrl,
struct mhi_ring *ring)
{
ring->wp += ring->el_size;
if (ring->wp >= (ring->base + ring->len))
ring->wp = ring->base;
/* smp update */
smp_wmb();
}
static void mhi_del_ring_element(struct mhi_controller *mhi_cntrl,
struct mhi_ring *ring)
{
ring->rp += ring->el_size;
if (ring->rp >= (ring->base + ring->len))
ring->rp = ring->base;
/* smp update */
smp_wmb();
}
static int get_nr_avail_ring_elements(struct mhi_controller *mhi_cntrl,
struct mhi_ring *ring)
{
int nr_el;
if (ring->wp < ring->rp)
nr_el = ((ring->rp - ring->wp) / ring->el_size) - 1;
else {
nr_el = (ring->rp - ring->base) / ring->el_size;
nr_el += ((ring->base + ring->len - ring->wp) /
ring->el_size) - 1;
}
return nr_el;
}
void *mhi_to_virtual(struct mhi_ring *ring, dma_addr_t addr)
{
return (addr - ring->iommu_base) + ring->base;
}
dma_addr_t mhi_to_physical(struct mhi_ring *ring, void *addr)
{
return (addr - ring->base) + ring->iommu_base;
}
static void mhi_recycle_ev_ring_element(struct mhi_controller *mhi_cntrl,
struct mhi_ring *ring)
{
dma_addr_t ctxt_wp;
/* update the WP */
ring->wp += ring->el_size;
ctxt_wp = *ring->ctxt_wp + ring->el_size;
if (ring->wp >= (ring->base + ring->len)) {
ring->wp = ring->base;
ctxt_wp = ring->iommu_base;
}
*ring->ctxt_wp = ctxt_wp;
/* update the RP */
ring->rp += ring->el_size;
if (ring->rp >= (ring->base + ring->len))
ring->rp = ring->base;
/* visible to other cores */
smp_wmb();
}
static bool mhi_is_ring_full(struct mhi_controller *mhi_cntrl,
struct mhi_ring *ring)
{
void *tmp = ring->wp + ring->el_size;
if (tmp >= (ring->base + ring->len))
tmp = ring->base;
return (tmp == ring->rp);
}
int mhi_map_single_no_bb(struct mhi_controller *mhi_cntrl,
struct mhi_buf_info *buf_info)
{
buf_info->p_addr = dma_map_single(mhi_cntrl->dev, buf_info->v_addr,
buf_info->len, buf_info->dir);
if (dma_mapping_error(mhi_cntrl->dev, buf_info->p_addr))
return -ENOMEM;
return 0;
}
int mhi_map_single_use_bb(struct mhi_controller *mhi_cntrl,
struct mhi_buf_info *buf_info)
{
void *buf = mhi_alloc_coherent(mhi_cntrl, buf_info->len,
&buf_info->p_addr, GFP_ATOMIC);
if (!buf)
return -ENOMEM;
if (buf_info->dir == DMA_TO_DEVICE)
memcpy(buf, buf_info->v_addr, buf_info->len);
buf_info->bb_addr = buf;
return 0;
}
void mhi_unmap_single_no_bb(struct mhi_controller *mhi_cntrl,
struct mhi_buf_info *buf_info)
{
dma_unmap_single(mhi_cntrl->dev, buf_info->p_addr, buf_info->len,
buf_info->dir);
}
void mhi_unmap_single_use_bb(struct mhi_controller *mhi_cntrl,
struct mhi_buf_info *buf_info)
{
if (buf_info->dir == DMA_FROM_DEVICE)
memcpy(buf_info->v_addr, buf_info->bb_addr, buf_info->len);
mhi_free_coherent(mhi_cntrl, buf_info->len, buf_info->bb_addr,
buf_info->p_addr);
}
int mhi_queue_skb(struct mhi_device *mhi_dev,
struct mhi_chan *mhi_chan,
void *buf,
size_t len,
enum MHI_FLAGS mflags)
{
struct sk_buff *skb = buf;
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_ring *tre_ring = &mhi_chan->tre_ring;
struct mhi_ring *buf_ring = &mhi_chan->buf_ring;
struct mhi_buf_info *buf_info;
struct mhi_tre *mhi_tre;
int ret;
if (mhi_is_ring_full(mhi_cntrl, tre_ring))
return -ENOMEM;
read_lock_bh(&mhi_cntrl->pm_lock);
if (unlikely(MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))) {
MHI_VERB("MHI is not in activate state, pm_state:%s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state));
read_unlock_bh(&mhi_cntrl->pm_lock);
return -EIO;
}
/* we're in M3 or transitioning to M3 */
if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) {
mhi_cntrl->runtime_get(mhi_cntrl, mhi_cntrl->priv_data);
mhi_cntrl->runtime_put(mhi_cntrl, mhi_cntrl->priv_data);
}
/* toggle wake to exit out of M2 */
mhi_cntrl->wake_toggle(mhi_cntrl);
/* generate the tre */
buf_info = buf_ring->wp;
buf_info->v_addr = skb->data;
buf_info->cb_buf = skb;
buf_info->wp = tre_ring->wp;
buf_info->dir = mhi_chan->dir;
buf_info->len = len;
ret = mhi_cntrl->map_single(mhi_cntrl, buf_info);
if (ret)
goto map_error;
mhi_tre = tre_ring->wp;
mhi_tre->ptr = MHI_TRE_DATA_PTR(buf_info->p_addr);
mhi_tre->dword[0] = MHI_TRE_DATA_DWORD0(buf_info->len);
mhi_tre->dword[1] = MHI_TRE_DATA_DWORD1(1, 1, 0, 0);
MHI_VERB("chan:%d WP:0x%llx TRE:0x%llx 0x%08x 0x%08x\n", mhi_chan->chan,
(u64)mhi_to_physical(tre_ring, mhi_tre), mhi_tre->ptr,
mhi_tre->dword[0], mhi_tre->dword[1]);
/* increment WP */
mhi_add_ring_element(mhi_cntrl, tre_ring);
mhi_add_ring_element(mhi_cntrl, buf_ring);
if (mhi_chan->dir == DMA_TO_DEVICE)
atomic_inc(&mhi_cntrl->pending_pkts);
if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl))) {
read_lock_bh(&mhi_chan->lock);
mhi_ring_chan_db(mhi_cntrl, mhi_chan);
read_unlock_bh(&mhi_chan->lock);
}
read_unlock_bh(&mhi_cntrl->pm_lock);
return 0;
map_error:
read_unlock_bh(&mhi_cntrl->pm_lock);
return ret;
}
int mhi_queue_dma(struct mhi_device *mhi_dev,
struct mhi_chan *mhi_chan,
void *buf,
size_t len,
enum MHI_FLAGS mflags)
{
struct mhi_buf *mhi_buf = buf;
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_ring *tre_ring = &mhi_chan->tre_ring;
struct mhi_ring *buf_ring = &mhi_chan->buf_ring;
struct mhi_buf_info *buf_info;
struct mhi_tre *mhi_tre;
if (mhi_is_ring_full(mhi_cntrl, tre_ring))
return -ENOMEM;
read_lock_bh(&mhi_cntrl->pm_lock);
if (unlikely(MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))) {
MHI_VERB("MHI is not in activate state, pm_state:%s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state));
read_unlock_bh(&mhi_cntrl->pm_lock);
return -EIO;
}
/* we're in M3 or transitioning to M3 */
if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) {
mhi_cntrl->runtime_get(mhi_cntrl, mhi_cntrl->priv_data);
mhi_cntrl->runtime_put(mhi_cntrl, mhi_cntrl->priv_data);
}
/* toggle wake to exit out of M2 */
mhi_cntrl->wake_toggle(mhi_cntrl);
/* generate the tre */
buf_info = buf_ring->wp;
MHI_ASSERT(buf_info->used, "TRE Not Freed\n");
buf_info->p_addr = mhi_buf->dma_addr;
buf_info->pre_mapped = true;
buf_info->cb_buf = mhi_buf;
buf_info->wp = tre_ring->wp;
buf_info->dir = mhi_chan->dir;
buf_info->len = len;
mhi_tre = tre_ring->wp;
if (mhi_chan->xfer_type == MHI_XFER_RSC_DMA) {
buf_info->used = true;
mhi_tre->ptr =
MHI_RSCTRE_DATA_PTR(buf_info->p_addr, buf_info->len);
mhi_tre->dword[0] =
MHI_RSCTRE_DATA_DWORD0(buf_ring->wp - buf_ring->base);
mhi_tre->dword[1] = MHI_RSCTRE_DATA_DWORD1;
} else {
mhi_tre->ptr = MHI_TRE_DATA_PTR(buf_info->p_addr);
mhi_tre->dword[0] = MHI_TRE_DATA_DWORD0(buf_info->len);
mhi_tre->dword[1] = MHI_TRE_DATA_DWORD1(1, 1, 0, 0);
}
MHI_VERB("chan:%d WP:0x%llx TRE:0x%llx 0x%08x 0x%08x\n", mhi_chan->chan,
(u64)mhi_to_physical(tre_ring, mhi_tre), mhi_tre->ptr,
mhi_tre->dword[0], mhi_tre->dword[1]);
/* increment WP */
mhi_add_ring_element(mhi_cntrl, tre_ring);
mhi_add_ring_element(mhi_cntrl, buf_ring);
if (mhi_chan->dir == DMA_TO_DEVICE)
atomic_inc(&mhi_cntrl->pending_pkts);
if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl))) {
read_lock_bh(&mhi_chan->lock);
mhi_ring_chan_db(mhi_cntrl, mhi_chan);
read_unlock_bh(&mhi_chan->lock);
}
read_unlock_bh(&mhi_cntrl->pm_lock);
return 0;
}
int mhi_gen_tre(struct mhi_controller *mhi_cntrl,
struct mhi_chan *mhi_chan,
void *buf,
void *cb,
size_t buf_len,
enum MHI_FLAGS flags)
{
struct mhi_ring *buf_ring, *tre_ring;
struct mhi_tre *mhi_tre;
struct mhi_buf_info *buf_info;
int eot, eob, chain, bei;
int ret;
buf_ring = &mhi_chan->buf_ring;
tre_ring = &mhi_chan->tre_ring;
buf_info = buf_ring->wp;
buf_info->v_addr = buf;
buf_info->cb_buf = cb;
buf_info->wp = tre_ring->wp;
buf_info->dir = mhi_chan->dir;
buf_info->len = buf_len;
ret = mhi_cntrl->map_single(mhi_cntrl, buf_info);
if (ret)
return ret;
eob = !!(flags & MHI_EOB);
eot = !!(flags & MHI_EOT);
chain = !!(flags & MHI_CHAIN);
bei = !!(mhi_chan->intmod);
mhi_tre = tre_ring->wp;
mhi_tre->ptr = MHI_TRE_DATA_PTR(buf_info->p_addr);
mhi_tre->dword[0] = MHI_TRE_DATA_DWORD0(buf_len);
mhi_tre->dword[1] = MHI_TRE_DATA_DWORD1(bei, eot, eob, chain);
MHI_VERB("chan:%d WP:0x%llx TRE:0x%llx 0x%08x 0x%08x\n", mhi_chan->chan,
(u64)mhi_to_physical(tre_ring, mhi_tre), mhi_tre->ptr,
mhi_tre->dword[0], mhi_tre->dword[1]);
/* increment WP */
mhi_add_ring_element(mhi_cntrl, tre_ring);
mhi_add_ring_element(mhi_cntrl, buf_ring);
return 0;
}
int mhi_queue_buf(struct mhi_device *mhi_dev,
struct mhi_chan *mhi_chan,
void *buf,
size_t len,
enum MHI_FLAGS mflags)
{
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_ring *tre_ring;
unsigned long flags;
int ret;
/*
* this check here only as a guard, it's always
* possible mhi can enter error while executing rest of function,
* which is not fatal so we do not need to hold pm_lock
*/
if (unlikely(MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))) {
MHI_VERB("MHI is not in active state, pm_state:%s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state));
return -EIO;
}
tre_ring = &mhi_chan->tre_ring;
if (mhi_is_ring_full(mhi_cntrl, tre_ring))
return -ENOMEM;
ret = mhi_chan->gen_tre(mhi_cntrl, mhi_chan, buf, buf, len, mflags);
if (unlikely(ret))
return ret;
read_lock_irqsave(&mhi_cntrl->pm_lock, flags);
/* we're in M3 or transitioning to M3 */
if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) {
mhi_cntrl->runtime_get(mhi_cntrl, mhi_cntrl->priv_data);
mhi_cntrl->runtime_put(mhi_cntrl, mhi_cntrl->priv_data);
}
/* toggle wake to exit out of M2 */
mhi_cntrl->wake_toggle(mhi_cntrl);
if (mhi_chan->dir == DMA_TO_DEVICE)
atomic_inc(&mhi_cntrl->pending_pkts);
if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl))) {
unsigned long flags;
read_lock_irqsave(&mhi_chan->lock, flags);
mhi_ring_chan_db(mhi_cntrl, mhi_chan);
read_unlock_irqrestore(&mhi_chan->lock, flags);
}
read_unlock_irqrestore(&mhi_cntrl->pm_lock, flags);
return 0;
}
/* destroy specific device */
int mhi_destroy_device(struct device *dev, void *data)
{
struct mhi_device *mhi_dev;
struct mhi_controller *mhi_cntrl;
if (dev->bus != &mhi_bus_type)
return 0;
mhi_dev = to_mhi_device(dev);
mhi_cntrl = mhi_dev->mhi_cntrl;
/* only destroying virtual devices thats attached to bus */
if (mhi_dev->dev_type == MHI_CONTROLLER_TYPE)
return 0;
MHI_LOG("destroy device for chan:%s\n", mhi_dev->chan_name);
/* notify the client and remove the device from mhi bus */
device_del(dev);
put_device(dev);
return 0;
}
int mhi_early_notify_device(struct device *dev, void *data)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
/* skip early notification */
if (!mhi_dev->early_notif)
return 0;
MHI_LOG("Early notification for dev:%s\n", mhi_dev->chan_name);
mhi_notify(mhi_dev, MHI_CB_FATAL_ERROR);
return 0;
}
void mhi_notify(struct mhi_device *mhi_dev, enum MHI_CB cb_reason)
{
struct mhi_driver *mhi_drv;
if (!mhi_dev->dev.driver)
return;
mhi_drv = to_mhi_driver(mhi_dev->dev.driver);
if (mhi_drv->status_cb)
mhi_drv->status_cb(mhi_dev, cb_reason);
}
static void mhi_assign_of_node(struct mhi_controller *mhi_cntrl,
struct mhi_device *mhi_dev)
{
struct device_node *controller, *node;
const char *dt_name;
int ret;
controller = of_find_node_by_name(mhi_cntrl->of_node, "mhi_devices");
if (!controller)
return;
for_each_available_child_of_node(controller, node) {
ret = of_property_read_string(node, "mhi,chan", &dt_name);
if (ret)
continue;
if (!strcmp(mhi_dev->chan_name, dt_name)) {
mhi_dev->dev.of_node = node;
break;
}
}
}
static ssize_t time_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
u64 t_host, t_device;
int ret;
ret = mhi_get_remote_time_sync(mhi_dev, &t_host, &t_device);
if (ret) {
MHI_ERR("Failed to obtain time, ret:%d\n", ret);
return ret;
}
return scnprintf(buf, PAGE_SIZE, "local: %llu remote: %llu (ticks)\n",
t_host, t_device);
}
static DEVICE_ATTR_RO(time);
static ssize_t time_us_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
u64 t_host, t_device;
int ret;
ret = mhi_get_remote_time_sync(mhi_dev, &t_host, &t_device);
if (ret) {
MHI_ERR("Failed to obtain time, ret:%d\n", ret);
return ret;
}
return scnprintf(buf, PAGE_SIZE, "local: %llu remote: %llu (us)\n",
LOCAL_TICKS_TO_US(t_host),
REMOTE_TICKS_TO_US(t_device));
}
static DEVICE_ATTR_RO(time_us);
static struct attribute *mhi_tsync_attrs[] = {
&dev_attr_time.attr,
&dev_attr_time_us.attr,
NULL,
};
static const struct attribute_group mhi_tsync_group = {
.attrs = mhi_tsync_attrs,
};
void mhi_destroy_timesync(struct mhi_controller *mhi_cntrl)
{
if (mhi_cntrl->mhi_tsync) {
sysfs_remove_group(&mhi_cntrl->mhi_dev->dev.kobj,
&mhi_tsync_group);
kfree(mhi_cntrl->mhi_tsync);
mhi_cntrl->mhi_tsync = NULL;
}
}
int mhi_create_timesync_sysfs(struct mhi_controller *mhi_cntrl)
{
return sysfs_create_group(&mhi_cntrl->mhi_dev->dev.kobj,
&mhi_tsync_group);
}
static void mhi_create_time_sync_dev(struct mhi_controller *mhi_cntrl)
{
struct mhi_device *mhi_dev;
int ret;
if (!MHI_IN_MISSION_MODE(mhi_cntrl->ee))
return;
mhi_dev = mhi_alloc_device(mhi_cntrl);
if (!mhi_dev)
return;
mhi_dev->dev_type = MHI_TIMESYNC_TYPE;
mhi_dev->chan_name = "TIME_SYNC";
dev_set_name(&mhi_dev->dev, "%04x_%02u.%02u.%02u_%s", mhi_dev->dev_id,
mhi_dev->domain, mhi_dev->bus, mhi_dev->slot,
mhi_dev->chan_name);
/* add if there is a matching DT node */
mhi_assign_of_node(mhi_cntrl, mhi_dev);
ret = device_add(&mhi_dev->dev);
if (ret) {
MHI_ERR("Failed to register dev for chan:%s\n",
mhi_dev->chan_name);
mhi_dealloc_device(mhi_cntrl, mhi_dev);
return;
}
mhi_cntrl->tsync_dev = mhi_dev;
}
/* bind mhi channels into mhi devices */
void mhi_create_devices(struct mhi_controller *mhi_cntrl)
{
int i;
struct mhi_chan *mhi_chan;
struct mhi_device *mhi_dev;
int ret;
/*
* we need to create time sync device before creating other
* devices, because client may try to capture time during
* clint probe.
*/
mhi_create_time_sync_dev(mhi_cntrl);
mhi_chan = mhi_cntrl->mhi_chan;
for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
if (!mhi_chan->configured || mhi_chan->mhi_dev ||
!(mhi_chan->ee_mask & BIT(mhi_cntrl->ee)))
continue;
mhi_dev = mhi_alloc_device(mhi_cntrl);
if (!mhi_dev)
return;
mhi_dev->dev_type = MHI_XFER_TYPE;
switch (mhi_chan->dir) {
case DMA_TO_DEVICE:
mhi_dev->ul_chan = mhi_chan;
mhi_dev->ul_chan_id = mhi_chan->chan;
mhi_dev->ul_xfer = mhi_chan->queue_xfer;
mhi_dev->ul_event_id = mhi_chan->er_index;
break;
case DMA_NONE:
case DMA_BIDIRECTIONAL:
mhi_dev->ul_chan_id = mhi_chan->chan;
mhi_dev->ul_event_id = mhi_chan->er_index;
case DMA_FROM_DEVICE:
/* we use dl_chan for offload channels */
mhi_dev->dl_chan = mhi_chan;
mhi_dev->dl_chan_id = mhi_chan->chan;
mhi_dev->dl_xfer = mhi_chan->queue_xfer;
mhi_dev->dl_event_id = mhi_chan->er_index;
}
mhi_chan->mhi_dev = mhi_dev;
/* check next channel if it matches */
if ((i + 1) < mhi_cntrl->max_chan && mhi_chan[1].configured) {
if (!strcmp(mhi_chan[1].name, mhi_chan->name)) {
i++;
mhi_chan++;
if (mhi_chan->dir == DMA_TO_DEVICE) {
mhi_dev->ul_chan = mhi_chan;
mhi_dev->ul_chan_id = mhi_chan->chan;
mhi_dev->ul_xfer = mhi_chan->queue_xfer;
mhi_dev->ul_event_id =
mhi_chan->er_index;
} else {
mhi_dev->dl_chan = mhi_chan;
mhi_dev->dl_chan_id = mhi_chan->chan;
mhi_dev->dl_xfer = mhi_chan->queue_xfer;
mhi_dev->dl_event_id =
mhi_chan->er_index;
}
mhi_chan->mhi_dev = mhi_dev;
}
}
mhi_dev->chan_name = mhi_chan->name;
dev_set_name(&mhi_dev->dev, "%04x_%02u.%02u.%02u_%s",
mhi_dev->dev_id, mhi_dev->domain, mhi_dev->bus,
mhi_dev->slot, mhi_dev->chan_name);
/* add if there is a matching DT node */
mhi_assign_of_node(mhi_cntrl, mhi_dev);
/*
* if set, these device should get a early notification during
* early notification state
*/
mhi_dev->early_notif =
of_property_read_bool(mhi_dev->dev.of_node,
"mhi,early-notify");
/* init wake source */
if (mhi_dev->dl_chan && mhi_dev->dl_chan->wake_capable)
device_init_wakeup(&mhi_dev->dev, true);
ret = device_add(&mhi_dev->dev);
if (ret) {
MHI_ERR("Failed to register dev for chan:%s\n",
mhi_dev->chan_name);
mhi_dealloc_device(mhi_cntrl, mhi_dev);
}
}
}
static int parse_xfer_event(struct mhi_controller *mhi_cntrl,
struct mhi_tre *event,
struct mhi_chan *mhi_chan)
{
struct mhi_ring *buf_ring, *tre_ring;
u32 ev_code;
struct mhi_result result;
unsigned long flags = 0;
ev_code = MHI_TRE_GET_EV_CODE(event);
buf_ring = &mhi_chan->buf_ring;
tre_ring = &mhi_chan->tre_ring;
result.transaction_status = (ev_code == MHI_EV_CC_OVERFLOW) ?
-EOVERFLOW : 0;
/*
* if it's a DB Event then we need to grab the lock
* with preemption disable and as a write because we
* have to update db register and another thread could
* be doing same.
*/
if (ev_code >= MHI_EV_CC_OOB)
write_lock_irqsave(&mhi_chan->lock, flags);
else
read_lock_bh(&mhi_chan->lock);
if (mhi_chan->ch_state != MHI_CH_STATE_ENABLED)
goto end_process_tx_event;
switch (ev_code) {
case MHI_EV_CC_OVERFLOW:
case MHI_EV_CC_EOB:
case MHI_EV_CC_EOT:
{
dma_addr_t ptr = MHI_TRE_GET_EV_PTR(event);
struct mhi_tre *local_rp, *ev_tre;
void *dev_rp;
struct mhi_buf_info *buf_info;
u16 xfer_len;
/* Get the TRB this event points to */
ev_tre = mhi_to_virtual(tre_ring, ptr);
/* device rp after servicing the TREs */
dev_rp = ev_tre + 1;
if (dev_rp >= (tre_ring->base + tre_ring->len))
dev_rp = tre_ring->base;
result.dir = mhi_chan->dir;
/* local rp */
local_rp = tre_ring->rp;
while (local_rp != dev_rp) {
buf_info = buf_ring->rp;
/* if it's last tre get len from the event */
if (local_rp == ev_tre)
xfer_len = MHI_TRE_GET_EV_LEN(event);
else
xfer_len = buf_info->len;
/* unmap if it's not premapped by client */
if (likely(!buf_info->pre_mapped))
mhi_cntrl->unmap_single(mhi_cntrl, buf_info);
result.buf_addr = buf_info->cb_buf;
result.bytes_xferd = min_t(u16, xfer_len,
buf_info->len);
mhi_del_ring_element(mhi_cntrl, buf_ring);
mhi_del_ring_element(mhi_cntrl, tre_ring);
local_rp = tre_ring->rp;
/* notify client */
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
if (mhi_chan->dir == DMA_TO_DEVICE)
atomic_dec(&mhi_cntrl->pending_pkts);
/*
* recycle the buffer if buffer is pre-allocated,
* if there is error, not much we can do apart from
* dropping the packet
*/
if (mhi_chan->pre_alloc) {
if (mhi_queue_buf(mhi_chan->mhi_dev, mhi_chan,
buf_info->cb_buf,
buf_info->len, MHI_EOT)) {
MHI_ERR(
"Error recycling buffer for chan:%d\n",
mhi_chan->chan);
kfree(buf_info->cb_buf);
}
}
};
break;
} /* CC_EOT */
case MHI_EV_CC_OOB:
case MHI_EV_CC_DB_MODE:
{
unsigned long flags;
MHI_VERB("DB_MODE/OOB Detected chan %d.\n", mhi_chan->chan);
mhi_chan->db_cfg.db_mode = 1;
read_lock_irqsave(&mhi_cntrl->pm_lock, flags);
if (tre_ring->wp != tre_ring->rp &&
MHI_DB_ACCESS_VALID(mhi_cntrl)) {
mhi_ring_chan_db(mhi_cntrl, mhi_chan);
}
read_unlock_irqrestore(&mhi_cntrl->pm_lock, flags);
break;
}
case MHI_EV_CC_BAD_TRE:
MHI_ASSERT(1, "Received BAD TRE event for ring");
break;
default:
MHI_CRITICAL("Unknown TX completion.\n");
break;
} /* switch(MHI_EV_READ_CODE(EV_TRB_CODE,event)) */
end_process_tx_event:
if (ev_code >= MHI_EV_CC_OOB)
write_unlock_irqrestore(&mhi_chan->lock, flags);
else
read_unlock_bh(&mhi_chan->lock);
return 0;
}
static int parse_rsc_event(struct mhi_controller *mhi_cntrl,
struct mhi_tre *event,
struct mhi_chan *mhi_chan)
{
struct mhi_ring *buf_ring, *tre_ring;
struct mhi_buf_info *buf_info;
struct mhi_result result;
int ev_code;
u32 cookie; /* offset to local descriptor */
u16 xfer_len;
buf_ring = &mhi_chan->buf_ring;
tre_ring = &mhi_chan->tre_ring;
ev_code = MHI_TRE_GET_EV_CODE(event);
cookie = MHI_TRE_GET_EV_COOKIE(event);
xfer_len = MHI_TRE_GET_EV_LEN(event);
/* received out of bound cookie */
MHI_ASSERT(cookie >= buf_ring->len, "Invalid Cookie\n");
buf_info = buf_ring->base + cookie;
result.transaction_status = (ev_code == MHI_EV_CC_OVERFLOW) ?
-EOVERFLOW : 0;
/* truncate to buf len if xfer_len is larger */
result.bytes_xferd = min_t(u16, xfer_len, buf_info->len);
result.buf_addr = buf_info->cb_buf;
result.dir = mhi_chan->dir;
read_lock_bh(&mhi_chan->lock);
if (mhi_chan->ch_state != MHI_CH_STATE_ENABLED)
goto end_process_rsc_event;
MHI_ASSERT(!buf_info->used, "TRE already Freed\n");
/* notify the client */
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
/*
* Note: We're arbitrarily incrementing RP even though, completion
* packet we processed might not be the same one, reason we can do this
* is because device guaranteed to cache descriptors in order it
* receive, so even though completion event is different we can re-use
* all descriptors in between.
* Example:
* Transfer Ring has descriptors: A, B, C, D
* Last descriptor host queue is D (WP) and first descriptor
* host queue is A (RP).
* The completion event we just serviced is descriptor C.
* Then we can safely queue descriptors to replace A, B, and C
* even though host did not receive any completions.
*/
mhi_del_ring_element(mhi_cntrl, tre_ring);
buf_info->used = false;
end_process_rsc_event:
read_unlock_bh(&mhi_chan->lock);
return 0;
}
static void mhi_process_cmd_completion(struct mhi_controller *mhi_cntrl,
struct mhi_tre *tre)
{
dma_addr_t ptr = MHI_TRE_GET_EV_PTR(tre);
struct mhi_cmd *cmd_ring = &mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING];
struct mhi_ring *mhi_ring = &cmd_ring->ring;
struct mhi_tre *cmd_pkt;
struct mhi_chan *mhi_chan;
struct mhi_timesync *mhi_tsync;
enum mhi_cmd_type type;
u32 chan;
cmd_pkt = mhi_to_virtual(mhi_ring, ptr);
/* out of order completion received */
MHI_ASSERT(cmd_pkt != mhi_ring->rp, "Out of order cmd completion");
type = MHI_TRE_GET_CMD_TYPE(cmd_pkt);
if (type == MHI_CMD_TYPE_TSYNC) {
mhi_tsync = mhi_cntrl->mhi_tsync;
mhi_tsync->ccs = MHI_TRE_GET_EV_CODE(tre);
complete(&mhi_tsync->completion);
} else {
chan = MHI_TRE_GET_CMD_CHID(cmd_pkt);
if (chan >= mhi_cntrl->max_chan) {
MHI_ERR("invalid channel id %u\n", chan);
goto del_ring_el;
}
mhi_chan = &mhi_cntrl->mhi_chan[chan];
write_lock_bh(&mhi_chan->lock);
mhi_chan->ccs = MHI_TRE_GET_EV_CODE(tre);
complete(&mhi_chan->completion);
write_unlock_bh(&mhi_chan->lock);
}
del_ring_el:
mhi_del_ring_element(mhi_cntrl, mhi_ring);
}
int mhi_process_ctrl_ev_ring(struct mhi_controller *mhi_cntrl,
struct mhi_event *mhi_event,
u32 event_quota)
{
struct mhi_tre *dev_rp, *local_rp;
struct mhi_ring *ev_ring = &mhi_event->ring;
struct mhi_event_ctxt *er_ctxt =
&mhi_cntrl->mhi_ctxt->er_ctxt[mhi_event->er_index];
int count = 0;
/*
* this is a quick check to avoid unnecessary event processing
* in case we already in error state, but it's still possible
* to transition to error state while processing events
*/
if (unlikely(MHI_EVENT_ACCESS_INVALID(mhi_cntrl->pm_state))) {
MHI_ERR("No EV access, PM_STATE:%s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state));
return -EIO;
}
dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp);
local_rp = ev_ring->rp;
while (dev_rp != local_rp) {
enum MHI_PKT_TYPE type = MHI_TRE_GET_EV_TYPE(local_rp);
MHI_VERB("Processing Event:0x%llx 0x%08x 0x%08x\n",
local_rp->ptr, local_rp->dword[0], local_rp->dword[1]);
switch (type) {
case MHI_PKT_TYPE_STATE_CHANGE_EVENT:
{
enum mhi_dev_state new_state;
new_state = MHI_TRE_GET_EV_STATE(local_rp);
MHI_LOG("MHI state change event to state:%s\n",
TO_MHI_STATE_STR(new_state));
switch (new_state) {
case MHI_STATE_M0:
mhi_pm_m0_transition(mhi_cntrl);
break;
case MHI_STATE_M1:
mhi_pm_m1_transition(mhi_cntrl);
break;
case MHI_STATE_M3:
mhi_pm_m3_transition(mhi_cntrl);
break;
case MHI_STATE_SYS_ERR:
{
enum MHI_PM_STATE new_state;
MHI_ERR("MHI system error detected\n");
write_lock_irq(&mhi_cntrl->pm_lock);
new_state = mhi_tryset_pm_state(mhi_cntrl,
MHI_PM_SYS_ERR_DETECT);
write_unlock_irq(&mhi_cntrl->pm_lock);
if (new_state == MHI_PM_SYS_ERR_DETECT)
schedule_work(
&mhi_cntrl->syserr_worker);
break;
}
default:
MHI_ERR("Unsupported STE:%s\n",
TO_MHI_STATE_STR(new_state));
}
break;
}
case MHI_PKT_TYPE_CMD_COMPLETION_EVENT:
mhi_process_cmd_completion(mhi_cntrl, local_rp);
break;
case MHI_PKT_TYPE_EE_EVENT:
{
enum MHI_ST_TRANSITION st = MHI_ST_TRANSITION_MAX;
enum mhi_ee event = MHI_TRE_GET_EV_EXECENV(local_rp);
/* convert device ee to host ee */
event = mhi_translate_dev_ee(mhi_cntrl, event);
MHI_LOG("MHI EE received event:%s\n",
TO_MHI_EXEC_STR(event));
switch (event) {
case MHI_EE_SBL:
st = MHI_ST_TRANSITION_SBL;
break;
case MHI_EE_WFW:
case MHI_EE_AMSS:
st = MHI_ST_TRANSITION_MISSION_MODE;
break;
case MHI_EE_RDDM:
mhi_cntrl->status_cb(mhi_cntrl,
mhi_cntrl->priv_data,
MHI_CB_EE_RDDM);
write_lock_irq(&mhi_cntrl->pm_lock);
mhi_cntrl->ee = event;
write_unlock_irq(&mhi_cntrl->pm_lock);
wake_up_all(&mhi_cntrl->state_event);
break;
default:
MHI_ERR("Unhandled EE event:%s\n",
TO_MHI_EXEC_STR(event));
}
if (st != MHI_ST_TRANSITION_MAX)
mhi_queue_state_transition(mhi_cntrl, st);
break;
}
default:
MHI_ERR("Unhandled Event: 0x%x\n", type);
break;
}
mhi_recycle_ev_ring_element(mhi_cntrl, ev_ring);
local_rp = ev_ring->rp;
dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp);
count++;
}
read_lock_bh(&mhi_cntrl->pm_lock);
if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl)))
mhi_ring_er_db(mhi_event);
read_unlock_bh(&mhi_cntrl->pm_lock);
MHI_VERB("exit er_index:%u\n", mhi_event->er_index);
return count;
}
int mhi_process_data_event_ring(struct mhi_controller *mhi_cntrl,
struct mhi_event *mhi_event,
u32 event_quota)
{
struct mhi_tre *dev_rp, *local_rp;
struct mhi_ring *ev_ring = &mhi_event->ring;
struct mhi_event_ctxt *er_ctxt =
&mhi_cntrl->mhi_ctxt->er_ctxt[mhi_event->er_index];
int count = 0;
u32 chan;
struct mhi_chan *mhi_chan;
if (unlikely(MHI_EVENT_ACCESS_INVALID(mhi_cntrl->pm_state))) {
MHI_ERR("No EV access, PM_STATE:%s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state));
return -EIO;
}
dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp);
local_rp = ev_ring->rp;
while (dev_rp != local_rp && event_quota > 0) {
enum MHI_PKT_TYPE type = MHI_TRE_GET_EV_TYPE(local_rp);
MHI_VERB("Processing Event:0x%llx 0x%08x 0x%08x\n",
local_rp->ptr, local_rp->dword[0], local_rp->dword[1]);
chan = MHI_TRE_GET_EV_CHID(local_rp);
if (chan >= mhi_cntrl->max_chan) {
MHI_ERR("invalid channel id %u\n", chan);
goto next_er_element;
}
mhi_chan = &mhi_cntrl->mhi_chan[chan];
if (likely(type == MHI_PKT_TYPE_TX_EVENT)) {
parse_xfer_event(mhi_cntrl, local_rp, mhi_chan);
event_quota--;
} else if (type == MHI_PKT_TYPE_RSC_TX_EVENT) {
parse_rsc_event(mhi_cntrl, local_rp, mhi_chan);
event_quota--;
}
next_er_element:
mhi_recycle_ev_ring_element(mhi_cntrl, ev_ring);
local_rp = ev_ring->rp;
dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp);
count++;
}
read_lock_bh(&mhi_cntrl->pm_lock);
if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl)))
mhi_ring_er_db(mhi_event);
read_unlock_bh(&mhi_cntrl->pm_lock);
MHI_VERB("exit er_index:%u\n", mhi_event->er_index);
return count;
}
int mhi_process_tsync_event_ring(struct mhi_controller *mhi_cntrl,
struct mhi_event *mhi_event,
u32 event_quota)
{
struct mhi_tre *dev_rp, *local_rp;
struct mhi_ring *ev_ring = &mhi_event->ring;
struct mhi_event_ctxt *er_ctxt =
&mhi_cntrl->mhi_ctxt->er_ctxt[mhi_event->er_index];
struct mhi_timesync *mhi_tsync = mhi_cntrl->mhi_tsync;
int count = 0;
u32 sequence;
u64 remote_time;
if (unlikely(MHI_EVENT_ACCESS_INVALID(mhi_cntrl->pm_state))) {
MHI_ERR("No EV access, PM_STATE:%s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state));
read_unlock_bh(&mhi_cntrl->pm_lock);
return -EIO;
}
dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp);
local_rp = ev_ring->rp;
while (dev_rp != local_rp) {
enum MHI_PKT_TYPE type = MHI_TRE_GET_EV_TYPE(local_rp);
struct tsync_node *tsync_node;
MHI_VERB("Processing Event:0x%llx 0x%08x 0x%08x\n",
local_rp->ptr, local_rp->dword[0], local_rp->dword[1]);
MHI_ASSERT(type != MHI_PKT_TYPE_TSYNC_EVENT, "!TSYNC event");
sequence = MHI_TRE_GET_EV_TSYNC_SEQ(local_rp);
remote_time = MHI_TRE_GET_EV_TIME(local_rp);
do {
spin_lock_irq(&mhi_tsync->lock);
tsync_node = list_first_entry_or_null(&mhi_tsync->head,
struct tsync_node, node);
MHI_ASSERT(!tsync_node, "Unexpected Event");
if (unlikely(!tsync_node))
break;
list_del(&tsync_node->node);
spin_unlock_irq(&mhi_tsync->lock);
/*
* device may not able to process all time sync commands
* host issue and only process last command it receive
*/
if (tsync_node->sequence == sequence) {
tsync_node->cb_func(tsync_node->mhi_dev,
sequence,
tsync_node->local_time,
remote_time);
kfree(tsync_node);
} else {
kfree(tsync_node);
}
} while (true);
mhi_recycle_ev_ring_element(mhi_cntrl, ev_ring);
local_rp = ev_ring->rp;
dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp);
count++;
}
read_lock_bh(&mhi_cntrl->pm_lock);
if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl)))
mhi_ring_er_db(mhi_event);
read_unlock_bh(&mhi_cntrl->pm_lock);
MHI_VERB("exit er_index:%u\n", mhi_event->er_index);
return count;
}
int mhi_process_bw_scale_ev_ring(struct mhi_controller *mhi_cntrl,
struct mhi_event *mhi_event,
u32 event_quota)
{
struct mhi_tre *dev_rp;
struct mhi_ring *ev_ring = &mhi_event->ring;
struct mhi_event_ctxt *er_ctxt =
&mhi_cntrl->mhi_ctxt->er_ctxt[mhi_event->er_index];
struct mhi_link_info link_info, *cur_info = &mhi_cntrl->mhi_link_info;
int result, ret = 0;
mutex_lock(&mhi_cntrl->pm_mutex);
if (unlikely(MHI_EVENT_ACCESS_INVALID(mhi_cntrl->pm_state))) {
MHI_LOG("No EV access, PM_STATE:%s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state));
ret = -EIO;
goto exit_bw_process;
}
/*
* BW change is not process during suspend since we're suspending link,
* host will process it during resume
*/
if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) {
ret = -EACCES;
goto exit_bw_process;
}
spin_lock_bh(&mhi_event->lock);
dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp);
if (ev_ring->rp == dev_rp) {
spin_unlock_bh(&mhi_event->lock);
goto exit_bw_process;
}
/* if rp points to base, we need to wrap it around */
if (dev_rp == ev_ring->base)
dev_rp = ev_ring->base + ev_ring->len;
dev_rp--;
MHI_ASSERT(MHI_TRE_GET_EV_TYPE(dev_rp) != MHI_PKT_TYPE_BW_REQ_EVENT,
"!BW SCALE REQ event");
link_info.target_link_speed = MHI_TRE_GET_EV_LINKSPEED(dev_rp);
link_info.target_link_width = MHI_TRE_GET_EV_LINKWIDTH(dev_rp);
link_info.sequence_num = MHI_TRE_GET_EV_BW_REQ_SEQ(dev_rp);
MHI_VERB("Received BW_REQ with seq:%d link speed:0x%x width:0x%x\n",
link_info.sequence_num,
link_info.target_link_speed,
link_info.target_link_width);
/* fast forward to currently processed element and recycle er */
ev_ring->rp = dev_rp;
ev_ring->wp = dev_rp - 1;
if (ev_ring->wp < ev_ring->base)
ev_ring->wp = ev_ring->base + ev_ring->len - ev_ring->el_size;
mhi_recycle_ev_ring_element(mhi_cntrl, ev_ring);
read_lock_bh(&mhi_cntrl->pm_lock);
if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl)))
mhi_ring_er_db(mhi_event);
read_unlock_bh(&mhi_cntrl->pm_lock);
spin_unlock_bh(&mhi_event->lock);
ret = mhi_cntrl->bw_scale(mhi_cntrl, &link_info);
if (!ret)
*cur_info = link_info;
result = ret ? MHI_BW_SCALE_NACK : 0;
read_lock_bh(&mhi_cntrl->pm_lock);
if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl)))
mhi_write_reg(mhi_cntrl, mhi_cntrl->bw_scale_db, 0,
MHI_BW_SCALE_RESULT(result,
link_info.sequence_num));
read_unlock_bh(&mhi_cntrl->pm_lock);
exit_bw_process:
MHI_VERB("exit er_index:%u\n", mhi_event->er_index);
mutex_unlock(&mhi_cntrl->pm_mutex);
return ret;
}
void mhi_ev_task(unsigned long data)
{
struct mhi_event *mhi_event = (struct mhi_event *)data;
struct mhi_controller *mhi_cntrl = mhi_event->mhi_cntrl;
MHI_VERB("Enter for ev_index:%d\n", mhi_event->er_index);
/* process all pending events */
spin_lock_bh(&mhi_event->lock);
mhi_event->process_event(mhi_cntrl, mhi_event, U32_MAX);
spin_unlock_bh(&mhi_event->lock);
}
void mhi_ctrl_ev_task(unsigned long data)
{
struct mhi_event *mhi_event = (struct mhi_event *)data;
struct mhi_controller *mhi_cntrl = mhi_event->mhi_cntrl;
enum mhi_dev_state state;
enum MHI_PM_STATE pm_state = 0;
int ret;
MHI_VERB("Enter for ev_index:%d\n", mhi_event->er_index);
/*
* we can check pm_state w/o a lock here because there is no way
* pm_state can change from reg access valid to no access while this
* therad being executed.
*/
if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
/*
* we may have a pending event but not allowed to
* process it since we probably in a suspended state,
* trigger a resume.
*/
mhi_cntrl->runtime_get(mhi_cntrl, mhi_cntrl->priv_data);
mhi_cntrl->runtime_put(mhi_cntrl, mhi_cntrl->priv_data);
return;
}
/* process ctrl events events */
ret = mhi_event->process_event(mhi_cntrl, mhi_event, U32_MAX);
/*
* we received a MSI but no events to process maybe device went to
* SYS_ERR state, check the state
*/
if (!ret) {
write_lock_irq(&mhi_cntrl->pm_lock);
state = mhi_get_mhi_state(mhi_cntrl);
if (state == MHI_STATE_SYS_ERR) {
MHI_ERR("MHI system error detected\n");
pm_state = mhi_tryset_pm_state(mhi_cntrl,
MHI_PM_SYS_ERR_DETECT);
}
write_unlock_irq(&mhi_cntrl->pm_lock);
if (pm_state == MHI_PM_SYS_ERR_DETECT)
schedule_work(&mhi_cntrl->syserr_worker);
}
}
irqreturn_t mhi_msi_handlr(int irq_number, void *dev)
{
struct mhi_event *mhi_event = dev;
struct mhi_controller *mhi_cntrl = mhi_event->mhi_cntrl;
struct mhi_event_ctxt *er_ctxt =
&mhi_cntrl->mhi_ctxt->er_ctxt[mhi_event->er_index];
struct mhi_ring *ev_ring = &mhi_event->ring;
void *dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp);
/* confirm ER has pending events to process before scheduling work */
if (ev_ring->rp == dev_rp)
return IRQ_HANDLED;
/* client managed event ring, notify pending data */
if (mhi_event->cl_manage) {
struct mhi_chan *mhi_chan = mhi_event->mhi_chan;
struct mhi_device *mhi_dev = mhi_chan->mhi_dev;
if (mhi_dev)
mhi_dev->status_cb(mhi_dev, MHI_CB_PENDING_DATA);
return IRQ_HANDLED;
}
if (IS_MHI_ER_PRIORITY_HIGH(mhi_event))
tasklet_hi_schedule(&mhi_event->task);
else
tasklet_schedule(&mhi_event->task);
return IRQ_HANDLED;
}
/* this is the threaded fn */
irqreturn_t mhi_intvec_threaded_handlr(int irq_number, void *dev)
{
struct mhi_controller *mhi_cntrl = dev;
enum mhi_dev_state state = MHI_STATE_MAX;
enum MHI_PM_STATE pm_state = 0;
enum mhi_ee ee = 0;
MHI_VERB("Enter\n");
write_lock_irq(&mhi_cntrl->pm_lock);
if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
state = mhi_get_mhi_state(mhi_cntrl);
ee = mhi_cntrl->ee;
mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
MHI_LOG("device ee:%s dev_state:%s\n",
TO_MHI_EXEC_STR(mhi_cntrl->ee),
TO_MHI_STATE_STR(state));
}
if (state == MHI_STATE_SYS_ERR) {
MHI_ERR("MHI system error detected\n");
pm_state = mhi_tryset_pm_state(mhi_cntrl,
MHI_PM_SYS_ERR_DETECT);
}
write_unlock_irq(&mhi_cntrl->pm_lock);
/* if device in rddm don't bother processing sys error */
if (mhi_cntrl->ee == MHI_EE_RDDM) {
if (mhi_cntrl->ee != ee) {
mhi_cntrl->status_cb(mhi_cntrl, mhi_cntrl->priv_data,
MHI_CB_EE_RDDM);
wake_up_all(&mhi_cntrl->state_event);
}
goto exit_intvec;
}
if (pm_state == MHI_PM_SYS_ERR_DETECT) {
wake_up_all(&mhi_cntrl->state_event);
/* for fatal errors, we let controller decide next step */
if (MHI_IN_PBL(ee))
mhi_cntrl->status_cb(mhi_cntrl, mhi_cntrl->priv_data,
MHI_CB_FATAL_ERROR);
else
schedule_work(&mhi_cntrl->syserr_worker);
}
exit_intvec:
MHI_VERB("Exit\n");
return IRQ_HANDLED;
}
irqreturn_t mhi_intvec_handlr(int irq_number, void *dev)
{
struct mhi_controller *mhi_cntrl = dev;
/* wake up any events waiting for state change */
MHI_VERB("Enter\n");
wake_up_all(&mhi_cntrl->state_event);
MHI_VERB("Exit\n");
schedule_work(&mhi_cntrl->low_priority_worker);
return IRQ_WAKE_THREAD;
}
int mhi_send_cmd(struct mhi_controller *mhi_cntrl,
struct mhi_chan *mhi_chan,
enum MHI_CMD cmd)
{
struct mhi_tre *cmd_tre = NULL;
struct mhi_cmd *mhi_cmd = &mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING];
struct mhi_ring *ring = &mhi_cmd->ring;
int chan = 0;
MHI_VERB("Entered, MHI pm_state:%s dev_state:%s ee:%s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state),
TO_MHI_STATE_STR(mhi_cntrl->dev_state),
TO_MHI_EXEC_STR(mhi_cntrl->ee));
if (mhi_chan)
chan = mhi_chan->chan;
spin_lock_bh(&mhi_cmd->lock);
if (!get_nr_avail_ring_elements(mhi_cntrl, ring)) {
spin_unlock_bh(&mhi_cmd->lock);
return -ENOMEM;
}
/* prepare the cmd tre */
cmd_tre = ring->wp;
switch (cmd) {
case MHI_CMD_RESET_CHAN:
cmd_tre->ptr = MHI_TRE_CMD_RESET_PTR;
cmd_tre->dword[0] = MHI_TRE_CMD_RESET_DWORD0;
cmd_tre->dword[1] = MHI_TRE_CMD_RESET_DWORD1(chan);
break;
case MHI_CMD_START_CHAN:
cmd_tre->ptr = MHI_TRE_CMD_START_PTR;
cmd_tre->dword[0] = MHI_TRE_CMD_START_DWORD0;
cmd_tre->dword[1] = MHI_TRE_CMD_START_DWORD1(chan);
break;
case MHI_CMD_TIMSYNC_CFG:
cmd_tre->ptr = MHI_TRE_CMD_TSYNC_CFG_PTR;
cmd_tre->dword[0] = MHI_TRE_CMD_TSYNC_CFG_DWORD0;
cmd_tre->dword[1] = MHI_TRE_CMD_TSYNC_CFG_DWORD1
(mhi_cntrl->mhi_tsync->er_index);
break;
}
MHI_VERB("WP:0x%llx TRE: 0x%llx 0x%08x 0x%08x\n",
(u64)mhi_to_physical(ring, cmd_tre), cmd_tre->ptr,
cmd_tre->dword[0], cmd_tre->dword[1]);
/* queue to hardware */
mhi_add_ring_element(mhi_cntrl, ring);
read_lock_bh(&mhi_cntrl->pm_lock);
if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl)))
mhi_ring_cmd_db(mhi_cntrl, mhi_cmd);
read_unlock_bh(&mhi_cntrl->pm_lock);
spin_unlock_bh(&mhi_cmd->lock);
return 0;
}
int mhi_prepare_channel(struct mhi_controller *mhi_cntrl,
struct mhi_chan *mhi_chan)
{
int ret = 0;
MHI_LOG("Entered: preparing channel:%d\n", mhi_chan->chan);
if (!(BIT(mhi_cntrl->ee) & mhi_chan->ee_mask)) {
MHI_ERR("Current EE:%s Required EE Mask:0x%x for chan:%s\n",
TO_MHI_EXEC_STR(mhi_cntrl->ee), mhi_chan->ee_mask,
mhi_chan->name);
return -ENOTCONN;
}
mutex_lock(&mhi_chan->mutex);
/* if channel is not disable state do not allow to start */
if (mhi_chan->ch_state != MHI_CH_STATE_DISABLED) {
ret = -EIO;
MHI_LOG("channel:%d is not in disabled state, ch_state%d\n",
mhi_chan->chan, mhi_chan->ch_state);
goto error_init_chan;
}
/* client manages channel context for offload channels */
if (!mhi_chan->offload_ch) {
ret = mhi_init_chan_ctxt(mhi_cntrl, mhi_chan);
if (ret) {
MHI_ERR("Error with init chan\n");
goto error_init_chan;
}
}
reinit_completion(&mhi_chan->completion);
read_lock_bh(&mhi_cntrl->pm_lock);
if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
MHI_ERR("MHI host is not in active state\n");
read_unlock_bh(&mhi_cntrl->pm_lock);
ret = -EIO;
goto error_pm_state;
}
mhi_cntrl->wake_toggle(mhi_cntrl);
read_unlock_bh(&mhi_cntrl->pm_lock);
mhi_cntrl->runtime_get(mhi_cntrl, mhi_cntrl->priv_data);
mhi_cntrl->runtime_put(mhi_cntrl, mhi_cntrl->priv_data);
ret = mhi_send_cmd(mhi_cntrl, mhi_chan, MHI_CMD_START_CHAN);
if (ret) {
MHI_ERR("Failed to send start chan cmd\n");
goto error_pm_state;
}
ret = wait_for_completion_timeout(&mhi_chan->completion,
msecs_to_jiffies(mhi_cntrl->timeout_ms));
if (!ret || mhi_chan->ccs != MHI_EV_CC_SUCCESS) {
MHI_ERR("Failed to receive cmd completion for chan:%d\n",
mhi_chan->chan);
ret = -EIO;
goto error_pm_state;
}
write_lock_irq(&mhi_chan->lock);
mhi_chan->ch_state = MHI_CH_STATE_ENABLED;
write_unlock_irq(&mhi_chan->lock);
/* pre allocate buffer for xfer ring */
if (mhi_chan->pre_alloc) {
int nr_el = get_nr_avail_ring_elements(mhi_cntrl,
&mhi_chan->tre_ring);
size_t len = mhi_cntrl->buffer_len;
while (nr_el--) {
void *buf;
buf = kmalloc(len, GFP_KERNEL);
if (!buf) {
ret = -ENOMEM;
goto error_pre_alloc;
}
/* prepare transfer descriptors */
ret = mhi_chan->gen_tre(mhi_cntrl, mhi_chan, buf, buf,
len, MHI_EOT);
if (ret) {
MHI_ERR("Chan:%d error prepare buffer\n",
mhi_chan->chan);
kfree(buf);
goto error_pre_alloc;
}
}
read_lock_bh(&mhi_cntrl->pm_lock);
if (MHI_DB_ACCESS_VALID(mhi_cntrl)) {
read_lock_irq(&mhi_chan->lock);
mhi_ring_chan_db(mhi_cntrl, mhi_chan);
read_unlock_irq(&mhi_chan->lock);
}
read_unlock_bh(&mhi_cntrl->pm_lock);
}
mutex_unlock(&mhi_chan->mutex);
MHI_LOG("Chan:%d successfully moved to start state\n", mhi_chan->chan);
return 0;
error_pm_state:
if (!mhi_chan->offload_ch)
mhi_deinit_chan_ctxt(mhi_cntrl, mhi_chan);
error_init_chan:
mutex_unlock(&mhi_chan->mutex);
return ret;
error_pre_alloc:
mutex_unlock(&mhi_chan->mutex);
__mhi_unprepare_channel(mhi_cntrl, mhi_chan);
return ret;
}
static void mhi_mark_stale_events(struct mhi_controller *mhi_cntrl,
struct mhi_event *mhi_event,
struct mhi_event_ctxt *er_ctxt,
int chan)
{
struct mhi_tre *dev_rp, *local_rp;
struct mhi_ring *ev_ring;
unsigned long flags;
MHI_LOG("Marking all events for chan:%d as stale\n", chan);
ev_ring = &mhi_event->ring;
/* mark all stale events related to channel as STALE event */
spin_lock_irqsave(&mhi_event->lock, flags);
dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp);
local_rp = ev_ring->rp;
while (dev_rp != local_rp) {
if (MHI_TRE_GET_EV_TYPE(local_rp) ==
MHI_PKT_TYPE_TX_EVENT &&
chan == MHI_TRE_GET_EV_CHID(local_rp))
local_rp->dword[1] = MHI_TRE_EV_DWORD1(chan,
MHI_PKT_TYPE_STALE_EVENT);
local_rp++;
if (local_rp == (ev_ring->base + ev_ring->len))
local_rp = ev_ring->base;
}
MHI_LOG("Finished marking events as stale events\n");
spin_unlock_irqrestore(&mhi_event->lock, flags);
}
static void mhi_reset_data_chan(struct mhi_controller *mhi_cntrl,
struct mhi_chan *mhi_chan)
{
struct mhi_ring *buf_ring, *tre_ring;
struct mhi_result result;
/* reset any pending buffers */
buf_ring = &mhi_chan->buf_ring;
tre_ring = &mhi_chan->tre_ring;
result.transaction_status = -ENOTCONN;
result.bytes_xferd = 0;
while (tre_ring->rp != tre_ring->wp) {
struct mhi_buf_info *buf_info = buf_ring->rp;
if (mhi_chan->dir == DMA_TO_DEVICE)
atomic_dec(&mhi_cntrl->pending_pkts);
if (!buf_info->pre_mapped)
mhi_cntrl->unmap_single(mhi_cntrl, buf_info);
mhi_del_ring_element(mhi_cntrl, buf_ring);
mhi_del_ring_element(mhi_cntrl, tre_ring);
if (mhi_chan->pre_alloc) {
kfree(buf_info->cb_buf);
} else {
result.buf_addr = buf_info->cb_buf;
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
}
}
}
static void mhi_reset_rsc_chan(struct mhi_controller *mhi_cntrl,
struct mhi_chan *mhi_chan)
{
struct mhi_ring *buf_ring, *tre_ring;
struct mhi_result result;
struct mhi_buf_info *buf_info;
/* reset any pending buffers */
buf_ring = &mhi_chan->buf_ring;
tre_ring = &mhi_chan->tre_ring;
result.transaction_status = -ENOTCONN;
result.bytes_xferd = 0;
buf_info = buf_ring->base;
for (; (void *)buf_info < buf_ring->base + buf_ring->len; buf_info++) {
if (!buf_info->used)
continue;
result.buf_addr = buf_info->cb_buf;
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
buf_info->used = false;
}
}
void mhi_reset_chan(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan)
{
struct mhi_event *mhi_event;
struct mhi_event_ctxt *er_ctxt;
int chan = mhi_chan->chan;
/* nothing to reset, client don't queue buffers */
if (mhi_chan->offload_ch)
return;
read_lock_bh(&mhi_cntrl->pm_lock);
mhi_event = &mhi_cntrl->mhi_event[mhi_chan->er_index];
er_ctxt = &mhi_cntrl->mhi_ctxt->er_ctxt[mhi_chan->er_index];
mhi_mark_stale_events(mhi_cntrl, mhi_event, er_ctxt, chan);
if (mhi_chan->xfer_type == MHI_XFER_RSC_DMA)
mhi_reset_rsc_chan(mhi_cntrl, mhi_chan);
else
mhi_reset_data_chan(mhi_cntrl, mhi_chan);
read_unlock_bh(&mhi_cntrl->pm_lock);
MHI_LOG("Reset complete.\n");
}
static void __mhi_unprepare_channel(struct mhi_controller *mhi_cntrl,
struct mhi_chan *mhi_chan)
{
int ret;
MHI_LOG("Entered: unprepare channel:%d\n", mhi_chan->chan);
/* no more processing events for this channel */
mutex_lock(&mhi_chan->mutex);
write_lock_irq(&mhi_chan->lock);
if (mhi_chan->ch_state != MHI_CH_STATE_ENABLED) {
MHI_LOG("chan:%d is already disabled\n", mhi_chan->chan);
write_unlock_irq(&mhi_chan->lock);
mutex_unlock(&mhi_chan->mutex);
return;
}
mhi_chan->ch_state = MHI_CH_STATE_DISABLED;
write_unlock_irq(&mhi_chan->lock);
reinit_completion(&mhi_chan->completion);
read_lock_bh(&mhi_cntrl->pm_lock);
if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
read_unlock_bh(&mhi_cntrl->pm_lock);
goto error_invalid_state;
}
mhi_cntrl->wake_toggle(mhi_cntrl);
read_unlock_bh(&mhi_cntrl->pm_lock);
mhi_cntrl->runtime_get(mhi_cntrl, mhi_cntrl->priv_data);
mhi_cntrl->runtime_put(mhi_cntrl, mhi_cntrl->priv_data);
ret = mhi_send_cmd(mhi_cntrl, mhi_chan, MHI_CMD_RESET_CHAN);
if (ret) {
MHI_ERR("Failed to send reset chan cmd\n");
goto error_invalid_state;
}
/* even if it fails we will still reset */
ret = wait_for_completion_timeout(&mhi_chan->completion,
msecs_to_jiffies(mhi_cntrl->timeout_ms));
if (!ret || mhi_chan->ccs != MHI_EV_CC_SUCCESS)
MHI_ERR("Failed to receive cmd completion, still resetting\n");
error_invalid_state:
if (!mhi_chan->offload_ch) {
mhi_reset_chan(mhi_cntrl, mhi_chan);
mhi_deinit_chan_ctxt(mhi_cntrl, mhi_chan);
}
MHI_LOG("chan:%d successfully resetted\n", mhi_chan->chan);
mutex_unlock(&mhi_chan->mutex);
}
int mhi_debugfs_mhi_states_show(struct seq_file *m, void *d)
{
struct mhi_controller *mhi_cntrl = m->private;
seq_printf(m,
"pm_state:%s dev_state:%s EE:%s M0:%u M2:%u M3:%u M3_Fast:%u wake:%d dev_wake:%u alloc_size:%u pending_pkts:%u\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state),
TO_MHI_STATE_STR(mhi_cntrl->dev_state),
TO_MHI_EXEC_STR(mhi_cntrl->ee),
mhi_cntrl->M0, mhi_cntrl->M2, mhi_cntrl->M3,
mhi_cntrl->M3_FAST, mhi_cntrl->wake_set,
atomic_read(&mhi_cntrl->dev_wake),
atomic_read(&mhi_cntrl->alloc_size),
atomic_read(&mhi_cntrl->pending_pkts));
return 0;
}
int mhi_debugfs_mhi_event_show(struct seq_file *m, void *d)
{
struct mhi_controller *mhi_cntrl = m->private;
struct mhi_event *mhi_event;
struct mhi_event_ctxt *er_ctxt;
int i;
er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
mhi_event++) {
struct mhi_ring *ring = &mhi_event->ring;
if (mhi_event->offload_ev) {
seq_printf(m, "Index:%d offload event ring\n", i);
} else {
seq_printf(m,
"Index:%d modc:%d modt:%d base:0x%0llx len:0x%llx",
i, er_ctxt->intmodc, er_ctxt->intmodt,
er_ctxt->rbase, er_ctxt->rlen);
seq_printf(m,
" rp:0x%llx wp:0x%llx local_rp:0x%llx db:0x%llx\n",
er_ctxt->rp, er_ctxt->wp,
(u64)mhi_to_physical(ring, ring->rp),
(u64)mhi_event->db_cfg.db_val);
}
}
return 0;
}
int mhi_debugfs_mhi_chan_show(struct seq_file *m, void *d)
{
struct mhi_controller *mhi_cntrl = m->private;
struct mhi_chan *mhi_chan;
struct mhi_chan_ctxt *chan_ctxt;
int i;
mhi_chan = mhi_cntrl->mhi_chan;
chan_ctxt = mhi_cntrl->mhi_ctxt->chan_ctxt;
for (i = 0; i < mhi_cntrl->max_chan; i++, chan_ctxt++, mhi_chan++) {
struct mhi_ring *ring = &mhi_chan->tre_ring;
if (mhi_chan->offload_ch) {
seq_printf(m, "%s(%u) offload channel\n",
mhi_chan->name, mhi_chan->chan);
} else if (mhi_chan->mhi_dev) {
seq_printf(m,
"%s(%u) state:0x%x brstmode:0x%x pllcfg:0x%x type:0x%x erindex:%u",
mhi_chan->name, mhi_chan->chan,
chan_ctxt->chstate, chan_ctxt->brstmode,
chan_ctxt->pollcfg, chan_ctxt->chtype,
chan_ctxt->erindex);
seq_printf(m,
" base:0x%llx len:0x%llx wp:0x%llx local_rp:0x%llx local_wp:0x%llx db:0x%llx\n",
chan_ctxt->rbase, chan_ctxt->rlen,
chan_ctxt->wp,
(u64)mhi_to_physical(ring, ring->rp),
(u64)mhi_to_physical(ring, ring->wp),
(u64)mhi_chan->db_cfg.db_val);
}
}
return 0;
}
/* move channel to start state */
int mhi_prepare_for_transfer(struct mhi_device *mhi_dev)
{
int ret, dir;
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_chan *mhi_chan;
for (dir = 0; dir < 2; dir++) {
mhi_chan = dir ? mhi_dev->dl_chan : mhi_dev->ul_chan;
if (!mhi_chan)
continue;
ret = mhi_prepare_channel(mhi_cntrl, mhi_chan);
if (ret) {
MHI_ERR("Error moving chan %s,%d to START state\n",
mhi_chan->name, mhi_chan->chan);
goto error_open_chan;
}
}
return 0;
error_open_chan:
for (--dir; dir >= 0; dir--) {
mhi_chan = dir ? mhi_dev->dl_chan : mhi_dev->ul_chan;
if (!mhi_chan)
continue;
__mhi_unprepare_channel(mhi_cntrl, mhi_chan);
}
return ret;
}
EXPORT_SYMBOL(mhi_prepare_for_transfer);
void mhi_unprepare_from_transfer(struct mhi_device *mhi_dev)
{
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_chan *mhi_chan;
int dir;
for (dir = 0; dir < 2; dir++) {
mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
if (!mhi_chan)
continue;
__mhi_unprepare_channel(mhi_cntrl, mhi_chan);
}
}
EXPORT_SYMBOL(mhi_unprepare_from_transfer);
int mhi_get_no_free_descriptors(struct mhi_device *mhi_dev,
enum dma_data_direction dir)
{
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_chan *mhi_chan = (dir == DMA_TO_DEVICE) ?
mhi_dev->ul_chan : mhi_dev->dl_chan;
struct mhi_ring *tre_ring = &mhi_chan->tre_ring;
return get_nr_avail_ring_elements(mhi_cntrl, tre_ring);
}
EXPORT_SYMBOL(mhi_get_no_free_descriptors);
static int __mhi_bdf_to_controller(struct device *dev, void *tmp)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_device *match = tmp;
/* return any none-zero value if match */
if (mhi_dev->dev_type == MHI_CONTROLLER_TYPE &&
mhi_dev->domain == match->domain && mhi_dev->bus == match->bus &&
mhi_dev->slot == match->slot && mhi_dev->dev_id == match->dev_id)
return 1;
return 0;
}
struct mhi_controller *mhi_bdf_to_controller(u32 domain,
u32 bus,
u32 slot,
u32 dev_id)
{
struct mhi_device tmp, *mhi_dev;
struct device *dev;
tmp.domain = domain;
tmp.bus = bus;
tmp.slot = slot;
tmp.dev_id = dev_id;
dev = bus_find_device(&mhi_bus_type, NULL, &tmp,
__mhi_bdf_to_controller);
if (!dev)
return NULL;
mhi_dev = to_mhi_device(dev);
return mhi_dev->mhi_cntrl;
}
EXPORT_SYMBOL(mhi_bdf_to_controller);
int mhi_poll(struct mhi_device *mhi_dev,
u32 budget)
{
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_chan *mhi_chan = mhi_dev->dl_chan;
struct mhi_event *mhi_event = &mhi_cntrl->mhi_event[mhi_chan->er_index];
int ret;
spin_lock_bh(&mhi_event->lock);
ret = mhi_event->process_event(mhi_cntrl, mhi_event, budget);
spin_unlock_bh(&mhi_event->lock);
return ret;
}
EXPORT_SYMBOL(mhi_poll);
int mhi_get_remote_time_sync(struct mhi_device *mhi_dev,
u64 *t_host,
u64 *t_dev)
{
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_timesync *mhi_tsync = mhi_cntrl->mhi_tsync;
int ret;
/* not all devices support time feature */
if (!mhi_tsync)
return -EIO;
/* bring to M0 state */
ret = __mhi_device_get_sync(mhi_cntrl);
if (ret)
return ret;
mutex_lock(&mhi_tsync->lpm_mutex);
read_lock_bh(&mhi_cntrl->pm_lock);
if (unlikely(MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))) {
MHI_ERR("MHI is not in active state, pm_state:%s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state));
ret = -EIO;
goto error_invalid_state;
}
/* disable link level low power modes */
ret = mhi_cntrl->lpm_disable(mhi_cntrl, mhi_cntrl->priv_data);
if (ret)
goto error_invalid_state;
/*
* time critical code to fetch device times,
* delay between these two steps should be
* deterministic as possible.
*/
preempt_disable();
local_irq_disable();
*t_host = mhi_cntrl->time_get(mhi_cntrl, mhi_cntrl->priv_data);
*t_dev = readq_relaxed_no_log(mhi_tsync->time_reg);
local_irq_enable();
preempt_enable();
mhi_cntrl->lpm_enable(mhi_cntrl, mhi_cntrl->priv_data);
error_invalid_state:
mhi_cntrl->wake_put(mhi_cntrl, false);
read_unlock_bh(&mhi_cntrl->pm_lock);
mutex_unlock(&mhi_tsync->lpm_mutex);
return ret;
}
EXPORT_SYMBOL(mhi_get_remote_time_sync);
/**
* mhi_get_remote_time - Get external modem time relative to host time
* Trigger event to capture modem time, also capture host time so client
* can do a relative drift comparision.
* Recommended only tsync device calls this method and do not call this
* from atomic context
* @mhi_dev: Device associated with the channels
* @sequence:unique sequence id track event
* @cb_func: callback function to call back
*/
int mhi_get_remote_time(struct mhi_device *mhi_dev,
u32 sequence,
void (*cb_func)(struct mhi_device *mhi_dev,
u32 sequence,
u64 local_time,
u64 remote_time))
{
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_timesync *mhi_tsync = mhi_cntrl->mhi_tsync;
struct tsync_node *tsync_node;
int ret;
/* not all devices support time feature */
if (!mhi_tsync)
return -EIO;
/* tsync db can only be rung in M0 state */
ret = __mhi_device_get_sync(mhi_cntrl);
if (ret)
return ret;
/*
* technically we can use GFP_KERNEL, but wants to avoid
* # of times scheduling out
*/
tsync_node = kzalloc(sizeof(*tsync_node), GFP_ATOMIC);
if (!tsync_node) {
ret = -ENOMEM;
goto error_no_mem;
}
tsync_node->sequence = sequence;
tsync_node->cb_func = cb_func;
tsync_node->mhi_dev = mhi_dev;
/* disable link level low power modes */
mhi_cntrl->lpm_disable(mhi_cntrl, mhi_cntrl->priv_data);
read_lock_bh(&mhi_cntrl->pm_lock);
if (unlikely(MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))) {
MHI_ERR("MHI is not in active state, pm_state:%s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state));
ret = -EIO;
goto error_invalid_state;
}
spin_lock_irq(&mhi_tsync->lock);
list_add_tail(&tsync_node->node, &mhi_tsync->head);
spin_unlock_irq(&mhi_tsync->lock);
/*
* time critical code, delay between these two steps should be
* deterministic as possible.
*/
preempt_disable();
local_irq_disable();
tsync_node->local_time =
mhi_cntrl->time_get(mhi_cntrl, mhi_cntrl->priv_data);
writel_relaxed_no_log(tsync_node->sequence, mhi_tsync->db);
/* write must go thru immediately */
wmb();
local_irq_enable();
preempt_enable();
ret = 0;
error_invalid_state:
if (ret)
kfree(tsync_node);
read_unlock_bh(&mhi_cntrl->pm_lock);
mhi_cntrl->lpm_enable(mhi_cntrl, mhi_cntrl->priv_data);
error_no_mem:
read_lock_bh(&mhi_cntrl->pm_lock);
mhi_cntrl->wake_put(mhi_cntrl, false);
read_unlock_bh(&mhi_cntrl->pm_lock);
return ret;
}
EXPORT_SYMBOL(mhi_get_remote_time);
void mhi_debug_reg_dump(struct mhi_controller *mhi_cntrl)
{
enum mhi_dev_state state;
enum mhi_ee ee;
int i, ret;
u32 val;
void __iomem *mhi_base = mhi_cntrl->regs;
void __iomem *bhi_base = mhi_cntrl->bhi;
void __iomem *bhie_base = mhi_cntrl->bhie;
void __iomem *wake_db = mhi_cntrl->wake_db;
struct {
const char *name;
int offset;
void *base;
} debug_reg[] = {
{ "MHI_CNTRL", MHICTRL, mhi_base},
{ "MHI_STATUS", MHISTATUS, mhi_base},
{ "MHI_WAKE_DB", 0, wake_db},
{ "BHI_EXECENV", BHI_EXECENV, bhi_base},
{ "BHI_STATUS", BHI_STATUS, bhi_base},
{ "BHI_ERRCODE", BHI_ERRCODE, bhi_base},
{ "BHI_ERRDBG1", BHI_ERRDBG1, bhi_base},
{ "BHI_ERRDBG2", BHI_ERRDBG2, bhi_base},
{ "BHI_ERRDBG3", BHI_ERRDBG3, bhi_base},
{ "BHIE_TXVEC_DB", BHIE_TXVECDB_OFFS, bhie_base},
{ "BHIE_TXVEC_STATUS", BHIE_TXVECSTATUS_OFFS, bhie_base},
{ "BHIE_RXVEC_DB", BHIE_RXVECDB_OFFS, bhie_base},
{ "BHIE_RXVEC_STATUS", BHIE_RXVECSTATUS_OFFS, bhie_base},
{ NULL },
};
MHI_LOG("host pm_state:%s dev_state:%s ee:%s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state),
TO_MHI_STATE_STR(mhi_cntrl->dev_state),
TO_MHI_EXEC_STR(mhi_cntrl->ee));
state = mhi_get_mhi_state(mhi_cntrl);
ee = mhi_get_exec_env(mhi_cntrl);
MHI_LOG("device ee:%s dev_state:%s\n", TO_MHI_EXEC_STR(ee),
TO_MHI_STATE_STR(state));
for (i = 0; debug_reg[i].name; i++) {
ret = mhi_read_reg(mhi_cntrl, debug_reg[i].base,
debug_reg[i].offset, &val);
MHI_LOG("reg:%s val:0x%x, ret:%d\n", debug_reg[i].name, val,
ret);
}
}
EXPORT_SYMBOL(mhi_debug_reg_dump);