| /* |
| * SHA1 routine optimized to do word accesses rather than byte accesses, |
| * and to avoid unnecessary copies into the context array. |
| * |
| * This was based on the git SHA1 implementation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/bitops.h> |
| #include <linux/cryptohash.h> |
| #include <asm/unaligned.h> |
| |
| /* |
| * If you have 32 registers or more, the compiler can (and should) |
| * try to change the array[] accesses into registers. However, on |
| * machines with less than ~25 registers, that won't really work, |
| * and at least gcc will make an unholy mess of it. |
| * |
| * So to avoid that mess which just slows things down, we force |
| * the stores to memory to actually happen (we might be better off |
| * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as |
| * suggested by Artur Skawina - that will also make gcc unable to |
| * try to do the silly "optimize away loads" part because it won't |
| * see what the value will be). |
| * |
| * Ben Herrenschmidt reports that on PPC, the C version comes close |
| * to the optimized asm with this (ie on PPC you don't want that |
| * 'volatile', since there are lots of registers). |
| * |
| * On ARM we get the best code generation by forcing a full memory barrier |
| * between each SHA_ROUND, otherwise gcc happily get wild with spilling and |
| * the stack frame size simply explode and performance goes down the drain. |
| */ |
| |
| #ifdef CONFIG_X86 |
| #define setW(x, val) (*(volatile __u32 *)&W(x) = (val)) |
| #elif defined(CONFIG_ARM) |
| #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0) |
| #else |
| #define setW(x, val) (W(x) = (val)) |
| #endif |
| |
| /* This "rolls" over the 512-bit array */ |
| #define W(x) (array[(x)&15]) |
| |
| /* |
| * Where do we get the source from? The first 16 iterations get it from |
| * the input data, the next mix it from the 512-bit array. |
| */ |
| #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t) |
| #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1) |
| |
| #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \ |
| __u32 TEMP = input(t); setW(t, TEMP); \ |
| E += TEMP + rol32(A,5) + (fn) + (constant); \ |
| B = ror32(B, 2); } while (0) |
| |
| #define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) |
| #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) |
| #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E ) |
| #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E ) |
| #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E ) |
| |
| /** |
| * sha_transform - single block SHA1 transform |
| * |
| * @digest: 160 bit digest to update |
| * @data: 512 bits of data to hash |
| * @array: 16 words of workspace (see note) |
| * |
| * This function generates a SHA1 digest for a single 512-bit block. |
| * Be warned, it does not handle padding and message digest, do not |
| * confuse it with the full FIPS 180-1 digest algorithm for variable |
| * length messages. |
| * |
| * Note: If the hash is security sensitive, the caller should be sure |
| * to clear the workspace. This is left to the caller to avoid |
| * unnecessary clears between chained hashing operations. |
| */ |
| void sha_transform(__u32 *digest, const char *data, __u32 *array) |
| { |
| __u32 A, B, C, D, E; |
| |
| A = digest[0]; |
| B = digest[1]; |
| C = digest[2]; |
| D = digest[3]; |
| E = digest[4]; |
| |
| /* Round 1 - iterations 0-16 take their input from 'data' */ |
| T_0_15( 0, A, B, C, D, E); |
| T_0_15( 1, E, A, B, C, D); |
| T_0_15( 2, D, E, A, B, C); |
| T_0_15( 3, C, D, E, A, B); |
| T_0_15( 4, B, C, D, E, A); |
| T_0_15( 5, A, B, C, D, E); |
| T_0_15( 6, E, A, B, C, D); |
| T_0_15( 7, D, E, A, B, C); |
| T_0_15( 8, C, D, E, A, B); |
| T_0_15( 9, B, C, D, E, A); |
| T_0_15(10, A, B, C, D, E); |
| T_0_15(11, E, A, B, C, D); |
| T_0_15(12, D, E, A, B, C); |
| T_0_15(13, C, D, E, A, B); |
| T_0_15(14, B, C, D, E, A); |
| T_0_15(15, A, B, C, D, E); |
| |
| /* Round 1 - tail. Input from 512-bit mixing array */ |
| T_16_19(16, E, A, B, C, D); |
| T_16_19(17, D, E, A, B, C); |
| T_16_19(18, C, D, E, A, B); |
| T_16_19(19, B, C, D, E, A); |
| |
| /* Round 2 */ |
| T_20_39(20, A, B, C, D, E); |
| T_20_39(21, E, A, B, C, D); |
| T_20_39(22, D, E, A, B, C); |
| T_20_39(23, C, D, E, A, B); |
| T_20_39(24, B, C, D, E, A); |
| T_20_39(25, A, B, C, D, E); |
| T_20_39(26, E, A, B, C, D); |
| T_20_39(27, D, E, A, B, C); |
| T_20_39(28, C, D, E, A, B); |
| T_20_39(29, B, C, D, E, A); |
| T_20_39(30, A, B, C, D, E); |
| T_20_39(31, E, A, B, C, D); |
| T_20_39(32, D, E, A, B, C); |
| T_20_39(33, C, D, E, A, B); |
| T_20_39(34, B, C, D, E, A); |
| T_20_39(35, A, B, C, D, E); |
| T_20_39(36, E, A, B, C, D); |
| T_20_39(37, D, E, A, B, C); |
| T_20_39(38, C, D, E, A, B); |
| T_20_39(39, B, C, D, E, A); |
| |
| /* Round 3 */ |
| T_40_59(40, A, B, C, D, E); |
| T_40_59(41, E, A, B, C, D); |
| T_40_59(42, D, E, A, B, C); |
| T_40_59(43, C, D, E, A, B); |
| T_40_59(44, B, C, D, E, A); |
| T_40_59(45, A, B, C, D, E); |
| T_40_59(46, E, A, B, C, D); |
| T_40_59(47, D, E, A, B, C); |
| T_40_59(48, C, D, E, A, B); |
| T_40_59(49, B, C, D, E, A); |
| T_40_59(50, A, B, C, D, E); |
| T_40_59(51, E, A, B, C, D); |
| T_40_59(52, D, E, A, B, C); |
| T_40_59(53, C, D, E, A, B); |
| T_40_59(54, B, C, D, E, A); |
| T_40_59(55, A, B, C, D, E); |
| T_40_59(56, E, A, B, C, D); |
| T_40_59(57, D, E, A, B, C); |
| T_40_59(58, C, D, E, A, B); |
| T_40_59(59, B, C, D, E, A); |
| |
| /* Round 4 */ |
| T_60_79(60, A, B, C, D, E); |
| T_60_79(61, E, A, B, C, D); |
| T_60_79(62, D, E, A, B, C); |
| T_60_79(63, C, D, E, A, B); |
| T_60_79(64, B, C, D, E, A); |
| T_60_79(65, A, B, C, D, E); |
| T_60_79(66, E, A, B, C, D); |
| T_60_79(67, D, E, A, B, C); |
| T_60_79(68, C, D, E, A, B); |
| T_60_79(69, B, C, D, E, A); |
| T_60_79(70, A, B, C, D, E); |
| T_60_79(71, E, A, B, C, D); |
| T_60_79(72, D, E, A, B, C); |
| T_60_79(73, C, D, E, A, B); |
| T_60_79(74, B, C, D, E, A); |
| T_60_79(75, A, B, C, D, E); |
| T_60_79(76, E, A, B, C, D); |
| T_60_79(77, D, E, A, B, C); |
| T_60_79(78, C, D, E, A, B); |
| T_60_79(79, B, C, D, E, A); |
| |
| digest[0] += A; |
| digest[1] += B; |
| digest[2] += C; |
| digest[3] += D; |
| digest[4] += E; |
| } |
| EXPORT_SYMBOL(sha_transform); |
| |
| /** |
| * sha_init - initialize the vectors for a SHA1 digest |
| * @buf: vector to initialize |
| */ |
| void sha_init(__u32 *buf) |
| { |
| buf[0] = 0x67452301; |
| buf[1] = 0xefcdab89; |
| buf[2] = 0x98badcfe; |
| buf[3] = 0x10325476; |
| buf[4] = 0xc3d2e1f0; |
| } |
| EXPORT_SYMBOL(sha_init); |