blob: 6ff621d3808297d57fb298c6ae5b0f0faf9c6712 [file] [log] [blame]
/*
* Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/clk-provider.h>
#include <linux/regmap.h>
#include <linux/delay.h>
#include "clk-alpha-pll.h"
#define PLL_MODE 0x00
# define PLL_OUTCTRL BIT(0)
# define PLL_BYPASSNL BIT(1)
# define PLL_RESET_N BIT(2)
# define PLL_LOCK_COUNT_SHIFT 8
# define PLL_LOCK_COUNT_MASK 0x3f
# define PLL_BIAS_COUNT_SHIFT 14
# define PLL_BIAS_COUNT_MASK 0x3f
# define PLL_VOTE_FSM_ENA BIT(20)
# define PLL_VOTE_FSM_RESET BIT(21)
# define PLL_ACTIVE_FLAG BIT(30)
# define PLL_LOCK_DET BIT(31)
#define PLL_L_VAL 0x04
#define PLL_ALPHA_VAL 0x08
#define PLL_ALPHA_VAL_U 0x0c
#define PLL_USER_CTL 0x10
# define PLL_POST_DIV_SHIFT 8
# define PLL_POST_DIV_MASK 0xf
# define PLL_ALPHA_EN BIT(24)
# define PLL_VCO_SHIFT 20
# define PLL_VCO_MASK 0x3
#define PLL_USER_CTL_U 0x14
#define PLL_CONFIG_CTL 0x18
#define PLL_TEST_CTL 0x1c
#define PLL_TEST_CTL_U 0x20
#define PLL_STATUS 0x24
/*
* Even though 40 bits are present, use only 32 for ease of calculation.
*/
#define ALPHA_REG_BITWIDTH 40
#define ALPHA_BITWIDTH 32
#define FABIA_BITWIDTH 16
#define FABIA_USER_CTL_LO 0xc
#define FABIA_USER_CTL_HI 0x10
#define FABIA_CAL_L_VAL 0x8
#define FABIA_FRAC_VAL 0x38
#define FABIA_OPMODE 0x2c
#define FABIA_PLL_STANDBY 0x0
#define FABIA_PLL_RUN 0x1
#define FABIA_PLL_OUT_MASK 0x7
#define FABIA_PLL_RATE_MARGIN 500
#define FABIA_PLL_ACK_LATCH BIT(29)
#define FABIA_PLL_UPDATE BIT(22)
#define FABIA_PLL_HW_UPDATE_LOGIC_BYPASS BIT(23)
#define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \
struct clk_alpha_pll, clkr)
#define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \
struct clk_alpha_pll_postdiv, clkr)
static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse,
const char *action)
{
u32 val, off;
int count;
int ret;
const char *name = clk_hw_get_name(&pll->clkr.hw);
off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
for (count = 100; count > 0; count--) {
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
if (inverse && (val & mask))
return 0;
else if ((val & mask) == mask)
return 0;
udelay(1);
}
WARN(1, "%s failed to %s!\n", name, action);
return -ETIMEDOUT;
}
static int wait_for_pll_enable(struct clk_alpha_pll *pll, u32 mask)
{
return wait_for_pll(pll, mask, 0, "enable");
}
static int wait_for_pll_disable(struct clk_alpha_pll *pll, u32 mask)
{
return wait_for_pll(pll, mask, 1, "disable");
}
static int wait_for_pll_offline(struct clk_alpha_pll *pll, u32 mask)
{
return wait_for_pll(pll, mask, 0, "offline");
}
/* alpha pll with hwfsm support */
#define PLL_OFFLINE_REQ BIT(7)
#define PLL_FSM_ENA BIT(20)
#define PLL_OFFLINE_ACK BIT(28)
#define PLL_ACTIVE_FLAG BIT(30)
void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct pll_config *config)
{
u32 val, mask;
regmap_write(regmap, pll->offset + PLL_CONFIG_CTL,
config->config_ctl_val);
val = config->main_output_mask;
val |= config->aux_output_mask;
val |= config->aux2_output_mask;
val |= config->early_output_mask;
val |= config->post_div_val;
mask = config->main_output_mask;
mask |= config->aux_output_mask;
mask |= config->aux2_output_mask;
mask |= config->early_output_mask;
mask |= config->post_div_mask;
regmap_update_bits(regmap, pll->offset + PLL_USER_CTL, mask, val);
}
static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, off;
off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
/* Enable HW FSM mode, clear OFFLINE request */
val |= PLL_FSM_ENA;
val &= ~PLL_OFFLINE_REQ;
ret = regmap_write(pll->clkr.regmap, off + PLL_MODE, val);
if (ret)
return ret;
/* Make sure enable request goes through before waiting for update */
mb();
ret = wait_for_pll_enable(pll, PLL_ACTIVE_FLAG);
if (ret)
return ret;
return 0;
}
static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, off;
off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return;
/* Request PLL_OFFLINE and wait for ack */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OFFLINE_REQ, PLL_OFFLINE_REQ);
if (ret)
return;
ret = wait_for_pll_offline(pll, PLL_OFFLINE_ACK);
if (ret)
return;
/* Disable hwfsm */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_FSM_ENA, 0);
if (ret)
return;
wait_for_pll_disable(pll, PLL_ACTIVE_FLAG);
}
static int clk_alpha_pll_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, mask, off;
off = pll->offset;
mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable(pll, PLL_ACTIVE_FLAG);
}
/* Skip if already enabled */
if ((val & mask) == mask)
return 0;
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_BYPASSNL, PLL_BYPASSNL);
if (ret)
return ret;
/*
* H/W requires a 5us delay between disabling the bypass and
* de-asserting the reset.
*/
mb();
udelay(5);
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_RESET_N, PLL_RESET_N);
if (ret)
return ret;
ret = wait_for_pll_enable(pll, PLL_LOCK_DET);
if (ret)
return ret;
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OUTCTRL, PLL_OUTCTRL);
/* Ensure that the write above goes through before returning. */
mb();
return ret;
}
static void clk_alpha_pll_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, mask, off;
off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_VOTE_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
mask = PLL_OUTCTRL;
regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, mask, 0);
/* Delay of 2 output clock ticks required until output is disabled */
mb();
udelay(1);
mask = PLL_RESET_N | PLL_BYPASSNL;
regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, mask, 0);
}
static unsigned long alpha_pll_calc_rate(const struct clk_alpha_pll *pll,
u64 prate, u32 l, u32 a)
{
int alpha_bw = ALPHA_BITWIDTH;
if (pll->type == FABIA_PLL)
alpha_bw = FABIA_BITWIDTH;
return (prate * l) + ((prate * a) >> alpha_bw);
}
static unsigned long
alpha_pll_round_rate(const struct clk_alpha_pll *pll, unsigned long rate,
unsigned long prate, u32 *l, u64 *a)
{
u64 remainder;
u64 quotient;
int alpha_bw = ALPHA_BITWIDTH;
quotient = rate;
remainder = do_div(quotient, prate);
*l = quotient;
if (!remainder) {
*a = 0;
return rate;
}
/* Fabia PLLs only have 16 bits to program the fractional divider */
if (pll->type == FABIA_PLL)
alpha_bw = FABIA_BITWIDTH;
/* Upper ALPHA_BITWIDTH bits of Alpha */
quotient = remainder << alpha_bw;
remainder = do_div(quotient, prate);
if (remainder)
quotient++;
*a = quotient;
return alpha_pll_calc_rate(pll, prate, *l, *a);
}
static const struct pll_vco *
alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate)
{
const struct pll_vco *v = pll->vco_table;
const struct pll_vco *end = v + pll->num_vco;
for (; v < end; v++)
if (rate >= v->min_freq && rate <= v->max_freq)
return v;
return NULL;
}
static unsigned long
clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
u32 l, low, high, ctl;
u64 a = 0, prate = parent_rate;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 off = pll->offset;
regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l);
regmap_read(pll->clkr.regmap, off + PLL_USER_CTL, &ctl);
if (ctl & PLL_ALPHA_EN) {
regmap_read(pll->clkr.regmap, off + PLL_ALPHA_VAL, &low);
regmap_read(pll->clkr.regmap, off + PLL_ALPHA_VAL_U, &high);
a = (u64)high << 32 | low;
a >>= ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH;
}
return alpha_pll_calc_rate(pll, prate, l, a);
}
static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
const struct pll_vco *vco;
u32 l, off = pll->offset;
u64 a;
rate = alpha_pll_round_rate(pll, rate, prate, &l, &a);
vco = alpha_pll_find_vco(pll, rate);
if (!vco) {
pr_err("alpha pll not in a valid vco range\n");
return -EINVAL;
}
a <<= (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH);
regmap_write(pll->clkr.regmap, off + PLL_L_VAL, l);
regmap_write(pll->clkr.regmap, off + PLL_ALPHA_VAL, a);
regmap_write(pll->clkr.regmap, off + PLL_ALPHA_VAL_U, a >> 32);
regmap_update_bits(pll->clkr.regmap, off + PLL_USER_CTL,
PLL_VCO_MASK << PLL_VCO_SHIFT,
vco->val << PLL_VCO_SHIFT);
regmap_update_bits(pll->clkr.regmap, off + PLL_USER_CTL, PLL_ALPHA_EN,
PLL_ALPHA_EN);
return 0;
}
static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l;
u64 a;
unsigned long min_freq, max_freq;
rate = alpha_pll_round_rate(pll, rate, *prate, &l, &a);
if (pll->type == FABIA_PLL || alpha_pll_find_vco(pll, rate))
return rate;
min_freq = pll->vco_table[0].min_freq;
max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
return clamp(rate, min_freq, max_freq);
}
static void clk_alpha_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
int size, i, val;
static struct clk_register_data data[] = {
{"PLL_MODE", 0x0},
{"PLL_L_VAL", 0x4},
{"PLL_ALPHA_VAL", 0x8},
{"PLL_ALPHA_VAL_U", 0xC},
{"PLL_USER_CTL", 0x10},
{"PLL_CONFIG_CTL", 0x18},
};
static struct clk_register_data data1[] = {
{"APSS_PLL_VOTE", 0x0},
};
size = ARRAY_SIZE(data);
for (i = 0; i < size; i++) {
regmap_read(pll->clkr.regmap, pll->offset + data[i].offset,
&val);
seq_printf(f, "%20s: 0x%.8x\n", data[i].name, val);
}
regmap_read(pll->clkr.regmap, pll->offset + data[0].offset, &val);
if (val & PLL_FSM_ENA) {
regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
data1[0].offset, &val);
seq_printf(f, "%20s: 0x%.8x\n", data1[0].name, val);
}
}
void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct pll_config *config)
{
u32 val, mask;
if (config->l) {
regmap_write(regmap, pll->offset + PLL_L_VAL,
config->l);
regmap_write(regmap, pll->offset + FABIA_CAL_L_VAL,
config->l);
}
if (config->frac)
regmap_write(regmap, pll->offset + FABIA_FRAC_VAL,
config->frac);
if (config->config_ctl_val)
regmap_write(regmap, pll->offset + PLL_CONFIG_CTL,
config->config_ctl_val);
if (config->post_div_mask) {
mask = config->post_div_mask;
val = config->post_div_val;
regmap_update_bits(regmap, pll->offset + FABIA_USER_CTL_LO,
mask, val);
}
regmap_update_bits(regmap, pll->offset + PLL_MODE,
FABIA_PLL_HW_UPDATE_LOGIC_BYPASS,
FABIA_PLL_HW_UPDATE_LOGIC_BYPASS);
regmap_update_bits(regmap, pll->offset + PLL_MODE,
PLL_RESET_N, PLL_RESET_N);
pll->inited = true;
}
static int clk_fabia_pll_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable(pll, PLL_ACTIVE_FLAG);
}
if (unlikely(!pll->inited))
clk_fabia_pll_configure(pll, pll->clkr.regmap, pll->config);
/* Disable PLL output */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OUTCTRL, 0);
if (ret)
return ret;
/* Set operation mode to STANDBY */
regmap_write(pll->clkr.regmap, off + FABIA_OPMODE, FABIA_PLL_STANDBY);
/* PLL should be in STANDBY mode before continuing */
mb();
/* Bring PLL out of reset */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_RESET_N, PLL_RESET_N);
if (ret)
return ret;
/* Set operation mode to RUN */
regmap_write(pll->clkr.regmap, off + FABIA_OPMODE, FABIA_PLL_RUN);
ret = wait_for_pll_enable(pll, PLL_LOCK_DET);
if (ret)
return ret;
/* Enable the main PLL output */
ret = regmap_update_bits(pll->clkr.regmap, off + FABIA_USER_CTL_LO,
FABIA_PLL_OUT_MASK, FABIA_PLL_OUT_MASK);
if (ret)
return ret;
/* Enable PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OUTCTRL, PLL_OUTCTRL);
if (ret)
return ret;
/* Ensure that the write above goes through before returning. */
mb();
return ret;
}
static void clk_fabia_pll_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_VOTE_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
/* Disable PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OUTCTRL, 0);
if (ret)
return;
/* Disable the main PLL output */
ret = regmap_update_bits(pll->clkr.regmap, off + FABIA_USER_CTL_LO,
FABIA_PLL_OUT_MASK, 0);
if (ret)
return;
/* Place the PLL mode in STANDBY */
regmap_write(pll->clkr.regmap, off + FABIA_OPMODE, FABIA_PLL_STANDBY);
}
static unsigned long
clk_fabia_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
u32 l, frac;
u64 prate = parent_rate;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 off = pll->offset;
regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l);
regmap_read(pll->clkr.regmap, off + FABIA_FRAC_VAL, &frac);
return alpha_pll_calc_rate(pll, prate, l, frac);
}
static int clk_fabia_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
unsigned long rrate;
u32 regval, l, off = pll->offset;
u64 a;
int ret;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &regval);
if (ret)
return ret;
rrate = alpha_pll_round_rate(pll, rate, prate, &l, &a);
/*
* Due to limited number of bits for fractional rate programming, the
* rounded up rate could be marginally higher than the requested rate.
*/
if (rrate > (rate + FABIA_PLL_RATE_MARGIN) || rrate < rate) {
pr_err("Call set rate on the PLL with rounded rates!\n");
return -EINVAL;
}
regmap_write(pll->clkr.regmap, off + PLL_L_VAL, l);
/*
* pll_cal_l_val is set to pll_l_val on MOST targets. Set it
* explicitly here for PLL out-of-reset calibration to work
* without a glitch on ALL of them.
*/
regmap_write(pll->clkr.regmap, off + FABIA_CAL_L_VAL, l);
regmap_write(pll->clkr.regmap, off + FABIA_FRAC_VAL, a);
/* Latch the PLL input */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
FABIA_PLL_UPDATE, FABIA_PLL_UPDATE);
if (ret)
return ret;
/* Wait for 2 reference cycles before checking the ACK bit. */
udelay(1);
regmap_read(pll->clkr.regmap, off + PLL_MODE, &regval);
if (!(regval & FABIA_PLL_ACK_LATCH)) {
WARN(1, "PLL latch failed. Output may be unstable!\n");
return -EINVAL;
}
/* Return the latch input to 0 */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
FABIA_PLL_UPDATE, 0);
if (ret)
return ret;
/* Wait for PLL output to stabilize */
udelay(100);
return 0;
}
static void clk_fabia_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
int size, i, val;
static struct clk_register_data data[] = {
{"PLL_MODE", 0x0},
{"PLL_L_VAL", 0x4},
{"PLL_FRAC_VAL", 0x38},
{"PLL_USER_CTL", 0xc},
{"PLL_CONFIG_CTL", 0x14},
{"PLL_OPMODE", 0x2c},
};
static struct clk_register_data data1[] = {
{"APSS_PLL_VOTE", 0x0},
};
size = ARRAY_SIZE(data);
for (i = 0; i < size; i++) {
regmap_read(pll->clkr.regmap, pll->offset + data[i].offset,
&val);
seq_printf(f, "%20s: 0x%.8x\n", data[i].name, val);
}
regmap_read(pll->clkr.regmap, pll->offset + data[0].offset, &val);
if (val & PLL_FSM_ENA) {
regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
data1[0].offset, &val);
seq_printf(f, "%20s: 0x%.8x\n", data1[0].name, val);
}
}
const struct clk_ops clk_alpha_pll_ops = {
.enable = clk_alpha_pll_enable,
.disable = clk_alpha_pll_disable,
.recalc_rate = clk_alpha_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_alpha_pll_set_rate,
.list_registers = clk_alpha_pll_list_registers,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_ops);
const struct clk_ops clk_alpha_pll_hwfsm_ops = {
.enable = clk_alpha_pll_hwfsm_enable,
.disable = clk_alpha_pll_hwfsm_disable,
.recalc_rate = clk_alpha_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_alpha_pll_set_rate,
.list_registers = clk_alpha_pll_list_registers,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops);
const struct clk_ops clk_fabia_pll_ops = {
.enable = clk_fabia_pll_enable,
.disable = clk_fabia_pll_disable,
.recalc_rate = clk_fabia_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_fabia_pll_set_rate,
.list_registers = clk_fabia_pll_list_registers,
};
EXPORT_SYMBOL_GPL(clk_fabia_pll_ops);
const struct clk_ops clk_fabia_fixed_pll_ops = {
.enable = clk_fabia_pll_enable,
.disable = clk_fabia_pll_disable,
.recalc_rate = clk_fabia_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.list_registers = clk_fabia_pll_list_registers,
};
EXPORT_SYMBOL_GPL(clk_fabia_fixed_pll_ops);
static unsigned long
clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
u32 ctl;
regmap_read(pll->clkr.regmap, pll->offset + PLL_USER_CTL, &ctl);
ctl >>= PLL_POST_DIV_SHIFT;
ctl &= PLL_POST_DIV_MASK;
return parent_rate >> fls(ctl);
}
static const struct clk_div_table clk_alpha_div_table[] = {
{ 0x0, 1 },
{ 0x1, 2 },
{ 0x3, 4 },
{ 0x7, 8 },
{ 0xf, 16 },
{ }
};
static long
clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
return divider_round_rate(hw, rate, prate, clk_alpha_div_table,
pll->width, CLK_DIVIDER_POWER_OF_TWO);
}
static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
int div;
/* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */
div = DIV_ROUND_UP_ULL((u64)parent_rate, rate) - 1;
return regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_USER_CTL,
PLL_POST_DIV_MASK << PLL_POST_DIV_SHIFT,
div << PLL_POST_DIV_SHIFT);
}
const struct clk_ops clk_alpha_pll_postdiv_ops = {
.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
.round_rate = clk_alpha_pll_postdiv_round_rate,
.set_rate = clk_alpha_pll_postdiv_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);
static unsigned long clk_generic_pll_postdiv_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
u32 i, div = 1, val;
if (!pll->post_div_table) {
pr_err("Missing the post_div_table for the PLL\n");
return -EINVAL;
}
regmap_read(pll->clkr.regmap, pll->offset + FABIA_USER_CTL_LO, &val);
val >>= pll->post_div_shift;
val &= PLL_POST_DIV_MASK;
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].val == val) {
div = pll->post_div_table[i].div;
break;
}
}
return (parent_rate / div);
}
static long clk_generic_pll_postdiv_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
if (!pll->post_div_table)
return -EINVAL;
return divider_round_rate(hw, rate, prate, pll->post_div_table,
pll->width, CLK_DIVIDER_ROUND_CLOSEST);
}
static int clk_generic_pll_postdiv_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
int i, val = 0, div, ret;
/*
* If the PLL is in FSM mode, then treat the set_rate callback
* as a no-operation.
*/
ret = regmap_read(pll->clkr.regmap, pll->offset + PLL_MODE, &val);
if (ret)
return ret;
if (val & PLL_VOTE_FSM_ENA)
return 0;
if (!pll->post_div_table) {
pr_err("Missing the post_div_table for the PLL\n");
return -EINVAL;
}
div = DIV_ROUND_UP_ULL((u64)parent_rate, rate);
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].div == div) {
val = pll->post_div_table[i].val;
break;
}
}
return regmap_update_bits(pll->clkr.regmap,
pll->offset + FABIA_USER_CTL_LO,
PLL_POST_DIV_MASK << pll->post_div_shift,
val << pll->post_div_shift);
}
const struct clk_ops clk_generic_pll_postdiv_ops = {
.recalc_rate = clk_generic_pll_postdiv_recalc_rate,
.round_rate = clk_generic_pll_postdiv_round_rate,
.set_rate = clk_generic_pll_postdiv_set_rate,
};
EXPORT_SYMBOL_GPL(clk_generic_pll_postdiv_ops);