| /* |
| * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix |
| * Copyright (C) 2006 Andrey Volkov, Varma Electronics |
| * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the version 2 of the GNU General Public License |
| * as published by the Free Software Foundation |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/netdevice.h> |
| #include <linux/if_arp.h> |
| #include <linux/can.h> |
| #include <linux/can/dev.h> |
| #include <linux/can/skb.h> |
| #include <linux/can/netlink.h> |
| #include <linux/can/led.h> |
| #include <net/rtnetlink.h> |
| |
| #define MOD_DESC "CAN device driver interface" |
| |
| MODULE_DESCRIPTION(MOD_DESC); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); |
| |
| /* CAN DLC to real data length conversion helpers */ |
| |
| static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, |
| 8, 12, 16, 20, 24, 32, 48, 64}; |
| |
| /* get data length from can_dlc with sanitized can_dlc */ |
| u8 can_dlc2len(u8 can_dlc) |
| { |
| return dlc2len[can_dlc & 0x0F]; |
| } |
| EXPORT_SYMBOL_GPL(can_dlc2len); |
| |
| static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */ |
| 9, 9, 9, 9, /* 9 - 12 */ |
| 10, 10, 10, 10, /* 13 - 16 */ |
| 11, 11, 11, 11, /* 17 - 20 */ |
| 12, 12, 12, 12, /* 21 - 24 */ |
| 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */ |
| 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */ |
| 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */ |
| 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */ |
| 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */ |
| |
| /* map the sanitized data length to an appropriate data length code */ |
| u8 can_len2dlc(u8 len) |
| { |
| if (unlikely(len > 64)) |
| return 0xF; |
| |
| return len2dlc[len]; |
| } |
| EXPORT_SYMBOL_GPL(can_len2dlc); |
| |
| #ifdef CONFIG_CAN_CALC_BITTIMING |
| #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ |
| |
| /* |
| * Bit-timing calculation derived from: |
| * |
| * Code based on LinCAN sources and H8S2638 project |
| * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz |
| * Copyright 2005 Stanislav Marek |
| * email: pisa@cmp.felk.cvut.cz |
| * |
| * Calculates proper bit-timing parameters for a specified bit-rate |
| * and sample-point, which can then be used to set the bit-timing |
| * registers of the CAN controller. You can find more information |
| * in the header file linux/can/netlink.h. |
| */ |
| static int can_update_spt(const struct can_bittiming_const *btc, |
| int sampl_pt, int tseg, int *tseg1, int *tseg2) |
| { |
| *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000; |
| if (*tseg2 < btc->tseg2_min) |
| *tseg2 = btc->tseg2_min; |
| if (*tseg2 > btc->tseg2_max) |
| *tseg2 = btc->tseg2_max; |
| *tseg1 = tseg - *tseg2; |
| if (*tseg1 > btc->tseg1_max) { |
| *tseg1 = btc->tseg1_max; |
| *tseg2 = tseg - *tseg1; |
| } |
| return 1000 * (tseg + 1 - *tseg2) / (tseg + 1); |
| } |
| |
| static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| const struct can_bittiming_const *btc = priv->bittiming_const; |
| long rate, best_rate = 0; |
| long best_error = 1000000000, error = 0; |
| int best_tseg = 0, best_brp = 0, brp = 0; |
| int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0; |
| int spt_error = 1000, spt = 0, sampl_pt; |
| u64 v64; |
| |
| if (!priv->bittiming_const) |
| return -ENOTSUPP; |
| |
| /* Use CIA recommended sample points */ |
| if (bt->sample_point) { |
| sampl_pt = bt->sample_point; |
| } else { |
| if (bt->bitrate > 800000) |
| sampl_pt = 750; |
| else if (bt->bitrate > 500000) |
| sampl_pt = 800; |
| else |
| sampl_pt = 875; |
| } |
| |
| /* tseg even = round down, odd = round up */ |
| for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; |
| tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { |
| tsegall = 1 + tseg / 2; |
| /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ |
| brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; |
| /* chose brp step which is possible in system */ |
| brp = (brp / btc->brp_inc) * btc->brp_inc; |
| if ((brp < btc->brp_min) || (brp > btc->brp_max)) |
| continue; |
| rate = priv->clock.freq / (brp * tsegall); |
| error = bt->bitrate - rate; |
| /* tseg brp biterror */ |
| if (error < 0) |
| error = -error; |
| if (error > best_error) |
| continue; |
| best_error = error; |
| if (error == 0) { |
| spt = can_update_spt(btc, sampl_pt, tseg / 2, |
| &tseg1, &tseg2); |
| error = sampl_pt - spt; |
| if (error < 0) |
| error = -error; |
| if (error > spt_error) |
| continue; |
| spt_error = error; |
| } |
| best_tseg = tseg / 2; |
| best_brp = brp; |
| best_rate = rate; |
| if (error == 0) |
| break; |
| } |
| |
| if (best_error) { |
| /* Error in one-tenth of a percent */ |
| error = (best_error * 1000) / bt->bitrate; |
| if (error > CAN_CALC_MAX_ERROR) { |
| netdev_err(dev, |
| "bitrate error %ld.%ld%% too high\n", |
| error / 10, error % 10); |
| return -EDOM; |
| } else { |
| netdev_warn(dev, "bitrate error %ld.%ld%%\n", |
| error / 10, error % 10); |
| } |
| } |
| |
| /* real sample point */ |
| bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg, |
| &tseg1, &tseg2); |
| |
| v64 = (u64)best_brp * 1000000000UL; |
| do_div(v64, priv->clock.freq); |
| bt->tq = (u32)v64; |
| bt->prop_seg = tseg1 / 2; |
| bt->phase_seg1 = tseg1 - bt->prop_seg; |
| bt->phase_seg2 = tseg2; |
| |
| /* check for sjw user settings */ |
| if (!bt->sjw || !btc->sjw_max) |
| bt->sjw = 1; |
| else { |
| /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ |
| if (bt->sjw > btc->sjw_max) |
| bt->sjw = btc->sjw_max; |
| /* bt->sjw must not be higher than tseg2 */ |
| if (tseg2 < bt->sjw) |
| bt->sjw = tseg2; |
| } |
| |
| bt->brp = best_brp; |
| /* real bit-rate */ |
| bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1)); |
| |
| return 0; |
| } |
| #else /* !CONFIG_CAN_CALC_BITTIMING */ |
| static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt) |
| { |
| netdev_err(dev, "bit-timing calculation not available\n"); |
| return -EINVAL; |
| } |
| #endif /* CONFIG_CAN_CALC_BITTIMING */ |
| |
| /* |
| * Checks the validity of the specified bit-timing parameters prop_seg, |
| * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate |
| * prescaler value brp. You can find more information in the header |
| * file linux/can/netlink.h. |
| */ |
| static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| const struct can_bittiming_const *btc = priv->bittiming_const; |
| int tseg1, alltseg; |
| u64 brp64; |
| |
| if (!priv->bittiming_const) |
| return -ENOTSUPP; |
| |
| tseg1 = bt->prop_seg + bt->phase_seg1; |
| if (!bt->sjw) |
| bt->sjw = 1; |
| if (bt->sjw > btc->sjw_max || |
| tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || |
| bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) |
| return -ERANGE; |
| |
| brp64 = (u64)priv->clock.freq * (u64)bt->tq; |
| if (btc->brp_inc > 1) |
| do_div(brp64, btc->brp_inc); |
| brp64 += 500000000UL - 1; |
| do_div(brp64, 1000000000UL); /* the practicable BRP */ |
| if (btc->brp_inc > 1) |
| brp64 *= btc->brp_inc; |
| bt->brp = (u32)brp64; |
| |
| if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) |
| return -EINVAL; |
| |
| alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; |
| bt->bitrate = priv->clock.freq / (bt->brp * alltseg); |
| bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; |
| |
| return 0; |
| } |
| |
| static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| int err; |
| |
| /* Check if the CAN device has bit-timing parameters */ |
| if (priv->bittiming_const) { |
| |
| /* Non-expert mode? Check if the bitrate has been pre-defined */ |
| if (!bt->tq) |
| /* Determine bit-timing parameters */ |
| err = can_calc_bittiming(dev, bt); |
| else |
| /* Check bit-timing params and calculate proper brp */ |
| err = can_fixup_bittiming(dev, bt); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Local echo of CAN messages |
| * |
| * CAN network devices *should* support a local echo functionality |
| * (see Documentation/networking/can.txt). To test the handling of CAN |
| * interfaces that do not support the local echo both driver types are |
| * implemented. In the case that the driver does not support the echo |
| * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core |
| * to perform the echo as a fallback solution. |
| */ |
| static void can_flush_echo_skb(struct net_device *dev) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| struct net_device_stats *stats = &dev->stats; |
| int i; |
| |
| for (i = 0; i < priv->echo_skb_max; i++) { |
| if (priv->echo_skb[i]) { |
| kfree_skb(priv->echo_skb[i]); |
| priv->echo_skb[i] = NULL; |
| stats->tx_dropped++; |
| stats->tx_aborted_errors++; |
| } |
| } |
| } |
| |
| /* |
| * Put the skb on the stack to be looped backed locally lateron |
| * |
| * The function is typically called in the start_xmit function |
| * of the device driver. The driver must protect access to |
| * priv->echo_skb, if necessary. |
| */ |
| void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, |
| unsigned int idx) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| |
| BUG_ON(idx >= priv->echo_skb_max); |
| |
| /* check flag whether this packet has to be looped back */ |
| if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) { |
| kfree_skb(skb); |
| return; |
| } |
| |
| if (!priv->echo_skb[idx]) { |
| struct sock *srcsk = skb->sk; |
| |
| if (atomic_read(&skb->users) != 1) { |
| struct sk_buff *old_skb = skb; |
| |
| skb = skb_clone(old_skb, GFP_ATOMIC); |
| kfree_skb(old_skb); |
| if (!skb) |
| return; |
| } else |
| skb_orphan(skb); |
| |
| skb->sk = srcsk; |
| |
| /* make settings for echo to reduce code in irq context */ |
| skb->protocol = htons(ETH_P_CAN); |
| skb->pkt_type = PACKET_BROADCAST; |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb->dev = dev; |
| |
| /* save this skb for tx interrupt echo handling */ |
| priv->echo_skb[idx] = skb; |
| } else { |
| /* locking problem with netif_stop_queue() ?? */ |
| netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__); |
| kfree_skb(skb); |
| } |
| } |
| EXPORT_SYMBOL_GPL(can_put_echo_skb); |
| |
| /* |
| * Get the skb from the stack and loop it back locally |
| * |
| * The function is typically called when the TX done interrupt |
| * is handled in the device driver. The driver must protect |
| * access to priv->echo_skb, if necessary. |
| */ |
| unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| |
| BUG_ON(idx >= priv->echo_skb_max); |
| |
| if (priv->echo_skb[idx]) { |
| struct sk_buff *skb = priv->echo_skb[idx]; |
| struct can_frame *cf = (struct can_frame *)skb->data; |
| u8 dlc = cf->can_dlc; |
| |
| netif_rx(priv->echo_skb[idx]); |
| priv->echo_skb[idx] = NULL; |
| |
| return dlc; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(can_get_echo_skb); |
| |
| /* |
| * Remove the skb from the stack and free it. |
| * |
| * The function is typically called when TX failed. |
| */ |
| void can_free_echo_skb(struct net_device *dev, unsigned int idx) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| |
| BUG_ON(idx >= priv->echo_skb_max); |
| |
| if (priv->echo_skb[idx]) { |
| kfree_skb(priv->echo_skb[idx]); |
| priv->echo_skb[idx] = NULL; |
| } |
| } |
| EXPORT_SYMBOL_GPL(can_free_echo_skb); |
| |
| /* |
| * CAN device restart for bus-off recovery |
| */ |
| static void can_restart(unsigned long data) |
| { |
| struct net_device *dev = (struct net_device *)data; |
| struct can_priv *priv = netdev_priv(dev); |
| struct net_device_stats *stats = &dev->stats; |
| struct sk_buff *skb; |
| struct can_frame *cf; |
| int err; |
| |
| BUG_ON(netif_carrier_ok(dev)); |
| |
| /* |
| * No synchronization needed because the device is bus-off and |
| * no messages can come in or go out. |
| */ |
| can_flush_echo_skb(dev); |
| |
| /* send restart message upstream */ |
| skb = alloc_can_err_skb(dev, &cf); |
| if (skb == NULL) { |
| err = -ENOMEM; |
| goto restart; |
| } |
| cf->can_id |= CAN_ERR_RESTARTED; |
| |
| netif_rx(skb); |
| |
| stats->rx_packets++; |
| stats->rx_bytes += cf->can_dlc; |
| |
| restart: |
| netdev_dbg(dev, "restarted\n"); |
| priv->can_stats.restarts++; |
| |
| /* Now restart the device */ |
| err = priv->do_set_mode(dev, CAN_MODE_START); |
| |
| netif_carrier_on(dev); |
| if (err) |
| netdev_err(dev, "Error %d during restart", err); |
| } |
| |
| int can_restart_now(struct net_device *dev) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| |
| /* |
| * A manual restart is only permitted if automatic restart is |
| * disabled and the device is in the bus-off state |
| */ |
| if (priv->restart_ms) |
| return -EINVAL; |
| if (priv->state != CAN_STATE_BUS_OFF) |
| return -EBUSY; |
| |
| /* Runs as soon as possible in the timer context */ |
| mod_timer(&priv->restart_timer, jiffies); |
| |
| return 0; |
| } |
| |
| /* |
| * CAN bus-off |
| * |
| * This functions should be called when the device goes bus-off to |
| * tell the netif layer that no more packets can be sent or received. |
| * If enabled, a timer is started to trigger bus-off recovery. |
| */ |
| void can_bus_off(struct net_device *dev) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| |
| netdev_dbg(dev, "bus-off\n"); |
| |
| netif_carrier_off(dev); |
| priv->can_stats.bus_off++; |
| |
| if (priv->restart_ms) |
| mod_timer(&priv->restart_timer, |
| jiffies + (priv->restart_ms * HZ) / 1000); |
| } |
| EXPORT_SYMBOL_GPL(can_bus_off); |
| |
| static void can_setup(struct net_device *dev) |
| { |
| dev->type = ARPHRD_CAN; |
| dev->mtu = CAN_MTU; |
| dev->hard_header_len = 0; |
| dev->addr_len = 0; |
| dev->tx_queue_len = 10; |
| |
| /* New-style flags. */ |
| dev->flags = IFF_NOARP; |
| dev->features = NETIF_F_HW_CSUM; |
| } |
| |
| struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) |
| { |
| struct sk_buff *skb; |
| |
| skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + |
| sizeof(struct can_frame)); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| skb->protocol = htons(ETH_P_CAN); |
| skb->pkt_type = PACKET_BROADCAST; |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| can_skb_reserve(skb); |
| can_skb_prv(skb)->ifindex = dev->ifindex; |
| |
| *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame)); |
| memset(*cf, 0, sizeof(struct can_frame)); |
| |
| return skb; |
| } |
| EXPORT_SYMBOL_GPL(alloc_can_skb); |
| |
| struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) |
| { |
| struct sk_buff *skb; |
| |
| skb = alloc_can_skb(dev, cf); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| (*cf)->can_id = CAN_ERR_FLAG; |
| (*cf)->can_dlc = CAN_ERR_DLC; |
| |
| return skb; |
| } |
| EXPORT_SYMBOL_GPL(alloc_can_err_skb); |
| |
| /* |
| * Allocate and setup space for the CAN network device |
| */ |
| struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max) |
| { |
| struct net_device *dev; |
| struct can_priv *priv; |
| int size; |
| |
| if (echo_skb_max) |
| size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) + |
| echo_skb_max * sizeof(struct sk_buff *); |
| else |
| size = sizeof_priv; |
| |
| dev = alloc_netdev(size, "can%d", can_setup); |
| if (!dev) |
| return NULL; |
| |
| priv = netdev_priv(dev); |
| |
| if (echo_skb_max) { |
| priv->echo_skb_max = echo_skb_max; |
| priv->echo_skb = (void *)priv + |
| ALIGN(sizeof_priv, sizeof(struct sk_buff *)); |
| } |
| |
| priv->state = CAN_STATE_STOPPED; |
| |
| init_timer(&priv->restart_timer); |
| |
| return dev; |
| } |
| EXPORT_SYMBOL_GPL(alloc_candev); |
| |
| /* |
| * Free space of the CAN network device |
| */ |
| void free_candev(struct net_device *dev) |
| { |
| free_netdev(dev); |
| } |
| EXPORT_SYMBOL_GPL(free_candev); |
| |
| /* |
| * Common open function when the device gets opened. |
| * |
| * This function should be called in the open function of the device |
| * driver. |
| */ |
| int open_candev(struct net_device *dev) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| |
| if (!priv->bittiming.tq && !priv->bittiming.bitrate) { |
| netdev_err(dev, "bit-timing not yet defined\n"); |
| return -EINVAL; |
| } |
| |
| /* Switch carrier on if device was stopped while in bus-off state */ |
| if (!netif_carrier_ok(dev)) |
| netif_carrier_on(dev); |
| |
| setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(open_candev); |
| |
| /* |
| * Common close function for cleanup before the device gets closed. |
| * |
| * This function should be called in the close function of the device |
| * driver. |
| */ |
| void close_candev(struct net_device *dev) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| |
| del_timer_sync(&priv->restart_timer); |
| can_flush_echo_skb(dev); |
| } |
| EXPORT_SYMBOL_GPL(close_candev); |
| |
| /* |
| * CAN netlink interface |
| */ |
| static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { |
| [IFLA_CAN_STATE] = { .type = NLA_U32 }, |
| [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, |
| [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, |
| [IFLA_CAN_RESTART] = { .type = NLA_U32 }, |
| [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, |
| [IFLA_CAN_BITTIMING_CONST] |
| = { .len = sizeof(struct can_bittiming_const) }, |
| [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, |
| [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) }, |
| }; |
| |
| static int can_changelink(struct net_device *dev, |
| struct nlattr *tb[], struct nlattr *data[]) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| int err; |
| |
| /* We need synchronization with dev->stop() */ |
| ASSERT_RTNL(); |
| |
| if (data[IFLA_CAN_BITTIMING]) { |
| struct can_bittiming bt; |
| |
| /* Do not allow changing bittiming while running */ |
| if (dev->flags & IFF_UP) |
| return -EBUSY; |
| memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); |
| if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq)) |
| return -EINVAL; |
| err = can_get_bittiming(dev, &bt); |
| if (err) |
| return err; |
| memcpy(&priv->bittiming, &bt, sizeof(bt)); |
| |
| if (priv->do_set_bittiming) { |
| /* Finally, set the bit-timing registers */ |
| err = priv->do_set_bittiming(dev); |
| if (err) |
| return err; |
| } |
| } |
| |
| if (data[IFLA_CAN_CTRLMODE]) { |
| struct can_ctrlmode *cm; |
| |
| /* Do not allow changing controller mode while running */ |
| if (dev->flags & IFF_UP) |
| return -EBUSY; |
| cm = nla_data(data[IFLA_CAN_CTRLMODE]); |
| if (cm->flags & ~priv->ctrlmode_supported) |
| return -EOPNOTSUPP; |
| priv->ctrlmode &= ~cm->mask; |
| priv->ctrlmode |= cm->flags; |
| } |
| |
| if (data[IFLA_CAN_RESTART_MS]) { |
| /* Do not allow changing restart delay while running */ |
| if (dev->flags & IFF_UP) |
| return -EBUSY; |
| priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); |
| } |
| |
| if (data[IFLA_CAN_RESTART]) { |
| /* Do not allow a restart while not running */ |
| if (!(dev->flags & IFF_UP)) |
| return -EINVAL; |
| err = can_restart_now(dev); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static size_t can_get_size(const struct net_device *dev) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| size_t size = 0; |
| |
| size += nla_total_size(sizeof(struct can_bittiming)); /* IFLA_CAN_BITTIMING */ |
| if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */ |
| size += nla_total_size(sizeof(struct can_bittiming_const)); |
| size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */ |
| size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */ |
| size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */ |
| size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */ |
| if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */ |
| size += nla_total_size(sizeof(struct can_berr_counter)); |
| |
| return size; |
| } |
| |
| static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| struct can_ctrlmode cm = {.flags = priv->ctrlmode}; |
| struct can_berr_counter bec; |
| enum can_state state = priv->state; |
| |
| if (priv->do_get_state) |
| priv->do_get_state(dev, &state); |
| if (nla_put(skb, IFLA_CAN_BITTIMING, |
| sizeof(priv->bittiming), &priv->bittiming) || |
| (priv->bittiming_const && |
| nla_put(skb, IFLA_CAN_BITTIMING_CONST, |
| sizeof(*priv->bittiming_const), priv->bittiming_const)) || |
| nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) || |
| nla_put_u32(skb, IFLA_CAN_STATE, state) || |
| nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || |
| nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || |
| (priv->do_get_berr_counter && |
| !priv->do_get_berr_counter(dev, &bec) && |
| nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec))) |
| return -EMSGSIZE; |
| return 0; |
| } |
| |
| static size_t can_get_xstats_size(const struct net_device *dev) |
| { |
| return sizeof(struct can_device_stats); |
| } |
| |
| static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| |
| if (nla_put(skb, IFLA_INFO_XSTATS, |
| sizeof(priv->can_stats), &priv->can_stats)) |
| goto nla_put_failure; |
| return 0; |
| |
| nla_put_failure: |
| return -EMSGSIZE; |
| } |
| |
| static int can_newlink(struct net *src_net, struct net_device *dev, |
| struct nlattr *tb[], struct nlattr *data[]) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static struct rtnl_link_ops can_link_ops __read_mostly = { |
| .kind = "can", |
| .maxtype = IFLA_CAN_MAX, |
| .policy = can_policy, |
| .setup = can_setup, |
| .newlink = can_newlink, |
| .changelink = can_changelink, |
| .get_size = can_get_size, |
| .fill_info = can_fill_info, |
| .get_xstats_size = can_get_xstats_size, |
| .fill_xstats = can_fill_xstats, |
| }; |
| |
| /* |
| * Register the CAN network device |
| */ |
| int register_candev(struct net_device *dev) |
| { |
| dev->rtnl_link_ops = &can_link_ops; |
| return register_netdev(dev); |
| } |
| EXPORT_SYMBOL_GPL(register_candev); |
| |
| /* |
| * Unregister the CAN network device |
| */ |
| void unregister_candev(struct net_device *dev) |
| { |
| unregister_netdev(dev); |
| } |
| EXPORT_SYMBOL_GPL(unregister_candev); |
| |
| /* |
| * Test if a network device is a candev based device |
| * and return the can_priv* if so. |
| */ |
| struct can_priv *safe_candev_priv(struct net_device *dev) |
| { |
| if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops)) |
| return NULL; |
| |
| return netdev_priv(dev); |
| } |
| EXPORT_SYMBOL_GPL(safe_candev_priv); |
| |
| static __init int can_dev_init(void) |
| { |
| int err; |
| |
| can_led_notifier_init(); |
| |
| err = rtnl_link_register(&can_link_ops); |
| if (!err) |
| printk(KERN_INFO MOD_DESC "\n"); |
| |
| return err; |
| } |
| module_init(can_dev_init); |
| |
| static __exit void can_dev_exit(void) |
| { |
| rtnl_link_unregister(&can_link_ops); |
| |
| can_led_notifier_exit(); |
| } |
| module_exit(can_dev_exit); |
| |
| MODULE_ALIAS_RTNL_LINK("can"); |