| /* |
| * Compaq Hot Plug Controller Driver |
| * |
| * Copyright (C) 1995,2001 Compaq Computer Corporation |
| * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) |
| * Copyright (C) 2001 IBM Corp. |
| * |
| * All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or (at |
| * your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for more |
| * details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Send feedback to <greg@kroah.com> |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/wait.h> |
| #include <linux/pci.h> |
| #include <linux/pci_hotplug.h> |
| #include <linux/kthread.h> |
| #include "cpqphp.h" |
| |
| static u32 configure_new_device(struct controller* ctrl, struct pci_func *func, |
| u8 behind_bridge, struct resource_lists *resources); |
| static int configure_new_function(struct controller* ctrl, struct pci_func *func, |
| u8 behind_bridge, struct resource_lists *resources); |
| static void interrupt_event_handler(struct controller *ctrl); |
| |
| |
| static struct task_struct *cpqhp_event_thread; |
| static unsigned long pushbutton_pending; /* = 0 */ |
| |
| /* delay is in jiffies to wait for */ |
| static void long_delay(int delay) |
| { |
| /* |
| * XXX(hch): if someone is bored please convert all callers |
| * to call msleep_interruptible directly. They really want |
| * to specify timeouts in natural units and spend a lot of |
| * effort converting them to jiffies.. |
| */ |
| msleep_interruptible(jiffies_to_msecs(delay)); |
| } |
| |
| |
| /* FIXME: The following line needs to be somewhere else... */ |
| #define WRONG_BUS_FREQUENCY 0x07 |
| static u8 handle_switch_change(u8 change, struct controller * ctrl) |
| { |
| int hp_slot; |
| u8 rc = 0; |
| u16 temp_word; |
| struct pci_func *func; |
| struct event_info *taskInfo; |
| |
| if (!change) |
| return 0; |
| |
| /* Switch Change */ |
| dbg("cpqsbd: Switch interrupt received.\n"); |
| |
| for (hp_slot = 0; hp_slot < 6; hp_slot++) { |
| if (change & (0x1L << hp_slot)) { |
| /* |
| * this one changed. |
| */ |
| func = cpqhp_slot_find(ctrl->bus, |
| (hp_slot + ctrl->slot_device_offset), 0); |
| |
| /* this is the structure that tells the worker thread |
| * what to do |
| */ |
| taskInfo = &(ctrl->event_queue[ctrl->next_event]); |
| ctrl->next_event = (ctrl->next_event + 1) % 10; |
| taskInfo->hp_slot = hp_slot; |
| |
| rc++; |
| |
| temp_word = ctrl->ctrl_int_comp >> 16; |
| func->presence_save = (temp_word >> hp_slot) & 0x01; |
| func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; |
| |
| if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { |
| /* |
| * Switch opened |
| */ |
| |
| func->switch_save = 0; |
| |
| taskInfo->event_type = INT_SWITCH_OPEN; |
| } else { |
| /* |
| * Switch closed |
| */ |
| |
| func->switch_save = 0x10; |
| |
| taskInfo->event_type = INT_SWITCH_CLOSE; |
| } |
| } |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * cpqhp_find_slot - find the struct slot of given device |
| * @ctrl: scan lots of this controller |
| * @device: the device id to find |
| */ |
| static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) |
| { |
| struct slot *slot = ctrl->slot; |
| |
| while (slot && (slot->device != device)) |
| slot = slot->next; |
| |
| return slot; |
| } |
| |
| |
| static u8 handle_presence_change(u16 change, struct controller * ctrl) |
| { |
| int hp_slot; |
| u8 rc = 0; |
| u8 temp_byte; |
| u16 temp_word; |
| struct pci_func *func; |
| struct event_info *taskInfo; |
| struct slot *p_slot; |
| |
| if (!change) |
| return 0; |
| |
| /* |
| * Presence Change |
| */ |
| dbg("cpqsbd: Presence/Notify input change.\n"); |
| dbg(" Changed bits are 0x%4.4x\n", change ); |
| |
| for (hp_slot = 0; hp_slot < 6; hp_slot++) { |
| if (change & (0x0101 << hp_slot)) { |
| /* |
| * this one changed. |
| */ |
| func = cpqhp_slot_find(ctrl->bus, |
| (hp_slot + ctrl->slot_device_offset), 0); |
| |
| taskInfo = &(ctrl->event_queue[ctrl->next_event]); |
| ctrl->next_event = (ctrl->next_event + 1) % 10; |
| taskInfo->hp_slot = hp_slot; |
| |
| rc++; |
| |
| p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); |
| if (!p_slot) |
| return 0; |
| |
| /* If the switch closed, must be a button |
| * If not in button mode, nevermind |
| */ |
| if (func->switch_save && (ctrl->push_button == 1)) { |
| temp_word = ctrl->ctrl_int_comp >> 16; |
| temp_byte = (temp_word >> hp_slot) & 0x01; |
| temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; |
| |
| if (temp_byte != func->presence_save) { |
| /* |
| * button Pressed (doesn't do anything) |
| */ |
| dbg("hp_slot %d button pressed\n", hp_slot); |
| taskInfo->event_type = INT_BUTTON_PRESS; |
| } else { |
| /* |
| * button Released - TAKE ACTION!!!! |
| */ |
| dbg("hp_slot %d button released\n", hp_slot); |
| taskInfo->event_type = INT_BUTTON_RELEASE; |
| |
| /* Cancel if we are still blinking */ |
| if ((p_slot->state == BLINKINGON_STATE) |
| || (p_slot->state == BLINKINGOFF_STATE)) { |
| taskInfo->event_type = INT_BUTTON_CANCEL; |
| dbg("hp_slot %d button cancel\n", hp_slot); |
| } else if ((p_slot->state == POWERON_STATE) |
| || (p_slot->state == POWEROFF_STATE)) { |
| /* info(msg_button_ignore, p_slot->number); */ |
| taskInfo->event_type = INT_BUTTON_IGNORE; |
| dbg("hp_slot %d button ignore\n", hp_slot); |
| } |
| } |
| } else { |
| /* Switch is open, assume a presence change |
| * Save the presence state |
| */ |
| temp_word = ctrl->ctrl_int_comp >> 16; |
| func->presence_save = (temp_word >> hp_slot) & 0x01; |
| func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; |
| |
| if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || |
| (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { |
| /* Present */ |
| taskInfo->event_type = INT_PRESENCE_ON; |
| } else { |
| /* Not Present */ |
| taskInfo->event_type = INT_PRESENCE_OFF; |
| } |
| } |
| } |
| } |
| |
| return rc; |
| } |
| |
| |
| static u8 handle_power_fault(u8 change, struct controller * ctrl) |
| { |
| int hp_slot; |
| u8 rc = 0; |
| struct pci_func *func; |
| struct event_info *taskInfo; |
| |
| if (!change) |
| return 0; |
| |
| /* |
| * power fault |
| */ |
| |
| info("power fault interrupt\n"); |
| |
| for (hp_slot = 0; hp_slot < 6; hp_slot++) { |
| if (change & (0x01 << hp_slot)) { |
| /* |
| * this one changed. |
| */ |
| func = cpqhp_slot_find(ctrl->bus, |
| (hp_slot + ctrl->slot_device_offset), 0); |
| |
| taskInfo = &(ctrl->event_queue[ctrl->next_event]); |
| ctrl->next_event = (ctrl->next_event + 1) % 10; |
| taskInfo->hp_slot = hp_slot; |
| |
| rc++; |
| |
| if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { |
| /* |
| * power fault Cleared |
| */ |
| func->status = 0x00; |
| |
| taskInfo->event_type = INT_POWER_FAULT_CLEAR; |
| } else { |
| /* |
| * power fault |
| */ |
| taskInfo->event_type = INT_POWER_FAULT; |
| |
| if (ctrl->rev < 4) { |
| amber_LED_on (ctrl, hp_slot); |
| green_LED_off (ctrl, hp_slot); |
| set_SOGO (ctrl); |
| |
| /* this is a fatal condition, we want |
| * to crash the machine to protect from |
| * data corruption. simulated_NMI |
| * shouldn't ever return */ |
| /* FIXME |
| simulated_NMI(hp_slot, ctrl); */ |
| |
| /* The following code causes a software |
| * crash just in case simulated_NMI did |
| * return */ |
| /*FIXME |
| panic(msg_power_fault); */ |
| } else { |
| /* set power fault status for this board */ |
| func->status = 0xFF; |
| info("power fault bit %x set\n", hp_slot); |
| } |
| } |
| } |
| } |
| |
| return rc; |
| } |
| |
| |
| /** |
| * sort_by_size - sort nodes on the list by their length, smallest first. |
| * @head: list to sort |
| */ |
| static int sort_by_size(struct pci_resource **head) |
| { |
| struct pci_resource *current_res; |
| struct pci_resource *next_res; |
| int out_of_order = 1; |
| |
| if (!(*head)) |
| return 1; |
| |
| if (!((*head)->next)) |
| return 0; |
| |
| while (out_of_order) { |
| out_of_order = 0; |
| |
| /* Special case for swapping list head */ |
| if (((*head)->next) && |
| ((*head)->length > (*head)->next->length)) { |
| out_of_order++; |
| current_res = *head; |
| *head = (*head)->next; |
| current_res->next = (*head)->next; |
| (*head)->next = current_res; |
| } |
| |
| current_res = *head; |
| |
| while (current_res->next && current_res->next->next) { |
| if (current_res->next->length > current_res->next->next->length) { |
| out_of_order++; |
| next_res = current_res->next; |
| current_res->next = current_res->next->next; |
| current_res = current_res->next; |
| next_res->next = current_res->next; |
| current_res->next = next_res; |
| } else |
| current_res = current_res->next; |
| } |
| } /* End of out_of_order loop */ |
| |
| return 0; |
| } |
| |
| |
| /** |
| * sort_by_max_size - sort nodes on the list by their length, largest first. |
| * @head: list to sort |
| */ |
| static int sort_by_max_size(struct pci_resource **head) |
| { |
| struct pci_resource *current_res; |
| struct pci_resource *next_res; |
| int out_of_order = 1; |
| |
| if (!(*head)) |
| return 1; |
| |
| if (!((*head)->next)) |
| return 0; |
| |
| while (out_of_order) { |
| out_of_order = 0; |
| |
| /* Special case for swapping list head */ |
| if (((*head)->next) && |
| ((*head)->length < (*head)->next->length)) { |
| out_of_order++; |
| current_res = *head; |
| *head = (*head)->next; |
| current_res->next = (*head)->next; |
| (*head)->next = current_res; |
| } |
| |
| current_res = *head; |
| |
| while (current_res->next && current_res->next->next) { |
| if (current_res->next->length < current_res->next->next->length) { |
| out_of_order++; |
| next_res = current_res->next; |
| current_res->next = current_res->next->next; |
| current_res = current_res->next; |
| next_res->next = current_res->next; |
| current_res->next = next_res; |
| } else |
| current_res = current_res->next; |
| } |
| } /* End of out_of_order loop */ |
| |
| return 0; |
| } |
| |
| |
| /** |
| * do_pre_bridge_resource_split - find node of resources that are unused |
| * @head: new list head |
| * @orig_head: original list head |
| * @alignment: max node size (?) |
| */ |
| static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, |
| struct pci_resource **orig_head, u32 alignment) |
| { |
| struct pci_resource *prevnode = NULL; |
| struct pci_resource *node; |
| struct pci_resource *split_node; |
| u32 rc; |
| u32 temp_dword; |
| dbg("do_pre_bridge_resource_split\n"); |
| |
| if (!(*head) || !(*orig_head)) |
| return NULL; |
| |
| rc = cpqhp_resource_sort_and_combine(head); |
| |
| if (rc) |
| return NULL; |
| |
| if ((*head)->base != (*orig_head)->base) |
| return NULL; |
| |
| if ((*head)->length == (*orig_head)->length) |
| return NULL; |
| |
| |
| /* If we got here, there the bridge requires some of the resource, but |
| * we may be able to split some off of the front |
| */ |
| |
| node = *head; |
| |
| if (node->length & (alignment -1)) { |
| /* this one isn't an aligned length, so we'll make a new entry |
| * and split it up. |
| */ |
| split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| |
| temp_dword = (node->length | (alignment-1)) + 1 - alignment; |
| |
| split_node->base = node->base; |
| split_node->length = temp_dword; |
| |
| node->length -= temp_dword; |
| node->base += split_node->length; |
| |
| /* Put it in the list */ |
| *head = split_node; |
| split_node->next = node; |
| } |
| |
| if (node->length < alignment) |
| return NULL; |
| |
| /* Now unlink it */ |
| if (*head == node) { |
| *head = node->next; |
| } else { |
| prevnode = *head; |
| while (prevnode->next != node) |
| prevnode = prevnode->next; |
| |
| prevnode->next = node->next; |
| } |
| node->next = NULL; |
| |
| return node; |
| } |
| |
| |
| /** |
| * do_bridge_resource_split - find one node of resources that aren't in use |
| * @head: list head |
| * @alignment: max node size (?) |
| */ |
| static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) |
| { |
| struct pci_resource *prevnode = NULL; |
| struct pci_resource *node; |
| u32 rc; |
| u32 temp_dword; |
| |
| rc = cpqhp_resource_sort_and_combine(head); |
| |
| if (rc) |
| return NULL; |
| |
| node = *head; |
| |
| while (node->next) { |
| prevnode = node; |
| node = node->next; |
| kfree(prevnode); |
| } |
| |
| if (node->length < alignment) |
| goto error; |
| |
| if (node->base & (alignment - 1)) { |
| /* Short circuit if adjusted size is too small */ |
| temp_dword = (node->base | (alignment-1)) + 1; |
| if ((node->length - (temp_dword - node->base)) < alignment) |
| goto error; |
| |
| node->length -= (temp_dword - node->base); |
| node->base = temp_dword; |
| } |
| |
| if (node->length & (alignment - 1)) |
| /* There's stuff in use after this node */ |
| goto error; |
| |
| return node; |
| error: |
| kfree(node); |
| return NULL; |
| } |
| |
| |
| /** |
| * get_io_resource - find first node of given size not in ISA aliasing window. |
| * @head: list to search |
| * @size: size of node to find, must be a power of two. |
| * |
| * Description: This function sorts the resource list by size and then returns |
| * returns the first node of "size" length that is not in the ISA aliasing |
| * window. If it finds a node larger than "size" it will split it up. |
| */ |
| static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) |
| { |
| struct pci_resource *prevnode; |
| struct pci_resource *node; |
| struct pci_resource *split_node; |
| u32 temp_dword; |
| |
| if (!(*head)) |
| return NULL; |
| |
| if (cpqhp_resource_sort_and_combine(head)) |
| return NULL; |
| |
| if (sort_by_size(head)) |
| return NULL; |
| |
| for (node = *head; node; node = node->next) { |
| if (node->length < size) |
| continue; |
| |
| if (node->base & (size - 1)) { |
| /* this one isn't base aligned properly |
| * so we'll make a new entry and split it up |
| */ |
| temp_dword = (node->base | (size-1)) + 1; |
| |
| /* Short circuit if adjusted size is too small */ |
| if ((node->length - (temp_dword - node->base)) < size) |
| continue; |
| |
| split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| |
| split_node->base = node->base; |
| split_node->length = temp_dword - node->base; |
| node->base = temp_dword; |
| node->length -= split_node->length; |
| |
| /* Put it in the list */ |
| split_node->next = node->next; |
| node->next = split_node; |
| } /* End of non-aligned base */ |
| |
| /* Don't need to check if too small since we already did */ |
| if (node->length > size) { |
| /* this one is longer than we need |
| * so we'll make a new entry and split it up |
| */ |
| split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| |
| split_node->base = node->base + size; |
| split_node->length = node->length - size; |
| node->length = size; |
| |
| /* Put it in the list */ |
| split_node->next = node->next; |
| node->next = split_node; |
| } /* End of too big on top end */ |
| |
| /* For IO make sure it's not in the ISA aliasing space */ |
| if (node->base & 0x300L) |
| continue; |
| |
| /* If we got here, then it is the right size |
| * Now take it out of the list and break |
| */ |
| if (*head == node) { |
| *head = node->next; |
| } else { |
| prevnode = *head; |
| while (prevnode->next != node) |
| prevnode = prevnode->next; |
| |
| prevnode->next = node->next; |
| } |
| node->next = NULL; |
| break; |
| } |
| |
| return node; |
| } |
| |
| |
| /** |
| * get_max_resource - get largest node which has at least the given size. |
| * @head: the list to search the node in |
| * @size: the minimum size of the node to find |
| * |
| * Description: Gets the largest node that is at least "size" big from the |
| * list pointed to by head. It aligns the node on top and bottom |
| * to "size" alignment before returning it. |
| */ |
| static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) |
| { |
| struct pci_resource *max; |
| struct pci_resource *temp; |
| struct pci_resource *split_node; |
| u32 temp_dword; |
| |
| if (cpqhp_resource_sort_and_combine(head)) |
| return NULL; |
| |
| if (sort_by_max_size(head)) |
| return NULL; |
| |
| for (max = *head; max; max = max->next) { |
| /* If not big enough we could probably just bail, |
| * instead we'll continue to the next. |
| */ |
| if (max->length < size) |
| continue; |
| |
| if (max->base & (size - 1)) { |
| /* this one isn't base aligned properly |
| * so we'll make a new entry and split it up |
| */ |
| temp_dword = (max->base | (size-1)) + 1; |
| |
| /* Short circuit if adjusted size is too small */ |
| if ((max->length - (temp_dword - max->base)) < size) |
| continue; |
| |
| split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| |
| split_node->base = max->base; |
| split_node->length = temp_dword - max->base; |
| max->base = temp_dword; |
| max->length -= split_node->length; |
| |
| split_node->next = max->next; |
| max->next = split_node; |
| } |
| |
| if ((max->base + max->length) & (size - 1)) { |
| /* this one isn't end aligned properly at the top |
| * so we'll make a new entry and split it up |
| */ |
| split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| temp_dword = ((max->base + max->length) & ~(size - 1)); |
| split_node->base = temp_dword; |
| split_node->length = max->length + max->base |
| - split_node->base; |
| max->length -= split_node->length; |
| |
| split_node->next = max->next; |
| max->next = split_node; |
| } |
| |
| /* Make sure it didn't shrink too much when we aligned it */ |
| if (max->length < size) |
| continue; |
| |
| /* Now take it out of the list */ |
| temp = *head; |
| if (temp == max) { |
| *head = max->next; |
| } else { |
| while (temp && temp->next != max) { |
| temp = temp->next; |
| } |
| |
| temp->next = max->next; |
| } |
| |
| max->next = NULL; |
| break; |
| } |
| |
| return max; |
| } |
| |
| |
| /** |
| * get_resource - find resource of given size and split up larger ones. |
| * @head: the list to search for resources |
| * @size: the size limit to use |
| * |
| * Description: This function sorts the resource list by size and then |
| * returns the first node of "size" length. If it finds a node |
| * larger than "size" it will split it up. |
| * |
| * size must be a power of two. |
| */ |
| static struct pci_resource *get_resource(struct pci_resource **head, u32 size) |
| { |
| struct pci_resource *prevnode; |
| struct pci_resource *node; |
| struct pci_resource *split_node; |
| u32 temp_dword; |
| |
| if (cpqhp_resource_sort_and_combine(head)) |
| return NULL; |
| |
| if (sort_by_size(head)) |
| return NULL; |
| |
| for (node = *head; node; node = node->next) { |
| dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", |
| __func__, size, node, node->base, node->length); |
| if (node->length < size) |
| continue; |
| |
| if (node->base & (size - 1)) { |
| dbg("%s: not aligned\n", __func__); |
| /* this one isn't base aligned properly |
| * so we'll make a new entry and split it up |
| */ |
| temp_dword = (node->base | (size-1)) + 1; |
| |
| /* Short circuit if adjusted size is too small */ |
| if ((node->length - (temp_dword - node->base)) < size) |
| continue; |
| |
| split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| |
| split_node->base = node->base; |
| split_node->length = temp_dword - node->base; |
| node->base = temp_dword; |
| node->length -= split_node->length; |
| |
| split_node->next = node->next; |
| node->next = split_node; |
| } /* End of non-aligned base */ |
| |
| /* Don't need to check if too small since we already did */ |
| if (node->length > size) { |
| dbg("%s: too big\n", __func__); |
| /* this one is longer than we need |
| * so we'll make a new entry and split it up |
| */ |
| split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| |
| split_node->base = node->base + size; |
| split_node->length = node->length - size; |
| node->length = size; |
| |
| /* Put it in the list */ |
| split_node->next = node->next; |
| node->next = split_node; |
| } /* End of too big on top end */ |
| |
| dbg("%s: got one!!!\n", __func__); |
| /* If we got here, then it is the right size |
| * Now take it out of the list */ |
| if (*head == node) { |
| *head = node->next; |
| } else { |
| prevnode = *head; |
| while (prevnode->next != node) |
| prevnode = prevnode->next; |
| |
| prevnode->next = node->next; |
| } |
| node->next = NULL; |
| break; |
| } |
| return node; |
| } |
| |
| |
| /** |
| * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up |
| * @head: the list to sort and clean up |
| * |
| * Description: Sorts all of the nodes in the list in ascending order by |
| * their base addresses. Also does garbage collection by |
| * combining adjacent nodes. |
| * |
| * Returns %0 if success. |
| */ |
| int cpqhp_resource_sort_and_combine(struct pci_resource **head) |
| { |
| struct pci_resource *node1; |
| struct pci_resource *node2; |
| int out_of_order = 1; |
| |
| dbg("%s: head = %p, *head = %p\n", __func__, head, *head); |
| |
| if (!(*head)) |
| return 1; |
| |
| dbg("*head->next = %p\n",(*head)->next); |
| |
| if (!(*head)->next) |
| return 0; /* only one item on the list, already sorted! */ |
| |
| dbg("*head->base = 0x%x\n",(*head)->base); |
| dbg("*head->next->base = 0x%x\n",(*head)->next->base); |
| while (out_of_order) { |
| out_of_order = 0; |
| |
| /* Special case for swapping list head */ |
| if (((*head)->next) && |
| ((*head)->base > (*head)->next->base)) { |
| node1 = *head; |
| (*head) = (*head)->next; |
| node1->next = (*head)->next; |
| (*head)->next = node1; |
| out_of_order++; |
| } |
| |
| node1 = (*head); |
| |
| while (node1->next && node1->next->next) { |
| if (node1->next->base > node1->next->next->base) { |
| out_of_order++; |
| node2 = node1->next; |
| node1->next = node1->next->next; |
| node1 = node1->next; |
| node2->next = node1->next; |
| node1->next = node2; |
| } else |
| node1 = node1->next; |
| } |
| } /* End of out_of_order loop */ |
| |
| node1 = *head; |
| |
| while (node1 && node1->next) { |
| if ((node1->base + node1->length) == node1->next->base) { |
| /* Combine */ |
| dbg("8..\n"); |
| node1->length += node1->next->length; |
| node2 = node1->next; |
| node1->next = node1->next->next; |
| kfree(node2); |
| } else |
| node1 = node1->next; |
| } |
| |
| return 0; |
| } |
| |
| |
| irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) |
| { |
| struct controller *ctrl = data; |
| u8 schedule_flag = 0; |
| u8 reset; |
| u16 misc; |
| u32 Diff; |
| u32 temp_dword; |
| |
| |
| misc = readw(ctrl->hpc_reg + MISC); |
| /* |
| * Check to see if it was our interrupt |
| */ |
| if (!(misc & 0x000C)) { |
| return IRQ_NONE; |
| } |
| |
| if (misc & 0x0004) { |
| /* |
| * Serial Output interrupt Pending |
| */ |
| |
| /* Clear the interrupt */ |
| misc |= 0x0004; |
| writew(misc, ctrl->hpc_reg + MISC); |
| |
| /* Read to clear posted writes */ |
| misc = readw(ctrl->hpc_reg + MISC); |
| |
| dbg ("%s - waking up\n", __func__); |
| wake_up_interruptible(&ctrl->queue); |
| } |
| |
| if (misc & 0x0008) { |
| /* General-interrupt-input interrupt Pending */ |
| Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; |
| |
| ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); |
| |
| /* Clear the interrupt */ |
| writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); |
| |
| /* Read it back to clear any posted writes */ |
| temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); |
| |
| if (!Diff) |
| /* Clear all interrupts */ |
| writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); |
| |
| schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); |
| schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); |
| schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); |
| } |
| |
| reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); |
| if (reset & 0x40) { |
| /* Bus reset has completed */ |
| reset &= 0xCF; |
| writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); |
| reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); |
| wake_up_interruptible(&ctrl->queue); |
| } |
| |
| if (schedule_flag) { |
| wake_up_process(cpqhp_event_thread); |
| dbg("Waking even thread"); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| |
| /** |
| * cpqhp_slot_create - Creates a node and adds it to the proper bus. |
| * @busnumber: bus where new node is to be located |
| * |
| * Returns pointer to the new node or %NULL if unsuccessful. |
| */ |
| struct pci_func *cpqhp_slot_create(u8 busnumber) |
| { |
| struct pci_func *new_slot; |
| struct pci_func *next; |
| |
| new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); |
| if (new_slot == NULL) |
| return new_slot; |
| |
| new_slot->next = NULL; |
| new_slot->configured = 1; |
| |
| if (cpqhp_slot_list[busnumber] == NULL) { |
| cpqhp_slot_list[busnumber] = new_slot; |
| } else { |
| next = cpqhp_slot_list[busnumber]; |
| while (next->next != NULL) |
| next = next->next; |
| next->next = new_slot; |
| } |
| return new_slot; |
| } |
| |
| |
| /** |
| * slot_remove - Removes a node from the linked list of slots. |
| * @old_slot: slot to remove |
| * |
| * Returns %0 if successful, !0 otherwise. |
| */ |
| static int slot_remove(struct pci_func * old_slot) |
| { |
| struct pci_func *next; |
| |
| if (old_slot == NULL) |
| return 1; |
| |
| next = cpqhp_slot_list[old_slot->bus]; |
| if (next == NULL) |
| return 1; |
| |
| if (next == old_slot) { |
| cpqhp_slot_list[old_slot->bus] = old_slot->next; |
| cpqhp_destroy_board_resources(old_slot); |
| kfree(old_slot); |
| return 0; |
| } |
| |
| while ((next->next != old_slot) && (next->next != NULL)) |
| next = next->next; |
| |
| if (next->next == old_slot) { |
| next->next = old_slot->next; |
| cpqhp_destroy_board_resources(old_slot); |
| kfree(old_slot); |
| return 0; |
| } else |
| return 2; |
| } |
| |
| |
| /** |
| * bridge_slot_remove - Removes a node from the linked list of slots. |
| * @bridge: bridge to remove |
| * |
| * Returns %0 if successful, !0 otherwise. |
| */ |
| static int bridge_slot_remove(struct pci_func *bridge) |
| { |
| u8 subordinateBus, secondaryBus; |
| u8 tempBus; |
| struct pci_func *next; |
| |
| secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; |
| subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; |
| |
| for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { |
| next = cpqhp_slot_list[tempBus]; |
| |
| while (!slot_remove(next)) |
| next = cpqhp_slot_list[tempBus]; |
| } |
| |
| next = cpqhp_slot_list[bridge->bus]; |
| |
| if (next == NULL) |
| return 1; |
| |
| if (next == bridge) { |
| cpqhp_slot_list[bridge->bus] = bridge->next; |
| goto out; |
| } |
| |
| while ((next->next != bridge) && (next->next != NULL)) |
| next = next->next; |
| |
| if (next->next != bridge) |
| return 2; |
| next->next = bridge->next; |
| out: |
| kfree(bridge); |
| return 0; |
| } |
| |
| |
| /** |
| * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed |
| * @bus: bus to find |
| * @device: device to find |
| * @index: is %0 for first function found, %1 for the second... |
| * |
| * Returns pointer to the node if successful, %NULL otherwise. |
| */ |
| struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) |
| { |
| int found = -1; |
| struct pci_func *func; |
| |
| func = cpqhp_slot_list[bus]; |
| |
| if ((func == NULL) || ((func->device == device) && (index == 0))) |
| return func; |
| |
| if (func->device == device) |
| found++; |
| |
| while (func->next != NULL) { |
| func = func->next; |
| |
| if (func->device == device) |
| found++; |
| |
| if (found == index) |
| return func; |
| } |
| |
| return NULL; |
| } |
| |
| |
| /* DJZ: I don't think is_bridge will work as is. |
| * FIXME */ |
| static int is_bridge(struct pci_func * func) |
| { |
| /* Check the header type */ |
| if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) |
| return 1; |
| else |
| return 0; |
| } |
| |
| |
| /** |
| * set_controller_speed - set the frequency and/or mode of a specific controller segment. |
| * @ctrl: controller to change frequency/mode for. |
| * @adapter_speed: the speed of the adapter we want to match. |
| * @hp_slot: the slot number where the adapter is installed. |
| * |
| * Returns %0 if we successfully change frequency and/or mode to match the |
| * adapter speed. |
| */ |
| static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) |
| { |
| struct slot *slot; |
| struct pci_bus *bus = ctrl->pci_bus; |
| u8 reg; |
| u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); |
| u16 reg16; |
| u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); |
| |
| if (bus->cur_bus_speed == adapter_speed) |
| return 0; |
| |
| /* We don't allow freq/mode changes if we find another adapter running |
| * in another slot on this controller |
| */ |
| for(slot = ctrl->slot; slot; slot = slot->next) { |
| if (slot->device == (hp_slot + ctrl->slot_device_offset)) |
| continue; |
| if (!slot->hotplug_slot || !slot->hotplug_slot->info) |
| continue; |
| if (slot->hotplug_slot->info->adapter_status == 0) |
| continue; |
| /* If another adapter is running on the same segment but at a |
| * lower speed/mode, we allow the new adapter to function at |
| * this rate if supported |
| */ |
| if (bus->cur_bus_speed < adapter_speed) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* If the controller doesn't support freq/mode changes and the |
| * controller is running at a higher mode, we bail |
| */ |
| if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability)) |
| return 1; |
| |
| /* But we allow the adapter to run at a lower rate if possible */ |
| if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability)) |
| return 0; |
| |
| /* We try to set the max speed supported by both the adapter and |
| * controller |
| */ |
| if (bus->max_bus_speed < adapter_speed) { |
| if (bus->cur_bus_speed == bus->max_bus_speed) |
| return 0; |
| adapter_speed = bus->max_bus_speed; |
| } |
| |
| writel(0x0L, ctrl->hpc_reg + LED_CONTROL); |
| writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); |
| |
| set_SOGO(ctrl); |
| wait_for_ctrl_irq(ctrl); |
| |
| if (adapter_speed != PCI_SPEED_133MHz_PCIX) |
| reg = 0xF5; |
| else |
| reg = 0xF4; |
| pci_write_config_byte(ctrl->pci_dev, 0x41, reg); |
| |
| reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); |
| reg16 &= ~0x000F; |
| switch(adapter_speed) { |
| case(PCI_SPEED_133MHz_PCIX): |
| reg = 0x75; |
| reg16 |= 0xB; |
| break; |
| case(PCI_SPEED_100MHz_PCIX): |
| reg = 0x74; |
| reg16 |= 0xA; |
| break; |
| case(PCI_SPEED_66MHz_PCIX): |
| reg = 0x73; |
| reg16 |= 0x9; |
| break; |
| case(PCI_SPEED_66MHz): |
| reg = 0x73; |
| reg16 |= 0x1; |
| break; |
| default: /* 33MHz PCI 2.2 */ |
| reg = 0x71; |
| break; |
| |
| } |
| reg16 |= 0xB << 12; |
| writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); |
| |
| mdelay(5); |
| |
| /* Reenable interrupts */ |
| writel(0, ctrl->hpc_reg + INT_MASK); |
| |
| pci_write_config_byte(ctrl->pci_dev, 0x41, reg); |
| |
| /* Restart state machine */ |
| reg = ~0xF; |
| pci_read_config_byte(ctrl->pci_dev, 0x43, ®); |
| pci_write_config_byte(ctrl->pci_dev, 0x43, reg); |
| |
| /* Only if mode change...*/ |
| if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || |
| ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) |
| set_SOGO(ctrl); |
| |
| wait_for_ctrl_irq(ctrl); |
| mdelay(1100); |
| |
| /* Restore LED/Slot state */ |
| writel(leds, ctrl->hpc_reg + LED_CONTROL); |
| writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); |
| |
| set_SOGO(ctrl); |
| wait_for_ctrl_irq(ctrl); |
| |
| bus->cur_bus_speed = adapter_speed; |
| slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| |
| info("Successfully changed frequency/mode for adapter in slot %d\n", |
| slot->number); |
| return 0; |
| } |
| |
| /* the following routines constitute the bulk of the |
| * hotplug controller logic |
| */ |
| |
| |
| /** |
| * board_replaced - Called after a board has been replaced in the system. |
| * @func: PCI device/function information |
| * @ctrl: hotplug controller |
| * |
| * This is only used if we don't have resources for hot add. |
| * Turns power on for the board. |
| * Checks to see if board is the same. |
| * If board is same, reconfigures it. |
| * If board isn't same, turns it back off. |
| */ |
| static u32 board_replaced(struct pci_func *func, struct controller *ctrl) |
| { |
| struct pci_bus *bus = ctrl->pci_bus; |
| u8 hp_slot; |
| u8 temp_byte; |
| u8 adapter_speed; |
| u32 rc = 0; |
| |
| hp_slot = func->device - ctrl->slot_device_offset; |
| |
| /* |
| * The switch is open. |
| */ |
| if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) |
| rc = INTERLOCK_OPEN; |
| /* |
| * The board is already on |
| */ |
| else if (is_slot_enabled (ctrl, hp_slot)) |
| rc = CARD_FUNCTIONING; |
| else { |
| mutex_lock(&ctrl->crit_sect); |
| |
| /* turn on board without attaching to the bus */ |
| enable_slot_power (ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| /* Change bits in slot power register to force another shift out |
| * NOTE: this is to work around the timer bug */ |
| temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); |
| writeb(0x00, ctrl->hpc_reg + SLOT_POWER); |
| writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| adapter_speed = get_adapter_speed(ctrl, hp_slot); |
| if (bus->cur_bus_speed != adapter_speed) |
| if (set_controller_speed(ctrl, adapter_speed, hp_slot)) |
| rc = WRONG_BUS_FREQUENCY; |
| |
| /* turn off board without attaching to the bus */ |
| disable_slot_power (ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| mutex_unlock(&ctrl->crit_sect); |
| |
| if (rc) |
| return rc; |
| |
| mutex_lock(&ctrl->crit_sect); |
| |
| slot_enable (ctrl, hp_slot); |
| green_LED_blink (ctrl, hp_slot); |
| |
| amber_LED_off (ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| mutex_unlock(&ctrl->crit_sect); |
| |
| /* Wait for ~1 second because of hot plug spec */ |
| long_delay(1*HZ); |
| |
| /* Check for a power fault */ |
| if (func->status == 0xFF) { |
| /* power fault occurred, but it was benign */ |
| rc = POWER_FAILURE; |
| func->status = 0; |
| } else |
| rc = cpqhp_valid_replace(ctrl, func); |
| |
| if (!rc) { |
| /* It must be the same board */ |
| |
| rc = cpqhp_configure_board(ctrl, func); |
| |
| /* If configuration fails, turn it off |
| * Get slot won't work for devices behind |
| * bridges, but in this case it will always be |
| * called for the "base" bus/dev/func of an |
| * adapter. |
| */ |
| |
| mutex_lock(&ctrl->crit_sect); |
| |
| amber_LED_on (ctrl, hp_slot); |
| green_LED_off (ctrl, hp_slot); |
| slot_disable (ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| mutex_unlock(&ctrl->crit_sect); |
| |
| if (rc) |
| return rc; |
| else |
| return 1; |
| |
| } else { |
| /* Something is wrong |
| |
| * Get slot won't work for devices behind bridges, but |
| * in this case it will always be called for the "base" |
| * bus/dev/func of an adapter. |
| */ |
| |
| mutex_lock(&ctrl->crit_sect); |
| |
| amber_LED_on (ctrl, hp_slot); |
| green_LED_off (ctrl, hp_slot); |
| slot_disable (ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| mutex_unlock(&ctrl->crit_sect); |
| } |
| |
| } |
| return rc; |
| |
| } |
| |
| |
| /** |
| * board_added - Called after a board has been added to the system. |
| * @func: PCI device/function info |
| * @ctrl: hotplug controller |
| * |
| * Turns power on for the board. |
| * Configures board. |
| */ |
| static u32 board_added(struct pci_func *func, struct controller *ctrl) |
| { |
| u8 hp_slot; |
| u8 temp_byte; |
| u8 adapter_speed; |
| int index; |
| u32 temp_register = 0xFFFFFFFF; |
| u32 rc = 0; |
| struct pci_func *new_slot = NULL; |
| struct pci_bus *bus = ctrl->pci_bus; |
| struct slot *p_slot; |
| struct resource_lists res_lists; |
| |
| hp_slot = func->device - ctrl->slot_device_offset; |
| dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", |
| __func__, func->device, ctrl->slot_device_offset, hp_slot); |
| |
| mutex_lock(&ctrl->crit_sect); |
| |
| /* turn on board without attaching to the bus */ |
| enable_slot_power(ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| /* Change bits in slot power register to force another shift out |
| * NOTE: this is to work around the timer bug |
| */ |
| temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); |
| writeb(0x00, ctrl->hpc_reg + SLOT_POWER); |
| writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| adapter_speed = get_adapter_speed(ctrl, hp_slot); |
| if (bus->cur_bus_speed != adapter_speed) |
| if (set_controller_speed(ctrl, adapter_speed, hp_slot)) |
| rc = WRONG_BUS_FREQUENCY; |
| |
| /* turn off board without attaching to the bus */ |
| disable_slot_power (ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq(ctrl); |
| |
| mutex_unlock(&ctrl->crit_sect); |
| |
| if (rc) |
| return rc; |
| |
| p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| |
| /* turn on board and blink green LED */ |
| |
| dbg("%s: before down\n", __func__); |
| mutex_lock(&ctrl->crit_sect); |
| dbg("%s: after down\n", __func__); |
| |
| dbg("%s: before slot_enable\n", __func__); |
| slot_enable (ctrl, hp_slot); |
| |
| dbg("%s: before green_LED_blink\n", __func__); |
| green_LED_blink (ctrl, hp_slot); |
| |
| dbg("%s: before amber_LED_blink\n", __func__); |
| amber_LED_off (ctrl, hp_slot); |
| |
| dbg("%s: before set_SOGO\n", __func__); |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| dbg("%s: before wait_for_ctrl_irq\n", __func__); |
| wait_for_ctrl_irq (ctrl); |
| dbg("%s: after wait_for_ctrl_irq\n", __func__); |
| |
| dbg("%s: before up\n", __func__); |
| mutex_unlock(&ctrl->crit_sect); |
| dbg("%s: after up\n", __func__); |
| |
| /* Wait for ~1 second because of hot plug spec */ |
| dbg("%s: before long_delay\n", __func__); |
| long_delay(1*HZ); |
| dbg("%s: after long_delay\n", __func__); |
| |
| dbg("%s: func status = %x\n", __func__, func->status); |
| /* Check for a power fault */ |
| if (func->status == 0xFF) { |
| /* power fault occurred, but it was benign */ |
| temp_register = 0xFFFFFFFF; |
| dbg("%s: temp register set to %x by power fault\n", __func__, temp_register); |
| rc = POWER_FAILURE; |
| func->status = 0; |
| } else { |
| /* Get vendor/device ID u32 */ |
| ctrl->pci_bus->number = func->bus; |
| rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); |
| dbg("%s: pci_read_config_dword returns %d\n", __func__, rc); |
| dbg("%s: temp_register is %x\n", __func__, temp_register); |
| |
| if (rc != 0) { |
| /* Something's wrong here */ |
| temp_register = 0xFFFFFFFF; |
| dbg("%s: temp register set to %x by error\n", __func__, temp_register); |
| } |
| /* Preset return code. It will be changed later if things go okay. */ |
| rc = NO_ADAPTER_PRESENT; |
| } |
| |
| /* All F's is an empty slot or an invalid board */ |
| if (temp_register != 0xFFFFFFFF) { |
| res_lists.io_head = ctrl->io_head; |
| res_lists.mem_head = ctrl->mem_head; |
| res_lists.p_mem_head = ctrl->p_mem_head; |
| res_lists.bus_head = ctrl->bus_head; |
| res_lists.irqs = NULL; |
| |
| rc = configure_new_device(ctrl, func, 0, &res_lists); |
| |
| dbg("%s: back from configure_new_device\n", __func__); |
| ctrl->io_head = res_lists.io_head; |
| ctrl->mem_head = res_lists.mem_head; |
| ctrl->p_mem_head = res_lists.p_mem_head; |
| ctrl->bus_head = res_lists.bus_head; |
| |
| cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); |
| cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); |
| cpqhp_resource_sort_and_combine(&(ctrl->io_head)); |
| cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); |
| |
| if (rc) { |
| mutex_lock(&ctrl->crit_sect); |
| |
| amber_LED_on (ctrl, hp_slot); |
| green_LED_off (ctrl, hp_slot); |
| slot_disable (ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| mutex_unlock(&ctrl->crit_sect); |
| return rc; |
| } else { |
| cpqhp_save_slot_config(ctrl, func); |
| } |
| |
| |
| func->status = 0; |
| func->switch_save = 0x10; |
| func->is_a_board = 0x01; |
| |
| /* next, we will instantiate the linux pci_dev structures (with |
| * appropriate driver notification, if already present) */ |
| dbg("%s: configure linux pci_dev structure\n", __func__); |
| index = 0; |
| do { |
| new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); |
| if (new_slot && !new_slot->pci_dev) |
| cpqhp_configure_device(ctrl, new_slot); |
| } while (new_slot); |
| |
| mutex_lock(&ctrl->crit_sect); |
| |
| green_LED_on (ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| mutex_unlock(&ctrl->crit_sect); |
| } else { |
| mutex_lock(&ctrl->crit_sect); |
| |
| amber_LED_on (ctrl, hp_slot); |
| green_LED_off (ctrl, hp_slot); |
| slot_disable (ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| mutex_unlock(&ctrl->crit_sect); |
| |
| return rc; |
| } |
| return 0; |
| } |
| |
| |
| /** |
| * remove_board - Turns off slot and LEDs |
| * @func: PCI device/function info |
| * @replace_flag: whether replacing or adding a new device |
| * @ctrl: target controller |
| */ |
| static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl) |
| { |
| int index; |
| u8 skip = 0; |
| u8 device; |
| u8 hp_slot; |
| u8 temp_byte; |
| u32 rc; |
| struct resource_lists res_lists; |
| struct pci_func *temp_func; |
| |
| if (cpqhp_unconfigure_device(func)) |
| return 1; |
| |
| device = func->device; |
| |
| hp_slot = func->device - ctrl->slot_device_offset; |
| dbg("In %s, hp_slot = %d\n", __func__, hp_slot); |
| |
| /* When we get here, it is safe to change base address registers. |
| * We will attempt to save the base address register lengths */ |
| if (replace_flag || !ctrl->add_support) |
| rc = cpqhp_save_base_addr_length(ctrl, func); |
| else if (!func->bus_head && !func->mem_head && |
| !func->p_mem_head && !func->io_head) { |
| /* Here we check to see if we've saved any of the board's |
| * resources already. If so, we'll skip the attempt to |
| * determine what's being used. */ |
| index = 0; |
| temp_func = cpqhp_slot_find(func->bus, func->device, index++); |
| while (temp_func) { |
| if (temp_func->bus_head || temp_func->mem_head |
| || temp_func->p_mem_head || temp_func->io_head) { |
| skip = 1; |
| break; |
| } |
| temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); |
| } |
| |
| if (!skip) |
| rc = cpqhp_save_used_resources(ctrl, func); |
| } |
| /* Change status to shutdown */ |
| if (func->is_a_board) |
| func->status = 0x01; |
| func->configured = 0; |
| |
| mutex_lock(&ctrl->crit_sect); |
| |
| green_LED_off (ctrl, hp_slot); |
| slot_disable (ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* turn off SERR for slot */ |
| temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); |
| temp_byte &= ~(0x01 << hp_slot); |
| writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| mutex_unlock(&ctrl->crit_sect); |
| |
| if (!replace_flag && ctrl->add_support) { |
| while (func) { |
| res_lists.io_head = ctrl->io_head; |
| res_lists.mem_head = ctrl->mem_head; |
| res_lists.p_mem_head = ctrl->p_mem_head; |
| res_lists.bus_head = ctrl->bus_head; |
| |
| cpqhp_return_board_resources(func, &res_lists); |
| |
| ctrl->io_head = res_lists.io_head; |
| ctrl->mem_head = res_lists.mem_head; |
| ctrl->p_mem_head = res_lists.p_mem_head; |
| ctrl->bus_head = res_lists.bus_head; |
| |
| cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); |
| cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); |
| cpqhp_resource_sort_and_combine(&(ctrl->io_head)); |
| cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); |
| |
| if (is_bridge(func)) { |
| bridge_slot_remove(func); |
| } else |
| slot_remove(func); |
| |
| func = cpqhp_slot_find(ctrl->bus, device, 0); |
| } |
| |
| /* Setup slot structure with entry for empty slot */ |
| func = cpqhp_slot_create(ctrl->bus); |
| |
| if (func == NULL) |
| return 1; |
| |
| func->bus = ctrl->bus; |
| func->device = device; |
| func->function = 0; |
| func->configured = 0; |
| func->switch_save = 0x10; |
| func->is_a_board = 0; |
| func->p_task_event = NULL; |
| } |
| |
| return 0; |
| } |
| |
| static void pushbutton_helper_thread(unsigned long data) |
| { |
| pushbutton_pending = data; |
| wake_up_process(cpqhp_event_thread); |
| } |
| |
| |
| /* this is the main worker thread */ |
| static int event_thread(void* data) |
| { |
| struct controller *ctrl; |
| |
| while (1) { |
| dbg("!!!!event_thread sleeping\n"); |
| set_current_state(TASK_INTERRUPTIBLE); |
| schedule(); |
| |
| if (kthread_should_stop()) |
| break; |
| /* Do stuff here */ |
| if (pushbutton_pending) |
| cpqhp_pushbutton_thread(pushbutton_pending); |
| else |
| for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next) |
| interrupt_event_handler(ctrl); |
| } |
| dbg("event_thread signals exit\n"); |
| return 0; |
| } |
| |
| int cpqhp_event_start_thread(void) |
| { |
| cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); |
| if (IS_ERR(cpqhp_event_thread)) { |
| err ("Can't start up our event thread\n"); |
| return PTR_ERR(cpqhp_event_thread); |
| } |
| |
| return 0; |
| } |
| |
| |
| void cpqhp_event_stop_thread(void) |
| { |
| kthread_stop(cpqhp_event_thread); |
| } |
| |
| |
| static int update_slot_info(struct controller *ctrl, struct slot *slot) |
| { |
| struct hotplug_slot_info *info; |
| int result; |
| |
| info = kmalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| info->power_status = get_slot_enabled(ctrl, slot); |
| info->attention_status = cpq_get_attention_status(ctrl, slot); |
| info->latch_status = cpq_get_latch_status(ctrl, slot); |
| info->adapter_status = get_presence_status(ctrl, slot); |
| result = pci_hp_change_slot_info(slot->hotplug_slot, info); |
| kfree (info); |
| return result; |
| } |
| |
| static void interrupt_event_handler(struct controller *ctrl) |
| { |
| int loop = 0; |
| int change = 1; |
| struct pci_func *func; |
| u8 hp_slot; |
| struct slot *p_slot; |
| |
| while (change) { |
| change = 0; |
| |
| for (loop = 0; loop < 10; loop++) { |
| /* dbg("loop %d\n", loop); */ |
| if (ctrl->event_queue[loop].event_type != 0) { |
| hp_slot = ctrl->event_queue[loop].hp_slot; |
| |
| func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); |
| if (!func) |
| return; |
| |
| p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| if (!p_slot) |
| return; |
| |
| dbg("hp_slot %d, func %p, p_slot %p\n", |
| hp_slot, func, p_slot); |
| |
| if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { |
| dbg("button pressed\n"); |
| } else if (ctrl->event_queue[loop].event_type == |
| INT_BUTTON_CANCEL) { |
| dbg("button cancel\n"); |
| del_timer(&p_slot->task_event); |
| |
| mutex_lock(&ctrl->crit_sect); |
| |
| if (p_slot->state == BLINKINGOFF_STATE) { |
| /* slot is on */ |
| dbg("turn on green LED\n"); |
| green_LED_on (ctrl, hp_slot); |
| } else if (p_slot->state == BLINKINGON_STATE) { |
| /* slot is off */ |
| dbg("turn off green LED\n"); |
| green_LED_off (ctrl, hp_slot); |
| } |
| |
| info(msg_button_cancel, p_slot->number); |
| |
| p_slot->state = STATIC_STATE; |
| |
| amber_LED_off (ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| mutex_unlock(&ctrl->crit_sect); |
| } |
| /*** button Released (No action on press...) */ |
| else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { |
| dbg("button release\n"); |
| |
| if (is_slot_enabled (ctrl, hp_slot)) { |
| dbg("slot is on\n"); |
| p_slot->state = BLINKINGOFF_STATE; |
| info(msg_button_off, p_slot->number); |
| } else { |
| dbg("slot is off\n"); |
| p_slot->state = BLINKINGON_STATE; |
| info(msg_button_on, p_slot->number); |
| } |
| mutex_lock(&ctrl->crit_sect); |
| |
| dbg("blink green LED and turn off amber\n"); |
| |
| amber_LED_off (ctrl, hp_slot); |
| green_LED_blink (ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| |
| mutex_unlock(&ctrl->crit_sect); |
| init_timer(&p_slot->task_event); |
| p_slot->hp_slot = hp_slot; |
| p_slot->ctrl = ctrl; |
| /* p_slot->physical_slot = physical_slot; */ |
| p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ |
| p_slot->task_event.function = pushbutton_helper_thread; |
| p_slot->task_event.data = (u32) p_slot; |
| |
| dbg("add_timer p_slot = %p\n", p_slot); |
| add_timer(&p_slot->task_event); |
| } |
| /***********POWER FAULT */ |
| else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { |
| dbg("power fault\n"); |
| } else { |
| /* refresh notification */ |
| update_slot_info(ctrl, p_slot); |
| } |
| |
| ctrl->event_queue[loop].event_type = 0; |
| |
| change = 1; |
| } |
| } /* End of FOR loop */ |
| } |
| |
| return; |
| } |
| |
| |
| /** |
| * cpqhp_pushbutton_thread - handle pushbutton events |
| * @slot: target slot (struct) |
| * |
| * Scheduled procedure to handle blocking stuff for the pushbuttons. |
| * Handles all pending events and exits. |
| */ |
| void cpqhp_pushbutton_thread(unsigned long slot) |
| { |
| u8 hp_slot; |
| u8 device; |
| struct pci_func *func; |
| struct slot *p_slot = (struct slot *) slot; |
| struct controller *ctrl = (struct controller *) p_slot->ctrl; |
| |
| pushbutton_pending = 0; |
| hp_slot = p_slot->hp_slot; |
| |
| device = p_slot->device; |
| |
| if (is_slot_enabled(ctrl, hp_slot)) { |
| p_slot->state = POWEROFF_STATE; |
| /* power Down board */ |
| func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); |
| dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); |
| if (!func) { |
| dbg("Error! func NULL in %s\n", __func__); |
| return ; |
| } |
| |
| if (cpqhp_process_SS(ctrl, func) != 0) { |
| amber_LED_on(ctrl, hp_slot); |
| green_LED_on(ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq(ctrl); |
| } |
| |
| p_slot->state = STATIC_STATE; |
| } else { |
| p_slot->state = POWERON_STATE; |
| /* slot is off */ |
| |
| func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); |
| dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); |
| if (!func) { |
| dbg("Error! func NULL in %s\n", __func__); |
| return ; |
| } |
| |
| if (ctrl != NULL) { |
| if (cpqhp_process_SI(ctrl, func) != 0) { |
| amber_LED_on(ctrl, hp_slot); |
| green_LED_off(ctrl, hp_slot); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| } |
| } |
| |
| p_slot->state = STATIC_STATE; |
| } |
| |
| return; |
| } |
| |
| |
| int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) |
| { |
| u8 device, hp_slot; |
| u16 temp_word; |
| u32 tempdword; |
| int rc; |
| struct slot* p_slot; |
| int physical_slot = 0; |
| |
| tempdword = 0; |
| |
| device = func->device; |
| hp_slot = device - ctrl->slot_device_offset; |
| p_slot = cpqhp_find_slot(ctrl, device); |
| if (p_slot) |
| physical_slot = p_slot->number; |
| |
| /* Check to see if the interlock is closed */ |
| tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); |
| |
| if (tempdword & (0x01 << hp_slot)) { |
| return 1; |
| } |
| |
| if (func->is_a_board) { |
| rc = board_replaced(func, ctrl); |
| } else { |
| /* add board */ |
| slot_remove(func); |
| |
| func = cpqhp_slot_create(ctrl->bus); |
| if (func == NULL) |
| return 1; |
| |
| func->bus = ctrl->bus; |
| func->device = device; |
| func->function = 0; |
| func->configured = 0; |
| func->is_a_board = 1; |
| |
| /* We have to save the presence info for these slots */ |
| temp_word = ctrl->ctrl_int_comp >> 16; |
| func->presence_save = (temp_word >> hp_slot) & 0x01; |
| func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; |
| |
| if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { |
| func->switch_save = 0; |
| } else { |
| func->switch_save = 0x10; |
| } |
| |
| rc = board_added(func, ctrl); |
| if (rc) { |
| if (is_bridge(func)) { |
| bridge_slot_remove(func); |
| } else |
| slot_remove(func); |
| |
| /* Setup slot structure with entry for empty slot */ |
| func = cpqhp_slot_create(ctrl->bus); |
| |
| if (func == NULL) |
| return 1; |
| |
| func->bus = ctrl->bus; |
| func->device = device; |
| func->function = 0; |
| func->configured = 0; |
| func->is_a_board = 0; |
| |
| /* We have to save the presence info for these slots */ |
| temp_word = ctrl->ctrl_int_comp >> 16; |
| func->presence_save = (temp_word >> hp_slot) & 0x01; |
| func->presence_save |= |
| (temp_word >> (hp_slot + 7)) & 0x02; |
| |
| if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { |
| func->switch_save = 0; |
| } else { |
| func->switch_save = 0x10; |
| } |
| } |
| } |
| |
| if (rc) { |
| dbg("%s: rc = %d\n", __func__, rc); |
| } |
| |
| if (p_slot) |
| update_slot_info(ctrl, p_slot); |
| |
| return rc; |
| } |
| |
| |
| int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) |
| { |
| u8 device, class_code, header_type, BCR; |
| u8 index = 0; |
| u8 replace_flag; |
| u32 rc = 0; |
| unsigned int devfn; |
| struct slot* p_slot; |
| struct pci_bus *pci_bus = ctrl->pci_bus; |
| int physical_slot=0; |
| |
| device = func->device; |
| func = cpqhp_slot_find(ctrl->bus, device, index++); |
| p_slot = cpqhp_find_slot(ctrl, device); |
| if (p_slot) { |
| physical_slot = p_slot->number; |
| } |
| |
| /* Make sure there are no video controllers here */ |
| while (func && !rc) { |
| pci_bus->number = func->bus; |
| devfn = PCI_DEVFN(func->device, func->function); |
| |
| /* Check the Class Code */ |
| rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); |
| if (rc) |
| return rc; |
| |
| if (class_code == PCI_BASE_CLASS_DISPLAY) { |
| /* Display/Video adapter (not supported) */ |
| rc = REMOVE_NOT_SUPPORTED; |
| } else { |
| /* See if it's a bridge */ |
| rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); |
| if (rc) |
| return rc; |
| |
| /* If it's a bridge, check the VGA Enable bit */ |
| if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { |
| rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); |
| if (rc) |
| return rc; |
| |
| /* If the VGA Enable bit is set, remove isn't |
| * supported */ |
| if (BCR & PCI_BRIDGE_CTL_VGA) |
| rc = REMOVE_NOT_SUPPORTED; |
| } |
| } |
| |
| func = cpqhp_slot_find(ctrl->bus, device, index++); |
| } |
| |
| func = cpqhp_slot_find(ctrl->bus, device, 0); |
| if ((func != NULL) && !rc) { |
| /* FIXME: Replace flag should be passed into process_SS */ |
| replace_flag = !(ctrl->add_support); |
| rc = remove_board(func, replace_flag, ctrl); |
| } else if (!rc) { |
| rc = 1; |
| } |
| |
| if (p_slot) |
| update_slot_info(ctrl, p_slot); |
| |
| return rc; |
| } |
| |
| /** |
| * switch_leds - switch the leds, go from one site to the other. |
| * @ctrl: controller to use |
| * @num_of_slots: number of slots to use |
| * @work_LED: LED control value |
| * @direction: 1 to start from the left side, 0 to start right. |
| */ |
| static void switch_leds(struct controller *ctrl, const int num_of_slots, |
| u32 *work_LED, const int direction) |
| { |
| int loop; |
| |
| for (loop = 0; loop < num_of_slots; loop++) { |
| if (direction) |
| *work_LED = *work_LED >> 1; |
| else |
| *work_LED = *work_LED << 1; |
| writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOGO interrupt */ |
| wait_for_ctrl_irq(ctrl); |
| |
| /* Get ready for next iteration */ |
| long_delay((2*HZ)/10); |
| } |
| } |
| |
| /** |
| * cpqhp_hardware_test - runs hardware tests |
| * @ctrl: target controller |
| * @test_num: the number written to the "test" file in sysfs. |
| * |
| * For hot plug ctrl folks to play with. |
| */ |
| int cpqhp_hardware_test(struct controller *ctrl, int test_num) |
| { |
| u32 save_LED; |
| u32 work_LED; |
| int loop; |
| int num_of_slots; |
| |
| num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; |
| |
| switch (test_num) { |
| case 1: |
| /* Do stuff here! */ |
| |
| /* Do that funky LED thing */ |
| /* so we can restore them later */ |
| save_LED = readl(ctrl->hpc_reg + LED_CONTROL); |
| work_LED = 0x01010101; |
| switch_leds(ctrl, num_of_slots, &work_LED, 0); |
| switch_leds(ctrl, num_of_slots, &work_LED, 1); |
| switch_leds(ctrl, num_of_slots, &work_LED, 0); |
| switch_leds(ctrl, num_of_slots, &work_LED, 1); |
| |
| work_LED = 0x01010000; |
| writel(work_LED, ctrl->hpc_reg + LED_CONTROL); |
| switch_leds(ctrl, num_of_slots, &work_LED, 0); |
| switch_leds(ctrl, num_of_slots, &work_LED, 1); |
| work_LED = 0x00000101; |
| writel(work_LED, ctrl->hpc_reg + LED_CONTROL); |
| switch_leds(ctrl, num_of_slots, &work_LED, 0); |
| switch_leds(ctrl, num_of_slots, &work_LED, 1); |
| |
| work_LED = 0x01010000; |
| writel(work_LED, ctrl->hpc_reg + LED_CONTROL); |
| for (loop = 0; loop < num_of_slots; loop++) { |
| set_SOGO(ctrl); |
| |
| /* Wait for SOGO interrupt */ |
| wait_for_ctrl_irq (ctrl); |
| |
| /* Get ready for next iteration */ |
| long_delay((3*HZ)/10); |
| work_LED = work_LED >> 16; |
| writel(work_LED, ctrl->hpc_reg + LED_CONTROL); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOGO interrupt */ |
| wait_for_ctrl_irq (ctrl); |
| |
| /* Get ready for next iteration */ |
| long_delay((3*HZ)/10); |
| work_LED = work_LED << 16; |
| writel(work_LED, ctrl->hpc_reg + LED_CONTROL); |
| work_LED = work_LED << 1; |
| writel(work_LED, ctrl->hpc_reg + LED_CONTROL); |
| } |
| |
| /* put it back the way it was */ |
| writel(save_LED, ctrl->hpc_reg + LED_CONTROL); |
| |
| set_SOGO(ctrl); |
| |
| /* Wait for SOBS to be unset */ |
| wait_for_ctrl_irq (ctrl); |
| break; |
| case 2: |
| /* Do other stuff here! */ |
| break; |
| case 3: |
| /* and more... */ |
| break; |
| } |
| return 0; |
| } |
| |
| |
| /** |
| * configure_new_device - Configures the PCI header information of one board. |
| * @ctrl: pointer to controller structure |
| * @func: pointer to function structure |
| * @behind_bridge: 1 if this is a recursive call, 0 if not |
| * @resources: pointer to set of resource lists |
| * |
| * Returns 0 if success. |
| */ |
| static u32 configure_new_device(struct controller * ctrl, struct pci_func * func, |
| u8 behind_bridge, struct resource_lists * resources) |
| { |
| u8 temp_byte, function, max_functions, stop_it; |
| int rc; |
| u32 ID; |
| struct pci_func *new_slot; |
| int index; |
| |
| new_slot = func; |
| |
| dbg("%s\n", __func__); |
| /* Check for Multi-function device */ |
| ctrl->pci_bus->number = func->bus; |
| rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); |
| if (rc) { |
| dbg("%s: rc = %d\n", __func__, rc); |
| return rc; |
| } |
| |
| if (temp_byte & 0x80) /* Multi-function device */ |
| max_functions = 8; |
| else |
| max_functions = 1; |
| |
| function = 0; |
| |
| do { |
| rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); |
| |
| if (rc) { |
| dbg("configure_new_function failed %d\n",rc); |
| index = 0; |
| |
| while (new_slot) { |
| new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); |
| |
| if (new_slot) |
| cpqhp_return_board_resources(new_slot, resources); |
| } |
| |
| return rc; |
| } |
| |
| function++; |
| |
| stop_it = 0; |
| |
| /* The following loop skips to the next present function |
| * and creates a board structure */ |
| |
| while ((function < max_functions) && (!stop_it)) { |
| pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); |
| |
| if (ID == 0xFFFFFFFF) { |
| function++; |
| } else { |
| /* Setup slot structure. */ |
| new_slot = cpqhp_slot_create(func->bus); |
| |
| if (new_slot == NULL) |
| return 1; |
| |
| new_slot->bus = func->bus; |
| new_slot->device = func->device; |
| new_slot->function = function; |
| new_slot->is_a_board = 1; |
| new_slot->status = 0; |
| |
| stop_it++; |
| } |
| } |
| |
| } while (function < max_functions); |
| dbg("returning from configure_new_device\n"); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Configuration logic that involves the hotplug data structures and |
| * their bookkeeping |
| */ |
| |
| |
| /** |
| * configure_new_function - Configures the PCI header information of one device |
| * @ctrl: pointer to controller structure |
| * @func: pointer to function structure |
| * @behind_bridge: 1 if this is a recursive call, 0 if not |
| * @resources: pointer to set of resource lists |
| * |
| * Calls itself recursively for bridged devices. |
| * Returns 0 if success. |
| */ |
| static int configure_new_function(struct controller *ctrl, struct pci_func *func, |
| u8 behind_bridge, |
| struct resource_lists *resources) |
| { |
| int cloop; |
| u8 IRQ = 0; |
| u8 temp_byte; |
| u8 device; |
| u8 class_code; |
| u16 command; |
| u16 temp_word; |
| u32 temp_dword; |
| u32 rc; |
| u32 temp_register; |
| u32 base; |
| u32 ID; |
| unsigned int devfn; |
| struct pci_resource *mem_node; |
| struct pci_resource *p_mem_node; |
| struct pci_resource *io_node; |
| struct pci_resource *bus_node; |
| struct pci_resource *hold_mem_node; |
| struct pci_resource *hold_p_mem_node; |
| struct pci_resource *hold_IO_node; |
| struct pci_resource *hold_bus_node; |
| struct irq_mapping irqs; |
| struct pci_func *new_slot; |
| struct pci_bus *pci_bus; |
| struct resource_lists temp_resources; |
| |
| pci_bus = ctrl->pci_bus; |
| pci_bus->number = func->bus; |
| devfn = PCI_DEVFN(func->device, func->function); |
| |
| /* Check for Bridge */ |
| rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); |
| if (rc) |
| return rc; |
| |
| if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { |
| /* set Primary bus */ |
| dbg("set Primary bus = %d\n", func->bus); |
| rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); |
| if (rc) |
| return rc; |
| |
| /* find range of buses to use */ |
| dbg("find ranges of buses to use\n"); |
| bus_node = get_max_resource(&(resources->bus_head), 1); |
| |
| /* If we don't have any buses to allocate, we can't continue */ |
| if (!bus_node) |
| return -ENOMEM; |
| |
| /* set Secondary bus */ |
| temp_byte = bus_node->base; |
| dbg("set Secondary bus = %d\n", bus_node->base); |
| rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); |
| if (rc) |
| return rc; |
| |
| /* set subordinate bus */ |
| temp_byte = bus_node->base + bus_node->length - 1; |
| dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); |
| rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); |
| if (rc) |
| return rc; |
| |
| /* set subordinate Latency Timer and base Latency Timer */ |
| temp_byte = 0x40; |
| rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); |
| if (rc) |
| return rc; |
| rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); |
| if (rc) |
| return rc; |
| |
| /* set Cache Line size */ |
| temp_byte = 0x08; |
| rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); |
| if (rc) |
| return rc; |
| |
| /* Setup the IO, memory, and prefetchable windows */ |
| io_node = get_max_resource(&(resources->io_head), 0x1000); |
| if (!io_node) |
| return -ENOMEM; |
| mem_node = get_max_resource(&(resources->mem_head), 0x100000); |
| if (!mem_node) |
| return -ENOMEM; |
| p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); |
| if (!p_mem_node) |
| return -ENOMEM; |
| dbg("Setup the IO, memory, and prefetchable windows\n"); |
| dbg("io_node\n"); |
| dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, |
| io_node->length, io_node->next); |
| dbg("mem_node\n"); |
| dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, |
| mem_node->length, mem_node->next); |
| dbg("p_mem_node\n"); |
| dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, |
| p_mem_node->length, p_mem_node->next); |
| |
| /* set up the IRQ info */ |
| if (!resources->irqs) { |
| irqs.barber_pole = 0; |
| irqs.interrupt[0] = 0; |
| irqs.interrupt[1] = 0; |
| irqs.interrupt[2] = 0; |
| irqs.interrupt[3] = 0; |
| irqs.valid_INT = 0; |
| } else { |
| irqs.barber_pole = resources->irqs->barber_pole; |
| irqs.interrupt[0] = resources->irqs->interrupt[0]; |
| irqs.interrupt[1] = resources->irqs->interrupt[1]; |
| irqs.interrupt[2] = resources->irqs->interrupt[2]; |
| irqs.interrupt[3] = resources->irqs->interrupt[3]; |
| irqs.valid_INT = resources->irqs->valid_INT; |
| } |
| |
| /* set up resource lists that are now aligned on top and bottom |
| * for anything behind the bridge. */ |
| temp_resources.bus_head = bus_node; |
| temp_resources.io_head = io_node; |
| temp_resources.mem_head = mem_node; |
| temp_resources.p_mem_head = p_mem_node; |
| temp_resources.irqs = &irqs; |
| |
| /* Make copies of the nodes we are going to pass down so that |
| * if there is a problem,we can just use these to free resources |
| */ |
| hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); |
| hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); |
| hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); |
| hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); |
| |
| if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { |
| kfree(hold_bus_node); |
| kfree(hold_IO_node); |
| kfree(hold_mem_node); |
| kfree(hold_p_mem_node); |
| |
| return 1; |
| } |
| |
| memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); |
| |
| bus_node->base += 1; |
| bus_node->length -= 1; |
| bus_node->next = NULL; |
| |
| /* If we have IO resources copy them and fill in the bridge's |
| * IO range registers */ |
| memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); |
| io_node->next = NULL; |
| |
| /* set IO base and Limit registers */ |
| temp_byte = io_node->base >> 8; |
| rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); |
| |
| temp_byte = (io_node->base + io_node->length - 1) >> 8; |
| rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); |
| |
| /* Copy the memory resources and fill in the bridge's memory |
| * range registers. |
| */ |
| memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); |
| mem_node->next = NULL; |
| |
| /* set Mem base and Limit registers */ |
| temp_word = mem_node->base >> 16; |
| rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); |
| |
| temp_word = (mem_node->base + mem_node->length - 1) >> 16; |
| rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); |
| |
| memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); |
| p_mem_node->next = NULL; |
| |
| /* set Pre Mem base and Limit registers */ |
| temp_word = p_mem_node->base >> 16; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); |
| |
| temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); |
| |
| /* Adjust this to compensate for extra adjustment in first loop |
| */ |
| irqs.barber_pole--; |
| |
| rc = 0; |
| |
| /* Here we actually find the devices and configure them */ |
| for (device = 0; (device <= 0x1F) && !rc; device++) { |
| irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; |
| |
| ID = 0xFFFFFFFF; |
| pci_bus->number = hold_bus_node->base; |
| pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); |
| pci_bus->number = func->bus; |
| |
| if (ID != 0xFFFFFFFF) { /* device present */ |
| /* Setup slot structure. */ |
| new_slot = cpqhp_slot_create(hold_bus_node->base); |
| |
| if (new_slot == NULL) { |
| rc = -ENOMEM; |
| continue; |
| } |
| |
| new_slot->bus = hold_bus_node->base; |
| new_slot->device = device; |
| new_slot->function = 0; |
| new_slot->is_a_board = 1; |
| new_slot->status = 0; |
| |
| rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); |
| dbg("configure_new_device rc=0x%x\n",rc); |
| } /* End of IF (device in slot?) */ |
| } /* End of FOR loop */ |
| |
| if (rc) |
| goto free_and_out; |
| /* save the interrupt routing information */ |
| if (resources->irqs) { |
| resources->irqs->interrupt[0] = irqs.interrupt[0]; |
| resources->irqs->interrupt[1] = irqs.interrupt[1]; |
| resources->irqs->interrupt[2] = irqs.interrupt[2]; |
| resources->irqs->interrupt[3] = irqs.interrupt[3]; |
| resources->irqs->valid_INT = irqs.valid_INT; |
| } else if (!behind_bridge) { |
| /* We need to hook up the interrupts here */ |
| for (cloop = 0; cloop < 4; cloop++) { |
| if (irqs.valid_INT & (0x01 << cloop)) { |
| rc = cpqhp_set_irq(func->bus, func->device, |
| cloop + 1, irqs.interrupt[cloop]); |
| if (rc) |
| goto free_and_out; |
| } |
| } /* end of for loop */ |
| } |
| /* Return unused bus resources |
| * First use the temporary node to store information for |
| * the board */ |
| if (bus_node && temp_resources.bus_head) { |
| hold_bus_node->length = bus_node->base - hold_bus_node->base; |
| |
| hold_bus_node->next = func->bus_head; |
| func->bus_head = hold_bus_node; |
| |
| temp_byte = temp_resources.bus_head->base - 1; |
| |
| /* set subordinate bus */ |
| rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); |
| |
| if (temp_resources.bus_head->length == 0) { |
| kfree(temp_resources.bus_head); |
| temp_resources.bus_head = NULL; |
| } else { |
| return_resource(&(resources->bus_head), temp_resources.bus_head); |
| } |
| } |
| |
| /* If we have IO space available and there is some left, |
| * return the unused portion */ |
| if (hold_IO_node && temp_resources.io_head) { |
| io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), |
| &hold_IO_node, 0x1000); |
| |
| /* Check if we were able to split something off */ |
| if (io_node) { |
| hold_IO_node->base = io_node->base + io_node->length; |
| |
| temp_byte = (hold_IO_node->base) >> 8; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte); |
| |
| return_resource(&(resources->io_head), io_node); |
| } |
| |
| io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); |
| |
| /* Check if we were able to split something off */ |
| if (io_node) { |
| /* First use the temporary node to store |
| * information for the board */ |
| hold_IO_node->length = io_node->base - hold_IO_node->base; |
| |
| /* If we used any, add it to the board's list */ |
| if (hold_IO_node->length) { |
| hold_IO_node->next = func->io_head; |
| func->io_head = hold_IO_node; |
| |
| temp_byte = (io_node->base - 1) >> 8; |
| rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); |
| |
| return_resource(&(resources->io_head), io_node); |
| } else { |
| /* it doesn't need any IO */ |
| temp_word = 0x0000; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word); |
| |
| return_resource(&(resources->io_head), io_node); |
| kfree(hold_IO_node); |
| } |
| } else { |
| /* it used most of the range */ |
| hold_IO_node->next = func->io_head; |
| func->io_head = hold_IO_node; |
| } |
| } else if (hold_IO_node) { |
| /* it used the whole range */ |
| hold_IO_node->next = func->io_head; |
| func->io_head = hold_IO_node; |
| } |
| /* If we have memory space available and there is some left, |
| * return the unused portion */ |
| if (hold_mem_node && temp_resources.mem_head) { |
| mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), |
| &hold_mem_node, 0x100000); |
| |
| /* Check if we were able to split something off */ |
| if (mem_node) { |
| hold_mem_node->base = mem_node->base + mem_node->length; |
| |
| temp_word = (hold_mem_node->base) >> 16; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); |
| |
| return_resource(&(resources->mem_head), mem_node); |
| } |
| |
| mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); |
| |
| /* Check if we were able to split something off */ |
| if (mem_node) { |
| /* First use the temporary node to store |
| * information for the board */ |
| hold_mem_node->length = mem_node->base - hold_mem_node->base; |
| |
| if (hold_mem_node->length) { |
| hold_mem_node->next = func->mem_head; |
| func->mem_head = hold_mem_node; |
| |
| /* configure end address */ |
| temp_word = (mem_node->base - 1) >> 16; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); |
| |
| /* Return unused resources to the pool */ |
| return_resource(&(resources->mem_head), mem_node); |
| } else { |
| /* it doesn't need any Mem */ |
| temp_word = 0x0000; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); |
| |
| return_resource(&(resources->mem_head), mem_node); |
| kfree(hold_mem_node); |
| } |
| } else { |
| /* it used most of the range */ |
| hold_mem_node->next = func->mem_head; |
| func->mem_head = hold_mem_node; |
| } |
| } else if (hold_mem_node) { |
| /* it used the whole range */ |
| hold_mem_node->next = func->mem_head; |
| func->mem_head = hold_mem_node; |
| } |
| /* If we have prefetchable memory space available and there |
| * is some left at the end, return the unused portion */ |
| if (temp_resources.p_mem_head) { |
| p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), |
| &hold_p_mem_node, 0x100000); |
| |
| /* Check if we were able to split something off */ |
| if (p_mem_node) { |
| hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; |
| |
| temp_word = (hold_p_mem_node->base) >> 16; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); |
| |
| return_resource(&(resources->p_mem_head), p_mem_node); |
| } |
| |
| p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); |
| |
| /* Check if we were able to split something off */ |
| if (p_mem_node) { |
| /* First use the temporary node to store |
| * information for the board */ |
| hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; |
| |
| /* If we used any, add it to the board's list */ |
| if (hold_p_mem_node->length) { |
| hold_p_mem_node->next = func->p_mem_head; |
| func->p_mem_head = hold_p_mem_node; |
| |
| temp_word = (p_mem_node->base - 1) >> 16; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); |
| |
| return_resource(&(resources->p_mem_head), p_mem_node); |
| } else { |
| /* it doesn't need any PMem */ |
| temp_word = 0x0000; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); |
| |
| return_resource(&(resources->p_mem_head), p_mem_node); |
| kfree(hold_p_mem_node); |
| } |
| } else { |
| /* it used the most of the range */ |
| hold_p_mem_node->next = func->p_mem_head; |
| func->p_mem_head = hold_p_mem_node; |
| } |
| } else if (hold_p_mem_node) { |
| /* it used the whole range */ |
| hold_p_mem_node->next = func->p_mem_head; |
| func->p_mem_head = hold_p_mem_node; |
| } |
| /* We should be configuring an IRQ and the bridge's base address |
| * registers if it needs them. Although we have never seen such |
| * a device */ |
| |
| /* enable card */ |
| command = 0x0157; /* = PCI_COMMAND_IO | |
| * PCI_COMMAND_MEMORY | |
| * PCI_COMMAND_MASTER | |
| * PCI_COMMAND_INVALIDATE | |
| * PCI_COMMAND_PARITY | |
| * PCI_COMMAND_SERR */ |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command); |
| |
| /* set Bridge Control Register */ |
| command = 0x07; /* = PCI_BRIDGE_CTL_PARITY | |
| * PCI_BRIDGE_CTL_SERR | |
| * PCI_BRIDGE_CTL_NO_ISA */ |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command); |
| } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { |
| /* Standard device */ |
| rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); |
| |
| if (class_code == PCI_BASE_CLASS_DISPLAY) { |
| /* Display (video) adapter (not supported) */ |
| return DEVICE_TYPE_NOT_SUPPORTED; |
| } |
| /* Figure out IO and memory needs */ |
| for (cloop = 0x10; cloop <= 0x24; cloop += 4) { |
| temp_register = 0xFFFFFFFF; |
| |
| dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); |
| rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); |
| |
| rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register); |
| dbg("CND: base = 0x%x\n", temp_register); |
| |
| if (temp_register) { /* If this register is implemented */ |
| if ((temp_register & 0x03L) == 0x01) { |
| /* Map IO */ |
| |
| /* set base = amount of IO space */ |
| base = temp_register & 0xFFFFFFFC; |
| base = ~base + 1; |
| |
| dbg("CND: length = 0x%x\n", base); |
| io_node = get_io_resource(&(resources->io_head), base); |
| dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", |
| io_node->base, io_node->length, io_node->next); |
| dbg("func (%p) io_head (%p)\n", func, func->io_head); |
| |
| /* allocate the resource to the board */ |
| if (io_node) { |
| base = io_node->base; |
| |
| io_node->next = func->io_head; |
| func->io_head = io_node; |
| } else |
| return -ENOMEM; |
| } else if ((temp_register & 0x0BL) == 0x08) { |
| /* Map prefetchable memory */ |
| base = temp_register & 0xFFFFFFF0; |
| base = ~base + 1; |
| |
| dbg("CND: length = 0x%x\n", base); |
| p_mem_node = get_resource(&(resources->p_mem_head), base); |
| |
| /* allocate the resource to the board */ |
| if (p_mem_node) { |
| base = p_mem_node->base; |
| |
| p_mem_node->next = func->p_mem_head; |
| func->p_mem_head = p_mem_node; |
| } else |
| return -ENOMEM; |
| } else if ((temp_register & 0x0BL) == 0x00) { |
| /* Map memory */ |
| base = temp_register & 0xFFFFFFF0; |
| base = ~base + 1; |
| |
| dbg("CND: length = 0x%x\n", base); |
| mem_node = get_resource(&(resources->mem_head), base); |
| |
| /* allocate the resource to the board */ |
| if (mem_node) { |
| base = mem_node->base; |
| |
| mem_node->next = func->mem_head; |
| func->mem_head = mem_node; |
| } else |
| return -ENOMEM; |
| } else { |
| /* Reserved bits or requesting space below 1M */ |
| return NOT_ENOUGH_RESOURCES; |
| } |
| |
| rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); |
| |
| /* Check for 64-bit base */ |
| if ((temp_register & 0x07L) == 0x04) { |
| cloop += 4; |
| |
| /* Upper 32 bits of address always zero |
| * on today's systems */ |
| /* FIXME this is probably not true on |
| * Alpha and ia64??? */ |
| base = 0; |
| rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); |
| } |
| } |
| } /* End of base register loop */ |
| if (cpqhp_legacy_mode) { |
| /* Figure out which interrupt pin this function uses */ |
| rc = pci_bus_read_config_byte (pci_bus, devfn, |
| PCI_INTERRUPT_PIN, &temp_byte); |
| |
| /* If this function needs an interrupt and we are behind |
| * a bridge and the pin is tied to something that's |
| * already mapped, set this one the same */ |
| if (temp_byte && resources->irqs && |
| (resources->irqs->valid_INT & |
| (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { |
| /* We have to share with something already set up */ |
| IRQ = resources->irqs->interrupt[(temp_byte + |
| resources->irqs->barber_pole - 1) & 0x03]; |
| } else { |
| /* Program IRQ based on card type */ |
| rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); |
| |
| if (class_code == PCI_BASE_CLASS_STORAGE) |
| IRQ = cpqhp_disk_irq; |
| else |
| IRQ = cpqhp_nic_irq; |
| } |
| |
| /* IRQ Line */ |
| rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); |
| } |
| |
| if (!behind_bridge) { |
| rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ); |
| if (rc) |
| return 1; |
| } else { |
| /* TBD - this code may also belong in the other clause |
| * of this If statement */ |
| resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; |
| resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; |
| } |
| |
| /* Latency Timer */ |
| temp_byte = 0x40; |
| rc = pci_bus_write_config_byte(pci_bus, devfn, |
| PCI_LATENCY_TIMER, temp_byte); |
| |
| /* Cache Line size */ |
| temp_byte = 0x08; |
| rc = pci_bus_write_config_byte(pci_bus, devfn, |
| PCI_CACHE_LINE_SIZE, temp_byte); |
| |
| /* disable ROM base Address */ |
| temp_dword = 0x00L; |
| rc = pci_bus_write_config_word(pci_bus, devfn, |
| PCI_ROM_ADDRESS, temp_dword); |
| |
| /* enable card */ |
| temp_word = 0x0157; /* = PCI_COMMAND_IO | |
| * PCI_COMMAND_MEMORY | |
| * PCI_COMMAND_MASTER | |
| * PCI_COMMAND_INVALIDATE | |
| * PCI_COMMAND_PARITY | |
| * PCI_COMMAND_SERR */ |
| rc = pci_bus_write_config_word (pci_bus, devfn, |
| PCI_COMMAND, temp_word); |
| } else { /* End of Not-A-Bridge else */ |
| /* It's some strange type of PCI adapter (Cardbus?) */ |
| return DEVICE_TYPE_NOT_SUPPORTED; |
| } |
| |
| func->configured = 1; |
| |
| return 0; |
| free_and_out: |
| cpqhp_destroy_resource_list (&temp_resources); |
| |
| return_resource(&(resources-> bus_head), hold_bus_node); |
| return_resource(&(resources-> io_head), hold_IO_node); |
| return_resource(&(resources-> mem_head), hold_mem_node); |
| return_resource(&(resources-> p_mem_head), hold_p_mem_node); |
| return rc; |
| } |