blob: 446e8b4921b61df728da1481adaa54f991c67762 [file] [log] [blame]
/* Copyright (c) 2016, 2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/iopoll.h>
#include <linux/types.h>
#include <linux/extcon.h>
#include <linux/gcd.h>
#include "mdss_hdmi_audio.h"
#include "mdss_hdmi_util.h"
#define HDMI_AUDIO_INFO_FRAME_PACKET_HEADER 0x84
#define HDMI_AUDIO_INFO_FRAME_PACKET_VERSION 0x1
#define HDMI_AUDIO_INFO_FRAME_PACKET_LENGTH 0x0A
#define HDMI_KHZ_TO_HZ 1000
#define HDMI_MHZ_TO_HZ 1000000
#define HDMI_ACR_N_MULTIPLIER 128
#define DEFAULT_AUDIO_SAMPLE_RATE_HZ 48000
/* Supported HDMI Audio channels */
enum hdmi_audio_channels {
AUDIO_CHANNEL_2 = 2,
AUDIO_CHANNEL_3,
AUDIO_CHANNEL_4,
AUDIO_CHANNEL_5,
AUDIO_CHANNEL_6,
AUDIO_CHANNEL_7,
AUDIO_CHANNEL_8,
};
/* parameters for clock regeneration */
struct hdmi_audio_acr {
u32 n;
u32 cts;
};
enum hdmi_audio_sample_rates {
AUDIO_SAMPLE_RATE_32KHZ,
AUDIO_SAMPLE_RATE_44_1KHZ,
AUDIO_SAMPLE_RATE_48KHZ,
AUDIO_SAMPLE_RATE_88_2KHZ,
AUDIO_SAMPLE_RATE_96KHZ,
AUDIO_SAMPLE_RATE_176_4KHZ,
AUDIO_SAMPLE_RATE_192KHZ,
AUDIO_SAMPLE_RATE_MAX
};
struct hdmi_audio {
struct mdss_io_data *io;
struct msm_hdmi_audio_setup_params params;
struct extcon_dev sdev;
u32 pclk;
bool ack_enabled;
bool audio_ack_enabled;
atomic_t ack_pending;
};
static void hdmi_audio_get_audio_sample_rate(u32 *sample_rate_hz)
{
u32 rate = *sample_rate_hz;
switch (rate) {
case 32000:
*sample_rate_hz = AUDIO_SAMPLE_RATE_32KHZ;
break;
case 44100:
*sample_rate_hz = AUDIO_SAMPLE_RATE_44_1KHZ;
break;
case 48000:
*sample_rate_hz = AUDIO_SAMPLE_RATE_48KHZ;
break;
case 88200:
*sample_rate_hz = AUDIO_SAMPLE_RATE_88_2KHZ;
break;
case 96000:
*sample_rate_hz = AUDIO_SAMPLE_RATE_96KHZ;
break;
case 176400:
*sample_rate_hz = AUDIO_SAMPLE_RATE_176_4KHZ;
break;
case 192000:
*sample_rate_hz = AUDIO_SAMPLE_RATE_192KHZ;
break;
default:
pr_debug("%d unchanged\n", rate);
break;
}
}
static void hdmi_audio_get_acr_param(u32 pclk, u32 fs,
struct hdmi_audio_acr *acr)
{
u32 div, mul;
if (!acr) {
pr_err("invalid data\n");
return;
}
/*
* as per HDMI specification, N/CTS = (128*fs)/pclk.
* get the ratio using this formula.
*/
acr->n = HDMI_ACR_N_MULTIPLIER * fs;
acr->cts = pclk;
/* get the greatest common divisor for the ratio */
div = gcd(acr->n, acr->cts);
/* get the n and cts values wrt N/CTS formula */
acr->n /= div;
acr->cts /= div;
/*
* as per HDMI specification, 300 <= 128*fs/N <= 1500
* with a target of 128*fs/N = 1000. To get closest
* value without truncating fractional values, find
* the corresponding multiplier
*/
mul = ((HDMI_ACR_N_MULTIPLIER * fs / HDMI_KHZ_TO_HZ)
+ (acr->n - 1)) / acr->n;
acr->n *= mul;
acr->cts *= mul;
}
static void hdmi_audio_acr_enable(struct hdmi_audio *audio)
{
struct mdss_io_data *io;
struct hdmi_audio_acr acr;
struct msm_hdmi_audio_setup_params *params;
u32 pclk, layout, multiplier = 1, sample_rate;
u32 acr_pkt_ctl, aud_pkt_ctl2, acr_reg_cts, acr_reg_n;
if (!audio) {
pr_err("invalid input\n");
return;
}
io = audio->io;
params = &audio->params;
pclk = audio->pclk;
sample_rate = params->sample_rate_hz;
hdmi_audio_get_acr_param(pclk * HDMI_KHZ_TO_HZ, sample_rate, &acr);
hdmi_audio_get_audio_sample_rate(&sample_rate);
layout = params->num_of_channels == AUDIO_CHANNEL_2 ? 0 : 1;
pr_debug("n=%u, cts=%u, layout=%u\n", acr.n, acr.cts, layout);
/* AUDIO_PRIORITY | SOURCE */
acr_pkt_ctl = BIT(31) | BIT(8);
switch (sample_rate) {
case AUDIO_SAMPLE_RATE_44_1KHZ:
acr_pkt_ctl |= 0x2 << 4;
acr.cts <<= 12;
acr_reg_cts = HDMI_ACR_44_0;
acr_reg_n = HDMI_ACR_44_1;
break;
case AUDIO_SAMPLE_RATE_48KHZ:
acr_pkt_ctl |= 0x3 << 4;
acr.cts <<= 12;
acr_reg_cts = HDMI_ACR_48_0;
acr_reg_n = HDMI_ACR_48_1;
break;
case AUDIO_SAMPLE_RATE_192KHZ:
multiplier = 4;
acr.n >>= 2;
acr_pkt_ctl |= 0x3 << 4;
acr.cts <<= 12;
acr_reg_cts = HDMI_ACR_48_0;
acr_reg_n = HDMI_ACR_48_1;
break;
case AUDIO_SAMPLE_RATE_176_4KHZ:
multiplier = 4;
acr.n >>= 2;
acr_pkt_ctl |= 0x2 << 4;
acr.cts <<= 12;
acr_reg_cts = HDMI_ACR_44_0;
acr_reg_n = HDMI_ACR_44_1;
break;
case AUDIO_SAMPLE_RATE_96KHZ:
multiplier = 2;
acr.n >>= 1;
acr_pkt_ctl |= 0x3 << 4;
acr.cts <<= 12;
acr_reg_cts = HDMI_ACR_48_0;
acr_reg_n = HDMI_ACR_48_1;
break;
case AUDIO_SAMPLE_RATE_88_2KHZ:
multiplier = 2;
acr.n >>= 1;
acr_pkt_ctl |= 0x2 << 4;
acr.cts <<= 12;
acr_reg_cts = HDMI_ACR_44_0;
acr_reg_n = HDMI_ACR_44_1;
break;
default:
multiplier = 1;
acr_pkt_ctl |= 0x1 << 4;
acr.cts <<= 12;
acr_reg_cts = HDMI_ACR_32_0;
acr_reg_n = HDMI_ACR_32_1;
break;
}
aud_pkt_ctl2 = BIT(0) | (layout << 1);
/* N_MULTIPLE(multiplier) */
acr_pkt_ctl &= ~(7 << 16);
acr_pkt_ctl |= (multiplier & 0x7) << 16;
/* SEND | CONT */
acr_pkt_ctl |= BIT(0) | BIT(1);
DSS_REG_W(io, acr_reg_cts, acr.cts);
DSS_REG_W(io, acr_reg_n, acr.n);
DSS_REG_W(io, HDMI_ACR_PKT_CTRL, acr_pkt_ctl);
DSS_REG_W(io, HDMI_AUDIO_PKT_CTRL2, aud_pkt_ctl2);
}
static void hdmi_audio_acr_setup(struct hdmi_audio *audio, bool on)
{
if (on)
hdmi_audio_acr_enable(audio);
else
DSS_REG_W(audio->io, HDMI_ACR_PKT_CTRL, 0);
}
static void hdmi_audio_infoframe_setup(struct hdmi_audio *audio, bool enabled)
{
struct mdss_io_data *io = NULL;
u32 channels, channel_allocation, level_shift, down_mix, layout;
u32 hdmi_debug_reg = 0, audio_info_0_reg = 0, audio_info_1_reg = 0;
u32 audio_info_ctrl_reg, aud_pck_ctrl_2_reg;
u32 check_sum, sample_present;
if (!audio) {
pr_err("invalid input\n");
return;
}
io = audio->io;
if (!io->base) {
pr_err("core io not inititalized\n");
return;
}
audio_info_ctrl_reg = DSS_REG_R(io, HDMI_INFOFRAME_CTRL0);
audio_info_ctrl_reg &= ~0xF0;
if (!enabled)
goto end;
channels = audio->params.num_of_channels - 1;
channel_allocation = audio->params.channel_allocation;
level_shift = audio->params.level_shift;
down_mix = audio->params.down_mix;
sample_present = audio->params.sample_present;
layout = audio->params.num_of_channels == AUDIO_CHANNEL_2 ? 0 : 1;
aud_pck_ctrl_2_reg = BIT(0) | (layout << 1);
DSS_REG_W(io, HDMI_AUDIO_PKT_CTRL2, aud_pck_ctrl_2_reg);
audio_info_1_reg |= channel_allocation & 0xFF;
audio_info_1_reg |= ((level_shift & 0xF) << 11);
audio_info_1_reg |= ((down_mix & 0x1) << 15);
check_sum = 0;
check_sum += HDMI_AUDIO_INFO_FRAME_PACKET_HEADER;
check_sum += HDMI_AUDIO_INFO_FRAME_PACKET_VERSION;
check_sum += HDMI_AUDIO_INFO_FRAME_PACKET_LENGTH;
check_sum += channels;
check_sum += channel_allocation;
check_sum += (level_shift & 0xF) << 3 | (down_mix & 0x1) << 7;
check_sum &= 0xFF;
check_sum = (u8) (256 - check_sum);
audio_info_0_reg |= check_sum & 0xFF;
audio_info_0_reg |= ((channels & 0x7) << 8);
/* Enable Audio InfoFrame Transmission */
audio_info_ctrl_reg |= 0xF0;
if (layout) {
/* Set the Layout bit */
hdmi_debug_reg |= BIT(4);
/* Set the Sample Present bits */
hdmi_debug_reg |= sample_present & 0xF;
}
end:
DSS_REG_W(io, HDMI_DEBUG, hdmi_debug_reg);
DSS_REG_W(io, HDMI_AUDIO_INFO0, audio_info_0_reg);
DSS_REG_W(io, HDMI_AUDIO_INFO1, audio_info_1_reg);
DSS_REG_W(io, HDMI_INFOFRAME_CTRL0, audio_info_ctrl_reg);
}
static int hdmi_audio_on(void *ctx, u32 pclk,
struct msm_hdmi_audio_setup_params *params)
{
struct hdmi_audio *audio = ctx;
int rc = 0;
if (!audio) {
pr_err("invalid input\n");
rc = -EINVAL;
goto end;
}
audio->pclk = pclk;
audio->params = *params;
if (!audio->params.num_of_channels) {
audio->params.sample_rate_hz = DEFAULT_AUDIO_SAMPLE_RATE_HZ;
audio->params.num_of_channels = AUDIO_CHANNEL_2;
}
hdmi_audio_acr_setup(audio, true);
hdmi_audio_infoframe_setup(audio, true);
pr_debug("HDMI Audio: Enabled\n");
end:
return rc;
}
static void hdmi_audio_off(void *ctx)
{
struct hdmi_audio *audio = ctx;
if (!audio) {
pr_err("invalid input\n");
return;
}
hdmi_audio_infoframe_setup(audio, false);
hdmi_audio_acr_setup(audio, false);
pr_debug("HDMI Audio: Disabled\n");
}
static void hdmi_audio_notify(void *ctx, int val)
{
struct hdmi_audio *audio = ctx;
int state = 0;
bool switched;
if (!audio) {
pr_err("invalid input\n");
return;
}
state = audio->sdev.state;
if (state == val)
return;
if (audio->ack_enabled &&
atomic_read(&audio->ack_pending)) {
pr_err("%s ack pending, not notifying %s\n",
state ? "connect" : "disconnect",
val ? "connect" : "disconnect");
return;
}
extcon_set_state_sync(&audio->sdev, 0, val);
switched = audio->sdev.state != state;
if (audio->ack_enabled && switched)
atomic_set(&audio->ack_pending, 1);
pr_debug("audio %s %s\n", switched ? "switched to" : "same as",
audio->sdev.state ? "HDMI" : "SPKR");
}
static void hdmi_audio_ack(void *ctx, u32 ack, u32 hpd)
{
struct hdmi_audio *audio = ctx;
u32 ack_hpd;
if (!audio) {
pr_err("invalid input\n");
return;
}
if (ack & AUDIO_ACK_SET_ENABLE) {
audio->ack_enabled = ack & AUDIO_ACK_ENABLE ?
true : false;
pr_debug("audio ack feature %s\n",
audio->ack_enabled ? "enabled" : "disabled");
return;
}
if (!audio->ack_enabled)
return;
atomic_set(&audio->ack_pending, 0);
ack_hpd = ack & AUDIO_ACK_CONNECT;
pr_debug("acknowledging %s\n",
ack_hpd ? "connect" : "disconnect");
if (ack_hpd != hpd) {
pr_debug("unbalanced audio state, ack %d, hpd %d\n",
ack_hpd, hpd);
hdmi_audio_notify(ctx, hpd);
}
}
static void hdmi_audio_reset(void *ctx)
{
struct hdmi_audio *audio = ctx;
if (!audio) {
pr_err("invalid input\n");
return;
}
atomic_set(&audio->ack_pending, 0);
}
static void hdmi_audio_status(void *ctx, struct hdmi_audio_status *status)
{
struct hdmi_audio *audio = ctx;
if (!audio || !status) {
pr_err("invalid input\n");
return;
}
status->ack_enabled = audio->ack_enabled;
status->ack_pending = atomic_read(&audio->ack_pending);
status->switched = audio->sdev.state;
}
/**
* hdmi_audio_register() - audio registeration function
* @data: registeration initialization data
*
* This API configures audio module for client to use HDMI audio.
* Provides audio functionalities which client can call.
* Initializes internal data structures.
*
* Return: pointer to audio data that client needs to pass on
* calling audio functions.
*/
void *hdmi_audio_register(struct hdmi_audio_init_data *data)
{
struct hdmi_audio *audio = NULL;
int rc = 0;
if (!data)
goto end;
audio = kzalloc(sizeof(*audio), GFP_KERNEL);
if (!audio)
goto end;
audio->sdev.name = "hdmi_audio";
rc = extcon_dev_register(&audio->sdev);
if (rc) {
pr_err("audio switch registration failed\n");
kzfree(audio);
goto end;
}
audio->io = data->io;
data->ops->on = hdmi_audio_on;
data->ops->off = hdmi_audio_off;
data->ops->notify = hdmi_audio_notify;
data->ops->ack = hdmi_audio_ack;
data->ops->reset = hdmi_audio_reset;
data->ops->status = hdmi_audio_status;
end:
return audio;
}
/**
* hdmi_audio_unregister() - unregister audio module
* @ctx: audio module's data
*
* Delete audio module's instance and allocated resources
*/
void hdmi_audio_unregister(void *ctx)
{
struct hdmi_audio *audio = ctx;
if (audio) {
extcon_dev_unregister(&audio->sdev);
kfree(ctx);
}
}