blob: e0788537e0f4b39f7e4416f07ce719aec7b66c31 [file] [log] [blame]
/*
* Synaptics DSX touchscreen driver
*
* Copyright (C) 2012-2015 Synaptics Incorporated. All rights reserved.
*
* Copyright (C) 2012 Alexandra Chin <alexandra.chin@tw.synaptics.com>
* Copyright (C) 2012 Scott Lin <scott.lin@tw.synaptics.com>
* Copyright (C) 2018 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS," AND SYNAPTICS
* EXPRESSLY DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
* AND ANY WARRANTIES OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS.
* IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION
* WITH THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, HOWEVER CAUSED
* AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE. IF A TRIBUNAL OF COMPETENT JURISDICTION DOES
* NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS'
* TOTAL CUMULATIVE LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED U.S.
* DOLLARS.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/types.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <linux/input/synaptics_dsx_v2_6.h>
#include "synaptics_dsx_core.h"
#define SYN_I2C_RETRY_TIMES 10
/*
#define I2C_BURST_LIMIT 255
*/
#define XFER_MSGS_LIMIT 8
static unsigned char *wr_buf;
static struct synaptics_dsx_hw_interface hw_if;
static struct platform_device *synaptics_dsx_i2c_device;
#ifdef CONFIG_OF
static int parse_dt(struct device *dev, struct synaptics_dsx_board_data *bdata)
{
int retval;
u32 value;
const char *name;
struct property *prop;
struct device_node *np = dev->of_node;
bdata->irq_gpio = of_get_named_gpio_flags(np,
"synaptics,irq-gpio", 0,
(enum of_gpio_flags *)&bdata->irq_flags);
retval = of_property_read_u32(np, "synaptics,irq-on-state",
&value);
if (retval < 0)
bdata->irq_on_state = 0;
else
bdata->irq_on_state = value;
bdata->resume_in_workqueue = of_property_read_bool(np,
"synaptics,resume-in-workqueue");
bdata->wakeup_gesture_en = of_property_read_bool(np,
"synaptics,wakeup-gestures-en");
bdata->dont_disable_regs = of_property_read_bool(np,
"synaptics,do-not-disable-regulators");
retval = of_property_read_string(np, "synaptics,pwr-reg-name", &name);
if (retval < 0)
bdata->pwr_reg_name = NULL;
else
bdata->pwr_reg_name = name;
retval = of_property_read_string(np, "synaptics,bus-reg-name", &name);
if (retval < 0)
bdata->bus_reg_name = NULL;
else
bdata->bus_reg_name = name;
prop = of_find_property(np, "synaptics,power-gpio", NULL);
if (prop && prop->length) {
bdata->power_gpio = of_get_named_gpio_flags(np,
"synaptics,power-gpio", 0, NULL);
retval = of_property_read_u32(np, "synaptics,power-on-state",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,power-on-state property\n",
__func__);
return retval;
} else {
bdata->power_on_state = value;
}
} else {
bdata->power_gpio = -1;
}
prop = of_find_property(np, "synaptics,power-delay-ms", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,power-delay-ms",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,power-delay-ms property\n",
__func__);
return retval;
} else {
bdata->power_delay_ms = value;
}
} else {
bdata->power_delay_ms = 0;
}
prop = of_find_property(np, "synaptics,reset-gpio", NULL);
if (prop && prop->length) {
bdata->reset_gpio = of_get_named_gpio_flags(np,
"synaptics,reset-gpio", 0, NULL);
retval = of_property_read_u32(np, "synaptics,reset-on-state",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,reset-on-state property\n",
__func__);
return retval;
} else {
bdata->reset_on_state = value;
}
retval = of_property_read_u32(np, "synaptics,reset-active-ms",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,reset-active-ms property\n",
__func__);
return retval;
} else {
bdata->reset_active_ms = value;
}
} else {
bdata->reset_gpio = -1;
}
prop = of_find_property(np, "synaptics,reset-delay-ms", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,reset-delay-ms",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,reset-delay-ms property\n",
__func__);
return retval;
} else {
bdata->reset_delay_ms = value;
}
} else {
bdata->reset_delay_ms = 0;
}
prop = of_find_property(np, "synaptics,max-y-for-2d", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,max-y-for-2d",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,max-y-for-2d property\n",
__func__);
return retval;
} else {
bdata->max_y_for_2d = value;
}
} else {
bdata->max_y_for_2d = -1;
}
retval = of_property_read_u32(np, "synaptics,bus-lpm-cur-uA",
&value);
bdata->bus_lpm_cur_uA = retval < 0 ? 0 : value;
bdata->swap_axes = of_property_read_bool(np, "synaptics,swap-axes");
bdata->x_flip = of_property_read_bool(np, "synaptics,x-flip");
bdata->y_flip = of_property_read_bool(np, "synaptics,y-flip");
prop = of_find_property(np, "synaptics,ub-i2c-addr", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,ub-i2c-addr",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,ub-i2c-addr property\n",
__func__);
return retval;
} else {
bdata->ub_i2c_addr = (unsigned short)value;
}
} else {
bdata->ub_i2c_addr = -1;
}
prop = of_find_property(np, "synaptics,cap-button-codes", NULL);
if (prop && prop->length) {
bdata->cap_button_map->map = devm_kzalloc(dev,
prop->length,
GFP_KERNEL);
if (!bdata->cap_button_map->map)
return -ENOMEM;
bdata->cap_button_map->nbuttons = prop->length / sizeof(u32);
retval = of_property_read_u32_array(np,
"synaptics,cap-button-codes",
bdata->cap_button_map->map,
bdata->cap_button_map->nbuttons);
if (retval < 0) {
bdata->cap_button_map->nbuttons = 0;
bdata->cap_button_map->map = NULL;
}
} else {
bdata->cap_button_map->nbuttons = 0;
bdata->cap_button_map->map = NULL;
}
prop = of_find_property(np, "synaptics,vir-button-codes", NULL);
if (prop && prop->length) {
bdata->vir_button_map->map = devm_kzalloc(dev,
prop->length,
GFP_KERNEL);
if (!bdata->vir_button_map->map)
return -ENOMEM;
bdata->vir_button_map->nbuttons = prop->length / sizeof(u32);
bdata->vir_button_map->nbuttons /= 5;
retval = of_property_read_u32_array(np,
"synaptics,vir-button-codes",
bdata->vir_button_map->map,
bdata->vir_button_map->nbuttons * 5);
if (retval < 0) {
bdata->vir_button_map->nbuttons = 0;
bdata->vir_button_map->map = NULL;
}
} else {
bdata->vir_button_map->nbuttons = 0;
bdata->vir_button_map->map = NULL;
}
return 0;
}
#endif
static int synaptics_rmi4_i2c_alloc_buf(struct synaptics_rmi4_data *rmi4_data,
unsigned int count)
{
static unsigned int buf_size;
if (count > buf_size) {
if (buf_size)
kfree(wr_buf);
wr_buf = kzalloc(count, GFP_KERNEL);
if (!wr_buf) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc mem for buffer\n",
__func__);
buf_size = 0;
return -ENOMEM;
}
buf_size = count;
}
return 0;
}
static void synaptics_rmi4_i2c_check_addr(struct synaptics_rmi4_data *rmi4_data,
struct i2c_client *i2c)
{
if (hw_if.board_data->ub_i2c_addr == -1)
return;
if (hw_if.board_data->i2c_addr == i2c->addr)
hw_if.board_data->i2c_addr = hw_if.board_data->ub_i2c_addr;
else
hw_if.board_data->i2c_addr = i2c->addr;
return;
}
static int synaptics_rmi4_i2c_set_page(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr)
{
int retval = 0;
unsigned char retry;
unsigned char buf[PAGE_SELECT_LEN];
unsigned char page;
struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
struct i2c_msg msg[1];
msg[0].addr = hw_if.board_data->i2c_addr;
msg[0].flags = 0;
msg[0].len = PAGE_SELECT_LEN;
msg[0].buf = buf;
page = ((addr >> 8) & MASK_8BIT);
buf[0] = MASK_8BIT;
buf[1] = page;
if (page != rmi4_data->current_page) {
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
if (i2c_transfer(i2c->adapter, &msg[0], 1) == 1) {
rmi4_data->current_page = page;
retval = PAGE_SELECT_LEN;
break;
}
dev_err(rmi4_data->pdev->dev.parent,
"%s: I2C retry %d\n",
__func__, retry + 1);
msleep(20);
if (retry == SYN_I2C_RETRY_TIMES / 2) {
synaptics_rmi4_i2c_check_addr(rmi4_data, i2c);
msg[0].addr = hw_if.board_data->i2c_addr;
}
}
} else {
retval = PAGE_SELECT_LEN;
}
return retval;
}
static int synaptics_rmi4_i2c_read(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data, unsigned short length)
{
int retval;
unsigned char retry;
unsigned char buf;
#ifdef I2C_BURST_LIMIT
unsigned char ii;
unsigned char rd_msgs = ((length - 1) / I2C_BURST_LIMIT) + 1;
#else
unsigned char rd_msgs = 1;
#endif
unsigned char index = 0;
unsigned char xfer_msgs;
unsigned char remaining_msgs;
unsigned short i2c_addr;
unsigned short data_offset = 0;
unsigned short remaining_length = length;
struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
struct i2c_adapter *adap = i2c->adapter;
struct i2c_msg msg[XFER_MSGS_LIMIT + 1];
mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
retval = synaptics_rmi4_i2c_set_page(rmi4_data, addr);
if (retval != PAGE_SELECT_LEN) {
retval = -EIO;
goto exit;
}
msg[0].addr = hw_if.board_data->i2c_addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &buf;
#ifdef I2C_BURST_LIMIT
for (ii = 0; ii < (rd_msgs - 1); ii++) {
msg[ii + 1].addr = hw_if.board_data->i2c_addr;
msg[ii + 1].flags = I2C_M_RD;
msg[ii + 1].len = I2C_BURST_LIMIT;
msg[ii + 1].buf = &data[data_offset];
data_offset += I2C_BURST_LIMIT;
remaining_length -= I2C_BURST_LIMIT;
}
#endif
msg[rd_msgs].addr = hw_if.board_data->i2c_addr;
msg[rd_msgs].flags = I2C_M_RD;
msg[rd_msgs].len = remaining_length;
msg[rd_msgs].buf = &data[data_offset];
buf = addr & MASK_8BIT;
remaining_msgs = rd_msgs + 1;
while (remaining_msgs) {
if (remaining_msgs > XFER_MSGS_LIMIT)
xfer_msgs = XFER_MSGS_LIMIT;
else
xfer_msgs = remaining_msgs;
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
retval = i2c_transfer(adap, &msg[index], xfer_msgs);
if (retval == xfer_msgs)
break;
dev_err(rmi4_data->pdev->dev.parent,
"%s: I2C retry %d\n",
__func__, retry + 1);
msleep(20);
if (retry == SYN_I2C_RETRY_TIMES / 2) {
synaptics_rmi4_i2c_check_addr(rmi4_data, i2c);
i2c_addr = hw_if.board_data->i2c_addr;
msg[0].addr = i2c_addr;
#ifdef I2C_BURST_LIMIT
for (ii = 0; ii < (rd_msgs - 1); ii++)
msg[ii + 1].addr = i2c_addr;
#endif
msg[rd_msgs].addr = i2c_addr;
}
}
if (retry == SYN_I2C_RETRY_TIMES) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: I2C read over retry limit\n",
__func__);
retval = -EIO;
goto exit;
}
remaining_msgs -= xfer_msgs;
index += xfer_msgs;
}
retval = length;
exit:
mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
return retval;
}
static int synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data, unsigned short length)
{
int retval;
unsigned char retry;
struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
struct i2c_msg msg[1];
mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
retval = synaptics_rmi4_i2c_alloc_buf(rmi4_data, length + 1);
if (retval < 0)
goto exit;
retval = synaptics_rmi4_i2c_set_page(rmi4_data, addr);
if (retval != PAGE_SELECT_LEN) {
retval = -EIO;
goto exit;
}
msg[0].addr = hw_if.board_data->i2c_addr;
msg[0].flags = 0;
msg[0].len = length + 1;
msg[0].buf = wr_buf;
wr_buf[0] = addr & MASK_8BIT;
retval = secure_memcpy(&wr_buf[1], length, &data[0], length, length);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to copy data\n",
__func__);
goto exit;
}
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
if (i2c_transfer(i2c->adapter, &msg[0], 1) == 1) {
retval = length;
break;
}
dev_err(rmi4_data->pdev->dev.parent,
"%s: I2C retry %d\n",
__func__, retry + 1);
msleep(20);
if (retry == SYN_I2C_RETRY_TIMES / 2) {
synaptics_rmi4_i2c_check_addr(rmi4_data, i2c);
msg[0].addr = hw_if.board_data->i2c_addr;
}
}
if (retry == SYN_I2C_RETRY_TIMES) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: I2C write over retry limit\n",
__func__);
retval = -EIO;
}
exit:
mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
return retval;
}
#if defined(CONFIG_SECURE_TOUCH_SYNAPTICS_DSX_V26)
static int synaptics_rmi4_clk_prepare_enable(
struct synaptics_rmi4_data *rmi4_data)
{
int ret;
ret = clk_prepare_enable(rmi4_data->iface_clk);
if (ret) {
dev_err(rmi4_data->pdev->dev.parent,
"error on clk_prepare_enable(iface_clk):%d\n", ret);
return ret;
}
ret = clk_prepare_enable(rmi4_data->core_clk);
if (ret) {
clk_disable_unprepare(rmi4_data->iface_clk);
dev_err(rmi4_data->pdev->dev.parent,
"error clk_prepare_enable(core_clk):%d\n", ret);
}
return ret;
}
static void synaptics_rmi4_clk_disable_unprepare(
struct synaptics_rmi4_data *rmi4_data)
{
clk_disable_unprepare(rmi4_data->core_clk);
clk_disable_unprepare(rmi4_data->iface_clk);
}
static int synaptics_rmi4_i2c_get(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
retval = pm_runtime_get_sync(i2c->adapter->dev.parent);
if (retval >= 0 && rmi4_data->core_clk != NULL &&
rmi4_data->iface_clk != NULL) {
retval = synaptics_rmi4_clk_prepare_enable(rmi4_data);
if (retval)
pm_runtime_put_sync(i2c->adapter->dev.parent);
}
mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
return retval;
}
static void synaptics_rmi4_i2c_put(struct synaptics_rmi4_data *rmi4_data)
{
struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
if (rmi4_data->core_clk != NULL && rmi4_data->iface_clk != NULL)
synaptics_rmi4_clk_disable_unprepare(rmi4_data);
pm_runtime_put_sync(i2c->adapter->dev.parent);
mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
}
#endif
static struct synaptics_dsx_bus_access bus_access = {
.type = BUS_I2C,
.read = synaptics_rmi4_i2c_read,
.write = synaptics_rmi4_i2c_write,
#if defined(CONFIG_SECURE_TOUCH_SYNAPTICS_DSX_V26)
.get = synaptics_rmi4_i2c_get,
.put = synaptics_rmi4_i2c_put,
#endif
};
static void synaptics_rmi4_i2c_dev_release(struct device *dev)
{
kfree(synaptics_dsx_i2c_device);
return;
}
static int synaptics_rmi4_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *dev_id)
{
int retval;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(&client->dev,
"%s: SMBus byte data commands not supported by host\n",
__func__);
return -EIO;
}
synaptics_dsx_i2c_device = kzalloc(
sizeof(struct platform_device),
GFP_KERNEL);
if (!synaptics_dsx_i2c_device) {
dev_err(&client->dev,
"%s: Failed to allocate memory for synaptics_dsx_i2c_device\n",
__func__);
return -ENOMEM;
}
#ifdef CONFIG_OF
if (client->dev.of_node) {
hw_if.board_data = devm_kzalloc(&client->dev,
sizeof(struct synaptics_dsx_board_data),
GFP_KERNEL);
if (!hw_if.board_data) {
dev_err(&client->dev,
"%s: Failed to allocate memory for board data\n",
__func__);
return -ENOMEM;
}
hw_if.board_data->cap_button_map = devm_kzalloc(&client->dev,
sizeof(struct synaptics_dsx_button_map),
GFP_KERNEL);
if (!hw_if.board_data->cap_button_map) {
dev_err(&client->dev,
"%s: Failed to allocate memory for 0D button map\n",
__func__);
return -ENOMEM;
}
hw_if.board_data->vir_button_map = devm_kzalloc(&client->dev,
sizeof(struct synaptics_dsx_button_map),
GFP_KERNEL);
if (!hw_if.board_data->vir_button_map) {
dev_err(&client->dev,
"%s: Failed to allocate memory for virtual button map\n",
__func__);
return -ENOMEM;
}
parse_dt(&client->dev, hw_if.board_data);
}
#else
hw_if.board_data = client->dev.platform_data;
#endif
hw_if.bus_access = &bus_access;
hw_if.board_data->i2c_addr = client->addr;
synaptics_dsx_i2c_device->name = PLATFORM_DRIVER_NAME;
synaptics_dsx_i2c_device->id = 0;
synaptics_dsx_i2c_device->num_resources = 0;
synaptics_dsx_i2c_device->dev.parent = &client->dev;
synaptics_dsx_i2c_device->dev.platform_data = &hw_if;
synaptics_dsx_i2c_device->dev.release = synaptics_rmi4_i2c_dev_release;
retval = platform_device_register(synaptics_dsx_i2c_device);
if (retval) {
dev_err(&client->dev,
"%s: Failed to register platform device\n",
__func__);
return -ENODEV;
}
return 0;
}
static int synaptics_rmi4_i2c_remove(struct i2c_client *client)
{
platform_device_unregister(synaptics_dsx_i2c_device);
return 0;
}
static const struct i2c_device_id synaptics_rmi4_id_table[] = {
{I2C_DRIVER_NAME, 0},
{},
};
MODULE_DEVICE_TABLE(i2c, synaptics_rmi4_id_table);
#ifdef CONFIG_OF
static struct of_device_id synaptics_rmi4_of_match_table[] = {
{
.compatible = "synaptics,dsx-i2c",
},
{},
};
MODULE_DEVICE_TABLE(of, synaptics_rmi4_of_match_table);
#else
#define synaptics_rmi4_of_match_table NULL
#endif
static struct i2c_driver synaptics_rmi4_i2c_driver = {
.driver = {
.name = I2C_DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = synaptics_rmi4_of_match_table,
},
.probe = synaptics_rmi4_i2c_probe,
.remove = synaptics_rmi4_i2c_remove,
.id_table = synaptics_rmi4_id_table,
};
int synaptics_rmi4_bus_init_v26(void)
{
return i2c_add_driver(&synaptics_rmi4_i2c_driver);
}
EXPORT_SYMBOL(synaptics_rmi4_bus_init_v26);
void synaptics_rmi4_bus_exit_v26(void)
{
kfree(wr_buf);
i2c_del_driver(&synaptics_rmi4_i2c_driver);
return;
}
EXPORT_SYMBOL(synaptics_rmi4_bus_exit_v26);
MODULE_AUTHOR("Synaptics, Inc.");
MODULE_DESCRIPTION("Synaptics DSX I2C Bus Support Module");
MODULE_LICENSE("GPL v2");