| /* |
| Copyright (C) 2004 - 2009 rt2x00 SourceForge Project |
| <http://rt2x00.serialmonkey.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the |
| Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| Module: rt61pci |
| Abstract: rt61pci device specific routines. |
| Supported chipsets: RT2561, RT2561s, RT2661. |
| */ |
| |
| #include <linux/crc-itu-t.h> |
| #include <linux/delay.h> |
| #include <linux/etherdevice.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/eeprom_93cx6.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00pci.h" |
| #include "rt61pci.h" |
| |
| /* |
| * Allow hardware encryption to be disabled. |
| */ |
| static int modparam_nohwcrypt = 0; |
| module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); |
| MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); |
| |
| /* |
| * Register access. |
| * BBP and RF register require indirect register access, |
| * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this. |
| * These indirect registers work with busy bits, |
| * and we will try maximal REGISTER_BUSY_COUNT times to access |
| * the register while taking a REGISTER_BUSY_DELAY us delay |
| * between each attampt. When the busy bit is still set at that time, |
| * the access attempt is considered to have failed, |
| * and we will print an error. |
| */ |
| #define WAIT_FOR_BBP(__dev, __reg) \ |
| rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) |
| #define WAIT_FOR_RF(__dev, __reg) \ |
| rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) |
| #define WAIT_FOR_MCU(__dev, __reg) \ |
| rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \ |
| H2M_MAILBOX_CSR_OWNER, (__reg)) |
| |
| static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u8 value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the BBP becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, PHY_CSR3_VALUE, value); |
| rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); |
| rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); |
| rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); |
| |
| rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, u8 *value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the BBP becomes available, afterwards we |
| * can safely write the read request into the register. |
| * After the data has been written, we wait until hardware |
| * returns the correct value, if at any time the register |
| * doesn't become available in time, reg will be 0xffffffff |
| * which means we return 0xff to the caller. |
| */ |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); |
| rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); |
| rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); |
| |
| rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg); |
| |
| WAIT_FOR_BBP(rt2x00dev, ®); |
| } |
| |
| *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u32 value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the RF becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_RF(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, PHY_CSR4_VALUE, value); |
| rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21); |
| rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); |
| rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); |
| |
| rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg); |
| rt2x00_rf_write(rt2x00dev, word, value); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev, |
| const u8 command, const u8 token, |
| const u8 arg0, const u8 arg1) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the MCU becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_MCU(rt2x00dev, ®)) { |
| rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); |
| rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); |
| rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); |
| rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); |
| rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, ®); |
| rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); |
| rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1); |
| rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| |
| } |
| |
| static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom) |
| { |
| struct rt2x00_dev *rt2x00dev = eeprom->data; |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); |
| |
| eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); |
| eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); |
| eeprom->reg_data_clock = |
| !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); |
| eeprom->reg_chip_select = |
| !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); |
| } |
| |
| static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom) |
| { |
| struct rt2x00_dev *rt2x00dev = eeprom->data; |
| u32 reg = 0; |
| |
| rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); |
| rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); |
| rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, |
| !!eeprom->reg_data_clock); |
| rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, |
| !!eeprom->reg_chip_select); |
| |
| rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg); |
| } |
| |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| static const struct rt2x00debug rt61pci_rt2x00debug = { |
| .owner = THIS_MODULE, |
| .csr = { |
| .read = rt2x00pci_register_read, |
| .write = rt2x00pci_register_write, |
| .flags = RT2X00DEBUGFS_OFFSET, |
| .word_base = CSR_REG_BASE, |
| .word_size = sizeof(u32), |
| .word_count = CSR_REG_SIZE / sizeof(u32), |
| }, |
| .eeprom = { |
| .read = rt2x00_eeprom_read, |
| .write = rt2x00_eeprom_write, |
| .word_base = EEPROM_BASE, |
| .word_size = sizeof(u16), |
| .word_count = EEPROM_SIZE / sizeof(u16), |
| }, |
| .bbp = { |
| .read = rt61pci_bbp_read, |
| .write = rt61pci_bbp_write, |
| .word_base = BBP_BASE, |
| .word_size = sizeof(u8), |
| .word_count = BBP_SIZE / sizeof(u8), |
| }, |
| .rf = { |
| .read = rt2x00_rf_read, |
| .write = rt61pci_rf_write, |
| .word_base = RF_BASE, |
| .word_size = sizeof(u32), |
| .word_count = RF_SIZE / sizeof(u32), |
| }, |
| }; |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| |
| static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®); |
| return rt2x00_get_field32(reg, MAC_CSR13_BIT5); |
| } |
| |
| #ifdef CONFIG_RT2X00_LIB_LEDS |
| static void rt61pci_brightness_set(struct led_classdev *led_cdev, |
| enum led_brightness brightness) |
| { |
| struct rt2x00_led *led = |
| container_of(led_cdev, struct rt2x00_led, led_dev); |
| unsigned int enabled = brightness != LED_OFF; |
| unsigned int a_mode = |
| (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); |
| unsigned int bg_mode = |
| (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); |
| |
| if (led->type == LED_TYPE_RADIO) { |
| rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, |
| MCU_LEDCS_RADIO_STATUS, enabled); |
| |
| rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, |
| (led->rt2x00dev->led_mcu_reg & 0xff), |
| ((led->rt2x00dev->led_mcu_reg >> 8))); |
| } else if (led->type == LED_TYPE_ASSOC) { |
| rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, |
| MCU_LEDCS_LINK_BG_STATUS, bg_mode); |
| rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, |
| MCU_LEDCS_LINK_A_STATUS, a_mode); |
| |
| rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, |
| (led->rt2x00dev->led_mcu_reg & 0xff), |
| ((led->rt2x00dev->led_mcu_reg >> 8))); |
| } else if (led->type == LED_TYPE_QUALITY) { |
| /* |
| * The brightness is divided into 6 levels (0 - 5), |
| * this means we need to convert the brightness |
| * argument into the matching level within that range. |
| */ |
| rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff, |
| brightness / (LED_FULL / 6), 0); |
| } |
| } |
| |
| static int rt61pci_blink_set(struct led_classdev *led_cdev, |
| unsigned long *delay_on, |
| unsigned long *delay_off) |
| { |
| struct rt2x00_led *led = |
| container_of(led_cdev, struct rt2x00_led, led_dev); |
| u32 reg; |
| |
| rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, ®); |
| rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); |
| rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); |
| rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg); |
| |
| return 0; |
| } |
| |
| static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_led *led, |
| enum led_type type) |
| { |
| led->rt2x00dev = rt2x00dev; |
| led->type = type; |
| led->led_dev.brightness_set = rt61pci_brightness_set; |
| led->led_dev.blink_set = rt61pci_blink_set; |
| led->flags = LED_INITIALIZED; |
| } |
| #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| |
| /* |
| * Configuration handlers. |
| */ |
| static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_crypto *crypto, |
| struct ieee80211_key_conf *key) |
| { |
| struct hw_key_entry key_entry; |
| struct rt2x00_field32 field; |
| u32 mask; |
| u32 reg; |
| |
| if (crypto->cmd == SET_KEY) { |
| /* |
| * rt2x00lib can't determine the correct free |
| * key_idx for shared keys. We have 1 register |
| * with key valid bits. The goal is simple, read |
| * the register, if that is full we have no slots |
| * left. |
| * Note that each BSS is allowed to have up to 4 |
| * shared keys, so put a mask over the allowed |
| * entries. |
| */ |
| mask = (0xf << crypto->bssidx); |
| |
| rt2x00pci_register_read(rt2x00dev, SEC_CSR0, ®); |
| reg &= mask; |
| |
| if (reg && reg == mask) |
| return -ENOSPC; |
| |
| key->hw_key_idx += reg ? ffz(reg) : 0; |
| |
| /* |
| * Upload key to hardware |
| */ |
| memcpy(key_entry.key, crypto->key, |
| sizeof(key_entry.key)); |
| memcpy(key_entry.tx_mic, crypto->tx_mic, |
| sizeof(key_entry.tx_mic)); |
| memcpy(key_entry.rx_mic, crypto->rx_mic, |
| sizeof(key_entry.rx_mic)); |
| |
| reg = SHARED_KEY_ENTRY(key->hw_key_idx); |
| rt2x00pci_register_multiwrite(rt2x00dev, reg, |
| &key_entry, sizeof(key_entry)); |
| |
| /* |
| * The cipher types are stored over 2 registers. |
| * bssidx 0 and 1 keys are stored in SEC_CSR1 and |
| * bssidx 1 and 2 keys are stored in SEC_CSR5. |
| * Using the correct defines correctly will cause overhead, |
| * so just calculate the correct offset. |
| */ |
| if (key->hw_key_idx < 8) { |
| field.bit_offset = (3 * key->hw_key_idx); |
| field.bit_mask = 0x7 << field.bit_offset; |
| |
| rt2x00pci_register_read(rt2x00dev, SEC_CSR1, ®); |
| rt2x00_set_field32(®, field, crypto->cipher); |
| rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg); |
| } else { |
| field.bit_offset = (3 * (key->hw_key_idx - 8)); |
| field.bit_mask = 0x7 << field.bit_offset; |
| |
| rt2x00pci_register_read(rt2x00dev, SEC_CSR5, ®); |
| rt2x00_set_field32(®, field, crypto->cipher); |
| rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg); |
| } |
| |
| /* |
| * The driver does not support the IV/EIV generation |
| * in hardware. However it doesn't support the IV/EIV |
| * inside the ieee80211 frame either, but requires it |
| * to be provided seperately for the descriptor. |
| * rt2x00lib will cut the IV/EIV data out of all frames |
| * given to us by mac80211, but we must tell mac80211 |
| * to generate the IV/EIV data. |
| */ |
| key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; |
| } |
| |
| /* |
| * SEC_CSR0 contains only single-bit fields to indicate |
| * a particular key is valid. Because using the FIELD32() |
| * defines directly will cause a lot of overhead we use |
| * a calculation to determine the correct bit directly. |
| */ |
| mask = 1 << key->hw_key_idx; |
| |
| rt2x00pci_register_read(rt2x00dev, SEC_CSR0, ®); |
| if (crypto->cmd == SET_KEY) |
| reg |= mask; |
| else if (crypto->cmd == DISABLE_KEY) |
| reg &= ~mask; |
| rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg); |
| |
| return 0; |
| } |
| |
| static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_crypto *crypto, |
| struct ieee80211_key_conf *key) |
| { |
| struct hw_pairwise_ta_entry addr_entry; |
| struct hw_key_entry key_entry; |
| u32 mask; |
| u32 reg; |
| |
| if (crypto->cmd == SET_KEY) { |
| /* |
| * rt2x00lib can't determine the correct free |
| * key_idx for pairwise keys. We have 2 registers |
| * with key valid bits. The goal is simple, read |
| * the first register, if that is full move to |
| * the next register. |
| * When both registers are full, we drop the key, |
| * otherwise we use the first invalid entry. |
| */ |
| rt2x00pci_register_read(rt2x00dev, SEC_CSR2, ®); |
| if (reg && reg == ~0) { |
| key->hw_key_idx = 32; |
| rt2x00pci_register_read(rt2x00dev, SEC_CSR3, ®); |
| if (reg && reg == ~0) |
| return -ENOSPC; |
| } |
| |
| key->hw_key_idx += reg ? ffz(reg) : 0; |
| |
| /* |
| * Upload key to hardware |
| */ |
| memcpy(key_entry.key, crypto->key, |
| sizeof(key_entry.key)); |
| memcpy(key_entry.tx_mic, crypto->tx_mic, |
| sizeof(key_entry.tx_mic)); |
| memcpy(key_entry.rx_mic, crypto->rx_mic, |
| sizeof(key_entry.rx_mic)); |
| |
| memset(&addr_entry, 0, sizeof(addr_entry)); |
| memcpy(&addr_entry, crypto->address, ETH_ALEN); |
| addr_entry.cipher = crypto->cipher; |
| |
| reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); |
| rt2x00pci_register_multiwrite(rt2x00dev, reg, |
| &key_entry, sizeof(key_entry)); |
| |
| reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); |
| rt2x00pci_register_multiwrite(rt2x00dev, reg, |
| &addr_entry, sizeof(addr_entry)); |
| |
| /* |
| * Enable pairwise lookup table for given BSS idx, |
| * without this received frames will not be decrypted |
| * by the hardware. |
| */ |
| rt2x00pci_register_read(rt2x00dev, SEC_CSR4, ®); |
| reg |= (1 << crypto->bssidx); |
| rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg); |
| |
| /* |
| * The driver does not support the IV/EIV generation |
| * in hardware. However it doesn't support the IV/EIV |
| * inside the ieee80211 frame either, but requires it |
| * to be provided seperately for the descriptor. |
| * rt2x00lib will cut the IV/EIV data out of all frames |
| * given to us by mac80211, but we must tell mac80211 |
| * to generate the IV/EIV data. |
| */ |
| key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; |
| } |
| |
| /* |
| * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate |
| * a particular key is valid. Because using the FIELD32() |
| * defines directly will cause a lot of overhead we use |
| * a calculation to determine the correct bit directly. |
| */ |
| if (key->hw_key_idx < 32) { |
| mask = 1 << key->hw_key_idx; |
| |
| rt2x00pci_register_read(rt2x00dev, SEC_CSR2, ®); |
| if (crypto->cmd == SET_KEY) |
| reg |= mask; |
| else if (crypto->cmd == DISABLE_KEY) |
| reg &= ~mask; |
| rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg); |
| } else { |
| mask = 1 << (key->hw_key_idx - 32); |
| |
| rt2x00pci_register_read(rt2x00dev, SEC_CSR3, ®); |
| if (crypto->cmd == SET_KEY) |
| reg |= mask; |
| else if (crypto->cmd == DISABLE_KEY) |
| reg &= ~mask; |
| rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg); |
| } |
| |
| return 0; |
| } |
| |
| static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev, |
| const unsigned int filter_flags) |
| { |
| u32 reg; |
| |
| /* |
| * Start configuration steps. |
| * Note that the version error will always be dropped |
| * and broadcast frames will always be accepted since |
| * there is no filter for it at this time. |
| */ |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, |
| !(filter_flags & FIF_FCSFAIL)); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, |
| !(filter_flags & FIF_PLCPFAIL)); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, |
| !(filter_flags & FIF_PROMISC_IN_BSS)); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, |
| !(filter_flags & FIF_PROMISC_IN_BSS) && |
| !rt2x00dev->intf_ap_count); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, |
| !(filter_flags & FIF_ALLMULTI)); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); |
| } |
| |
| static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_intf *intf, |
| struct rt2x00intf_conf *conf, |
| const unsigned int flags) |
| { |
| unsigned int beacon_base; |
| u32 reg; |
| |
| if (flags & CONFIG_UPDATE_TYPE) { |
| /* |
| * Clear current synchronisation setup. |
| * For the Beacon base registers we only need to clear |
| * the first byte since that byte contains the VALID and OWNER |
| * bits which (when set to 0) will invalidate the entire beacon. |
| */ |
| beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx); |
| rt2x00pci_register_write(rt2x00dev, beacon_base, 0); |
| |
| /* |
| * Enable synchronisation. |
| */ |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); |
| rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); |
| rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); |
| rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); |
| } |
| |
| if (flags & CONFIG_UPDATE_MAC) { |
| reg = le32_to_cpu(conf->mac[1]); |
| rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); |
| conf->mac[1] = cpu_to_le32(reg); |
| |
| rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2, |
| conf->mac, sizeof(conf->mac)); |
| } |
| |
| if (flags & CONFIG_UPDATE_BSSID) { |
| reg = le32_to_cpu(conf->bssid[1]); |
| rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); |
| conf->bssid[1] = cpu_to_le32(reg); |
| |
| rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4, |
| conf->bssid, sizeof(conf->bssid)); |
| } |
| } |
| |
| static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_erp *erp) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); |
| rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout); |
| rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®); |
| rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); |
| rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, |
| !!erp->short_preamble); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg); |
| |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates); |
| |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, |
| erp->beacon_int * 16); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®); |
| rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR8, ®); |
| rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); |
| rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); |
| rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg); |
| } |
| |
| static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev, |
| struct antenna_setup *ant) |
| { |
| u8 r3; |
| u8 r4; |
| u8 r77; |
| |
| rt61pci_bbp_read(rt2x00dev, 3, &r3); |
| rt61pci_bbp_read(rt2x00dev, 4, &r4); |
| rt61pci_bbp_read(rt2x00dev, 77, &r77); |
| |
| rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, |
| rt2x00_rf(&rt2x00dev->chip, RF5325)); |
| |
| /* |
| * Configure the RX antenna. |
| */ |
| switch (ant->rx) { |
| case ANTENNA_HW_DIVERSITY: |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); |
| rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, |
| (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ)); |
| break; |
| case ANTENNA_A: |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); |
| rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); |
| if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); |
| else |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); |
| break; |
| case ANTENNA_B: |
| default: |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); |
| rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); |
| if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); |
| else |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); |
| break; |
| } |
| |
| rt61pci_bbp_write(rt2x00dev, 77, r77); |
| rt61pci_bbp_write(rt2x00dev, 3, r3); |
| rt61pci_bbp_write(rt2x00dev, 4, r4); |
| } |
| |
| static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev, |
| struct antenna_setup *ant) |
| { |
| u8 r3; |
| u8 r4; |
| u8 r77; |
| |
| rt61pci_bbp_read(rt2x00dev, 3, &r3); |
| rt61pci_bbp_read(rt2x00dev, 4, &r4); |
| rt61pci_bbp_read(rt2x00dev, 77, &r77); |
| |
| rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, |
| rt2x00_rf(&rt2x00dev->chip, RF2529)); |
| rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, |
| !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)); |
| |
| /* |
| * Configure the RX antenna. |
| */ |
| switch (ant->rx) { |
| case ANTENNA_HW_DIVERSITY: |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); |
| break; |
| case ANTENNA_A: |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); |
| break; |
| case ANTENNA_B: |
| default: |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); |
| break; |
| } |
| |
| rt61pci_bbp_write(rt2x00dev, 77, r77); |
| rt61pci_bbp_write(rt2x00dev, 3, r3); |
| rt61pci_bbp_write(rt2x00dev, 4, r4); |
| } |
| |
| static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev, |
| const int p1, const int p2) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®); |
| |
| rt2x00_set_field32(®, MAC_CSR13_BIT4, p1); |
| rt2x00_set_field32(®, MAC_CSR13_BIT12, 0); |
| |
| rt2x00_set_field32(®, MAC_CSR13_BIT3, !p2); |
| rt2x00_set_field32(®, MAC_CSR13_BIT11, 0); |
| |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg); |
| } |
| |
| static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev, |
| struct antenna_setup *ant) |
| { |
| u8 r3; |
| u8 r4; |
| u8 r77; |
| |
| rt61pci_bbp_read(rt2x00dev, 3, &r3); |
| rt61pci_bbp_read(rt2x00dev, 4, &r4); |
| rt61pci_bbp_read(rt2x00dev, 77, &r77); |
| |
| /* |
| * Configure the RX antenna. |
| */ |
| switch (ant->rx) { |
| case ANTENNA_A: |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); |
| rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0); |
| break; |
| case ANTENNA_HW_DIVERSITY: |
| /* |
| * FIXME: Antenna selection for the rf 2529 is very confusing |
| * in the legacy driver. Just default to antenna B until the |
| * legacy code can be properly translated into rt2x00 code. |
| */ |
| case ANTENNA_B: |
| default: |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); |
| rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1); |
| break; |
| } |
| |
| rt61pci_bbp_write(rt2x00dev, 77, r77); |
| rt61pci_bbp_write(rt2x00dev, 3, r3); |
| rt61pci_bbp_write(rt2x00dev, 4, r4); |
| } |
| |
| struct antenna_sel { |
| u8 word; |
| /* |
| * value[0] -> non-LNA |
| * value[1] -> LNA |
| */ |
| u8 value[2]; |
| }; |
| |
| static const struct antenna_sel antenna_sel_a[] = { |
| { 96, { 0x58, 0x78 } }, |
| { 104, { 0x38, 0x48 } }, |
| { 75, { 0xfe, 0x80 } }, |
| { 86, { 0xfe, 0x80 } }, |
| { 88, { 0xfe, 0x80 } }, |
| { 35, { 0x60, 0x60 } }, |
| { 97, { 0x58, 0x58 } }, |
| { 98, { 0x58, 0x58 } }, |
| }; |
| |
| static const struct antenna_sel antenna_sel_bg[] = { |
| { 96, { 0x48, 0x68 } }, |
| { 104, { 0x2c, 0x3c } }, |
| { 75, { 0xfe, 0x80 } }, |
| { 86, { 0xfe, 0x80 } }, |
| { 88, { 0xfe, 0x80 } }, |
| { 35, { 0x50, 0x50 } }, |
| { 97, { 0x48, 0x48 } }, |
| { 98, { 0x48, 0x48 } }, |
| }; |
| |
| static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev, |
| struct antenna_setup *ant) |
| { |
| const struct antenna_sel *sel; |
| unsigned int lna; |
| unsigned int i; |
| u32 reg; |
| |
| /* |
| * We should never come here because rt2x00lib is supposed |
| * to catch this and send us the correct antenna explicitely. |
| */ |
| BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || |
| ant->tx == ANTENNA_SW_DIVERSITY); |
| |
| if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { |
| sel = antenna_sel_a; |
| lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags); |
| } else { |
| sel = antenna_sel_bg; |
| lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) |
| rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); |
| |
| rt2x00pci_register_read(rt2x00dev, PHY_CSR0, ®); |
| |
| rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, |
| rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); |
| rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, |
| rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); |
| |
| rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg); |
| |
| if (rt2x00_rf(&rt2x00dev->chip, RF5225) || |
| rt2x00_rf(&rt2x00dev->chip, RF5325)) |
| rt61pci_config_antenna_5x(rt2x00dev, ant); |
| else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) |
| rt61pci_config_antenna_2x(rt2x00dev, ant); |
| else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) { |
| if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) |
| rt61pci_config_antenna_2x(rt2x00dev, ant); |
| else |
| rt61pci_config_antenna_2529(rt2x00dev, ant); |
| } |
| } |
| |
| static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| u16 eeprom; |
| short lna_gain = 0; |
| |
| if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) { |
| if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) |
| lna_gain += 14; |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom); |
| lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); |
| } else { |
| if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) |
| lna_gain += 14; |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom); |
| lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); |
| } |
| |
| rt2x00dev->lna_gain = lna_gain; |
| } |
| |
| static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev, |
| struct rf_channel *rf, const int txpower) |
| { |
| u8 r3; |
| u8 r94; |
| u8 smart; |
| |
| rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); |
| rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); |
| |
| smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) || |
| rt2x00_rf(&rt2x00dev->chip, RF2527)); |
| |
| rt61pci_bbp_read(rt2x00dev, 3, &r3); |
| rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); |
| rt61pci_bbp_write(rt2x00dev, 3, r3); |
| |
| r94 = 6; |
| if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) |
| r94 += txpower - MAX_TXPOWER; |
| else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) |
| r94 += txpower; |
| rt61pci_bbp_write(rt2x00dev, 94, r94); |
| |
| rt61pci_rf_write(rt2x00dev, 1, rf->rf1); |
| rt61pci_rf_write(rt2x00dev, 2, rf->rf2); |
| rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); |
| rt61pci_rf_write(rt2x00dev, 4, rf->rf4); |
| |
| udelay(200); |
| |
| rt61pci_rf_write(rt2x00dev, 1, rf->rf1); |
| rt61pci_rf_write(rt2x00dev, 2, rf->rf2); |
| rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); |
| rt61pci_rf_write(rt2x00dev, 4, rf->rf4); |
| |
| udelay(200); |
| |
| rt61pci_rf_write(rt2x00dev, 1, rf->rf1); |
| rt61pci_rf_write(rt2x00dev, 2, rf->rf2); |
| rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); |
| rt61pci_rf_write(rt2x00dev, 4, rf->rf4); |
| |
| msleep(1); |
| } |
| |
| static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev, |
| const int txpower) |
| { |
| struct rf_channel rf; |
| |
| rt2x00_rf_read(rt2x00dev, 1, &rf.rf1); |
| rt2x00_rf_read(rt2x00dev, 2, &rf.rf2); |
| rt2x00_rf_read(rt2x00dev, 3, &rf.rf3); |
| rt2x00_rf_read(rt2x00dev, 4, &rf.rf4); |
| |
| rt61pci_config_channel(rt2x00dev, &rf, txpower); |
| } |
| |
| static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®); |
| rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, |
| libconf->conf->long_frame_max_tx_count); |
| rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, |
| libconf->conf->short_frame_max_tx_count); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg); |
| } |
| |
| static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| enum dev_state state = |
| (libconf->conf->flags & IEEE80211_CONF_PS) ? |
| STATE_SLEEP : STATE_AWAKE; |
| u32 reg; |
| |
| if (state == STATE_SLEEP) { |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR11, ®); |
| rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, |
| rt2x00dev->beacon_int - 10); |
| rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, |
| libconf->conf->listen_interval - 1); |
| rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); |
| |
| /* We must first disable autowake before it can be enabled */ |
| rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg); |
| |
| rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg); |
| |
| rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005); |
| rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c); |
| rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060); |
| |
| rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0); |
| } else { |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR11, ®); |
| rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); |
| rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); |
| rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); |
| rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg); |
| |
| rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007); |
| rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018); |
| rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020); |
| |
| rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0); |
| } |
| } |
| |
| static void rt61pci_config(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf, |
| const unsigned int flags) |
| { |
| /* Always recalculate LNA gain before changing configuration */ |
| rt61pci_config_lna_gain(rt2x00dev, libconf); |
| |
| if (flags & IEEE80211_CONF_CHANGE_CHANNEL) |
| rt61pci_config_channel(rt2x00dev, &libconf->rf, |
| libconf->conf->power_level); |
| if ((flags & IEEE80211_CONF_CHANGE_POWER) && |
| !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) |
| rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level); |
| if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) |
| rt61pci_config_retry_limit(rt2x00dev, libconf); |
| if (flags & IEEE80211_CONF_CHANGE_PS) |
| rt61pci_config_ps(rt2x00dev, libconf); |
| } |
| |
| /* |
| * Link tuning |
| */ |
| static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual) |
| { |
| u32 reg; |
| |
| /* |
| * Update FCS error count from register. |
| */ |
| rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®); |
| qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); |
| |
| /* |
| * Update False CCA count from register. |
| */ |
| rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®); |
| qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); |
| } |
| |
| static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual, u8 vgc_level) |
| { |
| if (qual->vgc_level != vgc_level) { |
| rt61pci_bbp_write(rt2x00dev, 17, vgc_level); |
| qual->vgc_level = vgc_level; |
| qual->vgc_level_reg = vgc_level; |
| } |
| } |
| |
| static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual) |
| { |
| rt61pci_set_vgc(rt2x00dev, qual, 0x20); |
| } |
| |
| static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual, const u32 count) |
| { |
| u8 up_bound; |
| u8 low_bound; |
| |
| /* |
| * Determine r17 bounds. |
| */ |
| if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) { |
| low_bound = 0x28; |
| up_bound = 0x48; |
| if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) { |
| low_bound += 0x10; |
| up_bound += 0x10; |
| } |
| } else { |
| low_bound = 0x20; |
| up_bound = 0x40; |
| if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) { |
| low_bound += 0x10; |
| up_bound += 0x10; |
| } |
| } |
| |
| /* |
| * If we are not associated, we should go straight to the |
| * dynamic CCA tuning. |
| */ |
| if (!rt2x00dev->intf_associated) |
| goto dynamic_cca_tune; |
| |
| /* |
| * Special big-R17 for very short distance |
| */ |
| if (qual->rssi >= -35) { |
| rt61pci_set_vgc(rt2x00dev, qual, 0x60); |
| return; |
| } |
| |
| /* |
| * Special big-R17 for short distance |
| */ |
| if (qual->rssi >= -58) { |
| rt61pci_set_vgc(rt2x00dev, qual, up_bound); |
| return; |
| } |
| |
| /* |
| * Special big-R17 for middle-short distance |
| */ |
| if (qual->rssi >= -66) { |
| rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10); |
| return; |
| } |
| |
| /* |
| * Special mid-R17 for middle distance |
| */ |
| if (qual->rssi >= -74) { |
| rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08); |
| return; |
| } |
| |
| /* |
| * Special case: Change up_bound based on the rssi. |
| * Lower up_bound when rssi is weaker then -74 dBm. |
| */ |
| up_bound -= 2 * (-74 - qual->rssi); |
| if (low_bound > up_bound) |
| up_bound = low_bound; |
| |
| if (qual->vgc_level > up_bound) { |
| rt61pci_set_vgc(rt2x00dev, qual, up_bound); |
| return; |
| } |
| |
| dynamic_cca_tune: |
| |
| /* |
| * r17 does not yet exceed upper limit, continue and base |
| * the r17 tuning on the false CCA count. |
| */ |
| if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) |
| rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level); |
| else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) |
| rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level); |
| } |
| |
| /* |
| * Firmware functions |
| */ |
| static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) |
| { |
| char *fw_name; |
| |
| switch (rt2x00dev->chip.rt) { |
| case RT2561: |
| fw_name = FIRMWARE_RT2561; |
| break; |
| case RT2561s: |
| fw_name = FIRMWARE_RT2561s; |
| break; |
| case RT2661: |
| fw_name = FIRMWARE_RT2661; |
| break; |
| default: |
| fw_name = NULL; |
| break; |
| } |
| |
| return fw_name; |
| } |
| |
| static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev, |
| const u8 *data, const size_t len) |
| { |
| u16 fw_crc; |
| u16 crc; |
| |
| /* |
| * Only support 8kb firmware files. |
| */ |
| if (len != 8192) |
| return FW_BAD_LENGTH; |
| |
| /* |
| * The last 2 bytes in the firmware array are the crc checksum itself, |
| * this means that we should never pass those 2 bytes to the crc |
| * algorithm. |
| */ |
| fw_crc = (data[len - 2] << 8 | data[len - 1]); |
| |
| /* |
| * Use the crc itu-t algorithm. |
| */ |
| crc = crc_itu_t(0, data, len - 2); |
| crc = crc_itu_t_byte(crc, 0); |
| crc = crc_itu_t_byte(crc, 0); |
| |
| return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; |
| } |
| |
| static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, |
| const u8 *data, const size_t len) |
| { |
| int i; |
| u32 reg; |
| |
| /* |
| * Wait for stable hardware. |
| */ |
| for (i = 0; i < 100; i++) { |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®); |
| if (reg) |
| break; |
| msleep(1); |
| } |
| |
| if (!reg) { |
| ERROR(rt2x00dev, "Unstable hardware.\n"); |
| return -EBUSY; |
| } |
| |
| /* |
| * Prepare MCU and mailbox for firmware loading. |
| */ |
| reg = 0; |
| rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); |
| rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); |
| rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); |
| rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); |
| rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0); |
| |
| /* |
| * Write firmware to device. |
| */ |
| reg = 0; |
| rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); |
| rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1); |
| rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); |
| |
| rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, |
| data, len); |
| |
| rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0); |
| rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); |
| |
| rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0); |
| rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); |
| |
| for (i = 0; i < 100; i++) { |
| rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, ®); |
| if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY)) |
| break; |
| msleep(1); |
| } |
| |
| if (i == 100) { |
| ERROR(rt2x00dev, "MCU Control register not ready.\n"); |
| return -EBUSY; |
| } |
| |
| /* |
| * Hardware needs another millisecond before it is ready. |
| */ |
| msleep(1); |
| |
| /* |
| * Reset MAC and BBP registers. |
| */ |
| reg = 0; |
| rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); |
| rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); |
| rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); |
| rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); |
| rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); |
| |
| return 0; |
| } |
| |
| /* |
| * Initialization functions. |
| */ |
| static bool rt61pci_get_entry_state(struct queue_entry *entry) |
| { |
| struct queue_entry_priv_pci *entry_priv = entry->priv_data; |
| u32 word; |
| |
| if (entry->queue->qid == QID_RX) { |
| rt2x00_desc_read(entry_priv->desc, 0, &word); |
| |
| return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); |
| } else { |
| rt2x00_desc_read(entry_priv->desc, 0, &word); |
| |
| return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || |
| rt2x00_get_field32(word, TXD_W0_VALID)); |
| } |
| } |
| |
| static void rt61pci_clear_entry(struct queue_entry *entry) |
| { |
| struct queue_entry_priv_pci *entry_priv = entry->priv_data; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| u32 word; |
| |
| if (entry->queue->qid == QID_RX) { |
| rt2x00_desc_read(entry_priv->desc, 5, &word); |
| rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS, |
| skbdesc->skb_dma); |
| rt2x00_desc_write(entry_priv->desc, 5, word); |
| |
| rt2x00_desc_read(entry_priv->desc, 0, &word); |
| rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); |
| rt2x00_desc_write(entry_priv->desc, 0, word); |
| } else { |
| rt2x00_desc_read(entry_priv->desc, 0, &word); |
| rt2x00_set_field32(&word, TXD_W0_VALID, 0); |
| rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); |
| rt2x00_desc_write(entry_priv->desc, 0, word); |
| } |
| } |
| |
| static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev) |
| { |
| struct queue_entry_priv_pci *entry_priv; |
| u32 reg; |
| |
| /* |
| * Initialize registers. |
| */ |
| rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, ®); |
| rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE, |
| rt2x00dev->tx[0].limit); |
| rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE, |
| rt2x00dev->tx[1].limit); |
| rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE, |
| rt2x00dev->tx[2].limit); |
| rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE, |
| rt2x00dev->tx[3].limit); |
| rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, ®); |
| rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE, |
| rt2x00dev->tx[0].desc_size / 4); |
| rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg); |
| |
| entry_priv = rt2x00dev->tx[0].entries[0].priv_data; |
| rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, ®); |
| rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER, |
| entry_priv->desc_dma); |
| rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg); |
| |
| entry_priv = rt2x00dev->tx[1].entries[0].priv_data; |
| rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, ®); |
| rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER, |
| entry_priv->desc_dma); |
| rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg); |
| |
| entry_priv = rt2x00dev->tx[2].entries[0].priv_data; |
| rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, ®); |
| rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER, |
| entry_priv->desc_dma); |
| rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg); |
| |
| entry_priv = rt2x00dev->tx[3].entries[0].priv_data; |
| rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, ®); |
| rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER, |
| entry_priv->desc_dma); |
| rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, ®); |
| rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit); |
| rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE, |
| rt2x00dev->rx->desc_size / 4); |
| rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4); |
| rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg); |
| |
| entry_priv = rt2x00dev->rx->entries[0].priv_data; |
| rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, ®); |
| rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER, |
| entry_priv->desc_dma); |
| rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, ®); |
| rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2); |
| rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2); |
| rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2); |
| rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2); |
| rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, ®); |
| rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1); |
| rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1); |
| rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1); |
| rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1); |
| rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®); |
| rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1); |
| rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg); |
| |
| return 0; |
| } |
| |
| static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); |
| rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); |
| rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); |
| rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, ®); |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg); |
| |
| /* |
| * CCK TXD BBP registers |
| */ |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, ®); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg); |
| |
| /* |
| * OFDM TXD BBP registers |
| */ |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, ®); |
| rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); |
| rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); |
| rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); |
| rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, ®); |
| rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); |
| rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); |
| rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); |
| rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, ®); |
| rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); |
| rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); |
| rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); |
| rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); |
| |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); |
| |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff); |
| |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®); |
| rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg); |
| |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c); |
| |
| if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) |
| return -EBUSY; |
| |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000); |
| |
| /* |
| * Invalidate all Shared Keys (SEC_CSR0), |
| * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) |
| */ |
| rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000); |
| rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000); |
| rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000); |
| |
| rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0); |
| rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c); |
| rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606); |
| rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08); |
| |
| rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404); |
| |
| rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200); |
| |
| rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); |
| |
| /* |
| * Clear all beacons |
| * For the Beacon base registers we only need to clear |
| * the first byte since that byte contains the VALID and OWNER |
| * bits which (when set to 0) will invalidate the entire beacon. |
| */ |
| rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0); |
| rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0); |
| rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0); |
| rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0); |
| |
| /* |
| * We must clear the error counters. |
| * These registers are cleared on read, |
| * so we may pass a useless variable to store the value. |
| */ |
| rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®); |
| rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®); |
| rt2x00pci_register_read(rt2x00dev, STA_CSR2, ®); |
| |
| /* |
| * Reset MAC and BBP registers. |
| */ |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); |
| rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); |
| rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); |
| rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); |
| rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); |
| rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); |
| |
| return 0; |
| } |
| |
| static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u8 value; |
| |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt61pci_bbp_read(rt2x00dev, 0, &value); |
| if ((value != 0xff) && (value != 0x00)) |
| return 0; |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); |
| return -EACCES; |
| } |
| |
| static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u16 eeprom; |
| u8 reg_id; |
| u8 value; |
| |
| if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev))) |
| return -EACCES; |
| |
| rt61pci_bbp_write(rt2x00dev, 3, 0x00); |
| rt61pci_bbp_write(rt2x00dev, 15, 0x30); |
| rt61pci_bbp_write(rt2x00dev, 21, 0xc8); |
| rt61pci_bbp_write(rt2x00dev, 22, 0x38); |
| rt61pci_bbp_write(rt2x00dev, 23, 0x06); |
| rt61pci_bbp_write(rt2x00dev, 24, 0xfe); |
| rt61pci_bbp_write(rt2x00dev, 25, 0x0a); |
| rt61pci_bbp_write(rt2x00dev, 26, 0x0d); |
| rt61pci_bbp_write(rt2x00dev, 34, 0x12); |
| rt61pci_bbp_write(rt2x00dev, 37, 0x07); |
| rt61pci_bbp_write(rt2x00dev, 39, 0xf8); |
| rt61pci_bbp_write(rt2x00dev, 41, 0x60); |
| rt61pci_bbp_write(rt2x00dev, 53, 0x10); |
| rt61pci_bbp_write(rt2x00dev, 54, 0x18); |
| rt61pci_bbp_write(rt2x00dev, 60, 0x10); |
| rt61pci_bbp_write(rt2x00dev, 61, 0x04); |
| rt61pci_bbp_write(rt2x00dev, 62, 0x04); |
| rt61pci_bbp_write(rt2x00dev, 75, 0xfe); |
| rt61pci_bbp_write(rt2x00dev, 86, 0xfe); |
| rt61pci_bbp_write(rt2x00dev, 88, 0xfe); |
| rt61pci_bbp_write(rt2x00dev, 90, 0x0f); |
| rt61pci_bbp_write(rt2x00dev, 99, 0x00); |
| rt61pci_bbp_write(rt2x00dev, 102, 0x16); |
| rt61pci_bbp_write(rt2x00dev, 107, 0x04); |
| |
| for (i = 0; i < EEPROM_BBP_SIZE; i++) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); |
| |
| if (eeprom != 0xffff && eeprom != 0x0000) { |
| reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); |
| value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); |
| rt61pci_bbp_write(rt2x00dev, reg_id, value); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Device state switch handlers. |
| */ |
| static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); |
| rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, |
| (state == STATE_RADIO_RX_OFF) || |
| (state == STATE_RADIO_RX_OFF_LINK)); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); |
| } |
| |
| static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| int mask = (state == STATE_RADIO_IRQ_OFF); |
| u32 reg; |
| |
| /* |
| * When interrupts are being enabled, the interrupt registers |
| * should clear the register to assure a clean state. |
| */ |
| if (state == STATE_RADIO_IRQ_ON) { |
| rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); |
| rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®); |
| rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg); |
| } |
| |
| /* |
| * Only toggle the interrupts bits we are going to use. |
| * Non-checked interrupt bits are disabled by default. |
| */ |
| rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); |
| rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff); |
| rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®); |
| rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask); |
| rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask); |
| rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask); |
| rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask); |
| rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask); |
| rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask); |
| rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask); |
| rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask); |
| rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); |
| } |
| |
| static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| /* |
| * Initialize all registers. |
| */ |
| if (unlikely(rt61pci_init_queues(rt2x00dev) || |
| rt61pci_init_registers(rt2x00dev) || |
| rt61pci_init_bbp(rt2x00dev))) |
| return -EIO; |
| |
| /* |
| * Enable RX. |
| */ |
| rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®); |
| rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1); |
| rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg); |
| |
| return 0; |
| } |
| |
| static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| /* |
| * Disable power |
| */ |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818); |
| } |
| |
| static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) |
| { |
| u32 reg; |
| unsigned int i; |
| char put_to_sleep; |
| |
| put_to_sleep = (state != STATE_AWAKE); |
| |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®); |
| rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); |
| rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); |
| rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg); |
| |
| /* |
| * Device is not guaranteed to be in the requested state yet. |
| * We must wait until the register indicates that the |
| * device has entered the correct state. |
| */ |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®); |
| state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE); |
| if (state == !put_to_sleep) |
| return 0; |
| msleep(10); |
| } |
| |
| return -EBUSY; |
| } |
| |
| static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| int retval = 0; |
| |
| switch (state) { |
| case STATE_RADIO_ON: |
| retval = rt61pci_enable_radio(rt2x00dev); |
| break; |
| case STATE_RADIO_OFF: |
| rt61pci_disable_radio(rt2x00dev); |
| break; |
| case STATE_RADIO_RX_ON: |
| case STATE_RADIO_RX_ON_LINK: |
| case STATE_RADIO_RX_OFF: |
| case STATE_RADIO_RX_OFF_LINK: |
| rt61pci_toggle_rx(rt2x00dev, state); |
| break; |
| case STATE_RADIO_IRQ_ON: |
| case STATE_RADIO_IRQ_OFF: |
| rt61pci_toggle_irq(rt2x00dev, state); |
| break; |
| case STATE_DEEP_SLEEP: |
| case STATE_SLEEP: |
| case STATE_STANDBY: |
| case STATE_AWAKE: |
| retval = rt61pci_set_state(rt2x00dev, state); |
| break; |
| default: |
| retval = -ENOTSUPP; |
| break; |
| } |
| |
| if (unlikely(retval)) |
| ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", |
| state, retval); |
| |
| return retval; |
| } |
| |
| /* |
| * TX descriptor initialization |
| */ |
| static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev, |
| struct sk_buff *skb, |
| struct txentry_desc *txdesc) |
| { |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); |
| __le32 *txd = skbdesc->desc; |
| u32 word; |
| |
| /* |
| * Start writing the descriptor words. |
| */ |
| rt2x00_desc_read(txd, 1, &word); |
| rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue); |
| rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs); |
| rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min); |
| rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max); |
| rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); |
| rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, |
| test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1); |
| rt2x00_desc_write(txd, 1, word); |
| |
| rt2x00_desc_read(txd, 2, &word); |
| rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal); |
| rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service); |
| rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low); |
| rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high); |
| rt2x00_desc_write(txd, 2, word); |
| |
| if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { |
| _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); |
| _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); |
| } |
| |
| rt2x00_desc_read(txd, 5, &word); |
| rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid); |
| rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, |
| skbdesc->entry->entry_idx); |
| rt2x00_set_field32(&word, TXD_W5_TX_POWER, |
| TXPOWER_TO_DEV(rt2x00dev->tx_power)); |
| rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); |
| rt2x00_desc_write(txd, 5, word); |
| |
| rt2x00_desc_read(txd, 6, &word); |
| rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS, |
| skbdesc->skb_dma); |
| rt2x00_desc_write(txd, 6, word); |
| |
| if (skbdesc->desc_len > TXINFO_SIZE) { |
| rt2x00_desc_read(txd, 11, &word); |
| rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len); |
| rt2x00_desc_write(txd, 11, word); |
| } |
| |
| rt2x00_desc_read(txd, 0, &word); |
| rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); |
| rt2x00_set_field32(&word, TXD_W0_VALID, 1); |
| rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, |
| test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_ACK, |
| test_bit(ENTRY_TXD_ACK, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, |
| test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_OFDM, |
| (txdesc->rate_mode == RATE_MODE_OFDM)); |
| rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs); |
| rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, |
| test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, |
| test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, |
| test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); |
| rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len); |
| rt2x00_set_field32(&word, TXD_W0_BURST, |
| test_bit(ENTRY_TXD_BURST, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); |
| rt2x00_desc_write(txd, 0, word); |
| } |
| |
| /* |
| * TX data initialization |
| */ |
| static void rt61pci_write_beacon(struct queue_entry *entry) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| unsigned int beacon_base; |
| u32 reg; |
| |
| /* |
| * Disable beaconing while we are reloading the beacon data, |
| * otherwise we might be sending out invalid data. |
| */ |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); |
| rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); |
| |
| /* |
| * Write entire beacon with descriptor to register. |
| */ |
| beacon_base = HW_BEACON_OFFSET(entry->entry_idx); |
| rt2x00pci_register_multiwrite(rt2x00dev, |
| beacon_base, |
| skbdesc->desc, skbdesc->desc_len); |
| rt2x00pci_register_multiwrite(rt2x00dev, |
| beacon_base + skbdesc->desc_len, |
| entry->skb->data, entry->skb->len); |
| |
| /* |
| * Clean up beacon skb. |
| */ |
| dev_kfree_skb_any(entry->skb); |
| entry->skb = NULL; |
| } |
| |
| static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev, |
| const enum data_queue_qid queue) |
| { |
| u32 reg; |
| |
| if (queue == QID_BEACON) { |
| /* |
| * For Wi-Fi faily generated beacons between participating |
| * stations. Set TBTT phase adaptive adjustment step to 8us. |
| */ |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); |
| |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); |
| if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) { |
| rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); |
| rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); |
| } |
| return; |
| } |
| |
| rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); |
| rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE)); |
| rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK)); |
| rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI)); |
| rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO)); |
| rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); |
| } |
| |
| static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev, |
| const enum data_queue_qid qid) |
| { |
| u32 reg; |
| |
| if (qid == QID_BEACON) { |
| rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0); |
| return; |
| } |
| |
| rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); |
| rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE)); |
| rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK)); |
| rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI)); |
| rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO)); |
| rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); |
| } |
| |
| /* |
| * RX control handlers |
| */ |
| static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) |
| { |
| u8 offset = rt2x00dev->lna_gain; |
| u8 lna; |
| |
| lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); |
| switch (lna) { |
| case 3: |
| offset += 90; |
| break; |
| case 2: |
| offset += 74; |
| break; |
| case 1: |
| offset += 64; |
| break; |
| default: |
| return 0; |
| } |
| |
| if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) { |
| if (lna == 3 || lna == 2) |
| offset += 10; |
| } |
| |
| return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; |
| } |
| |
| static void rt61pci_fill_rxdone(struct queue_entry *entry, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct queue_entry_priv_pci *entry_priv = entry->priv_data; |
| u32 word0; |
| u32 word1; |
| |
| rt2x00_desc_read(entry_priv->desc, 0, &word0); |
| rt2x00_desc_read(entry_priv->desc, 1, &word1); |
| |
| if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) |
| rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; |
| |
| if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) { |
| rxdesc->cipher = |
| rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); |
| rxdesc->cipher_status = |
| rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); |
| } |
| |
| if (rxdesc->cipher != CIPHER_NONE) { |
| _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]); |
| _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]); |
| rxdesc->dev_flags |= RXDONE_CRYPTO_IV; |
| |
| _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv); |
| rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; |
| |
| /* |
| * Hardware has stripped IV/EIV data from 802.11 frame during |
| * decryption. It has provided the data seperately but rt2x00lib |
| * should decide if it should be reinserted. |
| */ |
| rxdesc->flags |= RX_FLAG_IV_STRIPPED; |
| |
| /* |
| * FIXME: Legacy driver indicates that the frame does |
| * contain the Michael Mic. Unfortunately, in rt2x00 |
| * the MIC seems to be missing completely... |
| */ |
| rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; |
| |
| if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) |
| rxdesc->flags |= RX_FLAG_DECRYPTED; |
| else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) |
| rxdesc->flags |= RX_FLAG_MMIC_ERROR; |
| } |
| |
| /* |
| * Obtain the status about this packet. |
| * When frame was received with an OFDM bitrate, |
| * the signal is the PLCP value. If it was received with |
| * a CCK bitrate the signal is the rate in 100kbit/s. |
| */ |
| rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); |
| rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1); |
| rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); |
| |
| if (rt2x00_get_field32(word0, RXD_W0_OFDM)) |
| rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; |
| else |
| rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; |
| if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) |
| rxdesc->dev_flags |= RXDONE_MY_BSS; |
| } |
| |
| /* |
| * Interrupt functions. |
| */ |
| static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| struct queue_entry *entry; |
| struct queue_entry *entry_done; |
| struct queue_entry_priv_pci *entry_priv; |
| struct txdone_entry_desc txdesc; |
| u32 word; |
| u32 reg; |
| u32 old_reg; |
| int type; |
| int index; |
| |
| /* |
| * During each loop we will compare the freshly read |
| * STA_CSR4 register value with the value read from |
| * the previous loop. If the 2 values are equal then |
| * we should stop processing because the chance it |
| * quite big that the device has been unplugged and |
| * we risk going into an endless loop. |
| */ |
| old_reg = 0; |
| |
| while (1) { |
| rt2x00pci_register_read(rt2x00dev, STA_CSR4, ®); |
| if (!rt2x00_get_field32(reg, STA_CSR4_VALID)) |
| break; |
| |
| if (old_reg == reg) |
| break; |
| old_reg = reg; |
| |
| /* |
| * Skip this entry when it contains an invalid |
| * queue identication number. |
| */ |
| type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE); |
| queue = rt2x00queue_get_queue(rt2x00dev, type); |
| if (unlikely(!queue)) |
| continue; |
| |
| /* |
| * Skip this entry when it contains an invalid |
| * index number. |
| */ |
| index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE); |
| if (unlikely(index >= queue->limit)) |
| continue; |
| |
| entry = &queue->entries[index]; |
| entry_priv = entry->priv_data; |
| rt2x00_desc_read(entry_priv->desc, 0, &word); |
| |
| if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || |
| !rt2x00_get_field32(word, TXD_W0_VALID)) |
| return; |
| |
| entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); |
| while (entry != entry_done) { |
| /* Catch up. |
| * Just report any entries we missed as failed. |
| */ |
| WARNING(rt2x00dev, |
| "TX status report missed for entry %d\n", |
| entry_done->entry_idx); |
| |
| txdesc.flags = 0; |
| __set_bit(TXDONE_UNKNOWN, &txdesc.flags); |
| txdesc.retry = 0; |
| |
| rt2x00lib_txdone(entry_done, &txdesc); |
| entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); |
| } |
| |
| /* |
| * Obtain the status about this packet. |
| */ |
| txdesc.flags = 0; |
| switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) { |
| case 0: /* Success, maybe with retry */ |
| __set_bit(TXDONE_SUCCESS, &txdesc.flags); |
| break; |
| case 6: /* Failure, excessive retries */ |
| __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); |
| /* Don't break, this is a failed frame! */ |
| default: /* Failure */ |
| __set_bit(TXDONE_FAILURE, &txdesc.flags); |
| } |
| txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT); |
| |
| rt2x00lib_txdone(entry, &txdesc); |
| } |
| } |
| |
| static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance) |
| { |
| struct rt2x00_dev *rt2x00dev = dev_instance; |
| u32 reg_mcu; |
| u32 reg; |
| |
| /* |
| * Get the interrupt sources & saved to local variable. |
| * Write register value back to clear pending interrupts. |
| */ |
| rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®_mcu); |
| rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu); |
| |
| rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); |
| rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); |
| |
| if (!reg && !reg_mcu) |
| return IRQ_NONE; |
| |
| if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return IRQ_HANDLED; |
| |
| /* |
| * Handle interrupts, walk through all bits |
| * and run the tasks, the bits are checked in order of |
| * priority. |
| */ |
| |
| /* |
| * 1 - Rx ring done interrupt. |
| */ |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE)) |
| rt2x00pci_rxdone(rt2x00dev); |
| |
| /* |
| * 2 - Tx ring done interrupt. |
| */ |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE)) |
| rt61pci_txdone(rt2x00dev); |
| |
| /* |
| * 3 - Handle MCU command done. |
| */ |
| if (reg_mcu) |
| rt2x00pci_register_write(rt2x00dev, |
| M2H_CMD_DONE_CSR, 0xffffffff); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Device probe functions. |
| */ |
| static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| struct eeprom_93cx6 eeprom; |
| u32 reg; |
| u16 word; |
| u8 *mac; |
| s8 value; |
| |
| rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); |
| |
| eeprom.data = rt2x00dev; |
| eeprom.register_read = rt61pci_eepromregister_read; |
| eeprom.register_write = rt61pci_eepromregister_write; |
| eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ? |
| PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; |
| eeprom.reg_data_in = 0; |
| eeprom.reg_data_out = 0; |
| eeprom.reg_data_clock = 0; |
| eeprom.reg_chip_select = 0; |
| |
| eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, |
| EEPROM_SIZE / sizeof(u16)); |
| |
| /* |
| * Start validation of the data that has been read. |
| */ |
| mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); |
| if (!is_valid_ether_addr(mac)) { |
| random_ether_addr(mac); |
| EEPROM(rt2x00dev, "MAC: %pM\n", mac); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, |
| ANTENNA_B); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, |
| ANTENNA_B); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); |
| EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); |
| EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, |
| LED_MODE_DEFAULT); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); |
| EEPROM(rt2x00dev, "Led: 0x%04x\n", word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); |
| rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); |
| EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); |
| EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); |
| } else { |
| value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); |
| if (value < -10 || value > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); |
| value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); |
| if (value < -10 || value > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); |
| EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); |
| } else { |
| value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); |
| if (value < -10 || value > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); |
| value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); |
| if (value < -10 || value > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); |
| } |
| |
| return 0; |
| } |
| |
| static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| u16 value; |
| u16 eeprom; |
| |
| /* |
| * Read EEPROM word for configuration. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); |
| |
| /* |
| * Identify RF chipset. |
| */ |
| value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); |
| rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®); |
| rt2x00_set_chip_rf(rt2x00dev, value, reg); |
| |
| if (!rt2x00_rf(&rt2x00dev->chip, RF5225) && |
| !rt2x00_rf(&rt2x00dev->chip, RF5325) && |
| !rt2x00_rf(&rt2x00dev->chip, RF2527) && |
| !rt2x00_rf(&rt2x00dev->chip, RF2529)) { |
| ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * Determine number of antenna's. |
| */ |
| if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2) |
| __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags); |
| |
| /* |
| * Identify default antenna configuration. |
| */ |
| rt2x00dev->default_ant.tx = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); |
| rt2x00dev->default_ant.rx = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); |
| |
| /* |
| * Read the Frame type. |
| */ |
| if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) |
| __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags); |
| |
| /* |
| * Detect if this device has an hardware controlled radio. |
| */ |
| if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) |
| __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags); |
| |
| /* |
| * Read frequency offset and RF programming sequence. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); |
| if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ)) |
| __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags); |
| |
| rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); |
| |
| /* |
| * Read external LNA informations. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); |
| |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) |
| __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags); |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) |
| __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags); |
| |
| /* |
| * When working with a RF2529 chip without double antenna |
| * the antenna settings should be gathered from the NIC |
| * eeprom word. |
| */ |
| if (rt2x00_rf(&rt2x00dev->chip, RF2529) && |
| !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) { |
| rt2x00dev->default_ant.rx = |
| ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED); |
| rt2x00dev->default_ant.tx = |
| ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED); |
| |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) |
| rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY; |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY)) |
| rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY; |
| } |
| |
| /* |
| * Store led settings, for correct led behaviour. |
| * If the eeprom value is invalid, |
| * switch to default led mode. |
| */ |
| #ifdef CONFIG_RT2X00_LIB_LEDS |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom); |
| value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE); |
| |
| rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); |
| rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); |
| if (value == LED_MODE_SIGNAL_STRENGTH) |
| rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual, |
| LED_TYPE_QUALITY); |
| |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_GPIO_0)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_GPIO_1)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_GPIO_2)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_GPIO_3)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_GPIO_4)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, |
| rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_RDY_G)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_RDY_A)); |
| #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| |
| return 0; |
| } |
| |
| /* |
| * RF value list for RF5225 & RF5325 |
| * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled |
| */ |
| static const struct rf_channel rf_vals_noseq[] = { |
| { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, |
| { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, |
| { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, |
| { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, |
| { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, |
| { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, |
| { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, |
| { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, |
| { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, |
| { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, |
| { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, |
| { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, |
| { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, |
| { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, |
| |
| /* 802.11 UNI / HyperLan 2 */ |
| { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, |
| { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, |
| { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, |
| { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, |
| { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, |
| { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, |
| { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, |
| { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, |
| |
| /* 802.11 HyperLan 2 */ |
| { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, |
| { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, |
| { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, |
| { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, |
| { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, |
| { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, |
| { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, |
| { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, |
| { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, |
| { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, |
| |
| /* 802.11 UNII */ |
| { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, |
| { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, |
| { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, |
| { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, |
| { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, |
| { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, |
| |
| /* MMAC(Japan)J52 ch 34,38,42,46 */ |
| { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, |
| { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, |
| { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, |
| { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, |
| }; |
| |
| /* |
| * RF value list for RF5225 & RF5325 |
| * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled |
| */ |
| static const struct rf_channel rf_vals_seq[] = { |
| { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, |
| { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, |
| { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, |
| { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, |
| { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, |
| { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, |
| { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, |
| { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, |
| { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, |
| { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, |
| { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, |
| { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, |
| { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, |
| { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, |
| |
| /* 802.11 UNI / HyperLan 2 */ |
| { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 }, |
| { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 }, |
| { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b }, |
| { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b }, |
| { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 }, |
| { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 }, |
| { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 }, |
| { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b }, |
| |
| /* 802.11 HyperLan 2 */ |
| { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 }, |
| { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 }, |
| { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 }, |
| { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 }, |
| { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 }, |
| { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 }, |
| { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b }, |
| { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b }, |
| { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 }, |
| { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 }, |
| |
| /* 802.11 UNII */ |
| { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 }, |
| { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b }, |
| { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b }, |
| { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 }, |
| { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 }, |
| { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 }, |
| |
| /* MMAC(Japan)J52 ch 34,38,42,46 */ |
| { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b }, |
| { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 }, |
| { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b }, |
| { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 }, |
| }; |
| |
| static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) |
| { |
| struct hw_mode_spec *spec = &rt2x00dev->spec; |
| struct channel_info *info; |
| char *tx_power; |
| unsigned int i; |
| |
| /* |
| * Initialize all hw fields. |
| */ |
| rt2x00dev->hw->flags = |
| IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | |
| IEEE80211_HW_SIGNAL_DBM | |
| IEEE80211_HW_SUPPORTS_PS | |
| IEEE80211_HW_PS_NULLFUNC_STACK; |
| rt2x00dev->hw->extra_tx_headroom = 0; |
| |
| SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); |
| SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, |
| rt2x00_eeprom_addr(rt2x00dev, |
| EEPROM_MAC_ADDR_0)); |
| |
| /* |
| * Initialize hw_mode information. |
| */ |
| spec->supported_bands = SUPPORT_BAND_2GHZ; |
| spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; |
| |
| if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) { |
| spec->num_channels = 14; |
| spec->channels = rf_vals_noseq; |
| } else { |
| spec->num_channels = 14; |
| spec->channels = rf_vals_seq; |
| } |
| |
| if (rt2x00_rf(&rt2x00dev->chip, RF5225) || |
| rt2x00_rf(&rt2x00dev->chip, RF5325)) { |
| spec->supported_bands |= SUPPORT_BAND_5GHZ; |
| spec->num_channels = ARRAY_SIZE(rf_vals_seq); |
| } |
| |
| /* |
| * Create channel information array |
| */ |
| info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| spec->channels_info = info; |
| |
| tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); |
| for (i = 0; i < 14; i++) |
| info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]); |
| |
| if (spec->num_channels > 14) { |
| tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); |
| for (i = 14; i < spec->num_channels; i++) |
| info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]); |
| } |
| |
| return 0; |
| } |
| |
| static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval; |
| |
| /* |
| * Allocate eeprom data. |
| */ |
| retval = rt61pci_validate_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| retval = rt61pci_init_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * Initialize hw specifications. |
| */ |
| retval = rt61pci_probe_hw_mode(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * This device requires firmware and DMA mapped skbs. |
| */ |
| __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags); |
| __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags); |
| if (!modparam_nohwcrypt) |
| __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags); |
| |
| /* |
| * Set the rssi offset. |
| */ |
| rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; |
| |
| return 0; |
| } |
| |
| /* |
| * IEEE80211 stack callback functions. |
| */ |
| static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx, |
| const struct ieee80211_tx_queue_params *params) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| struct data_queue *queue; |
| struct rt2x00_field32 field; |
| int retval; |
| u32 reg; |
| u32 offset; |
| |
| /* |
| * First pass the configuration through rt2x00lib, that will |
| * update the queue settings and validate the input. After that |
| * we are free to update the registers based on the value |
| * in the queue parameter. |
| */ |
| retval = rt2x00mac_conf_tx(hw, queue_idx, params); |
| if (retval) |
| return retval; |
| |
| /* |
| * We only need to perform additional register initialization |
| * for WMM queues/ |
| */ |
| if (queue_idx >= 4) |
| return 0; |
| |
| queue = rt2x00queue_get_queue(rt2x00dev, queue_idx); |
| |
| /* Update WMM TXOP register */ |
| offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); |
| field.bit_offset = (queue_idx & 1) * 16; |
| field.bit_mask = 0xffff << field.bit_offset; |
| |
| rt2x00pci_register_read(rt2x00dev, offset, ®); |
| rt2x00_set_field32(®, field, queue->txop); |
| rt2x00pci_register_write(rt2x00dev, offset, reg); |
| |
| /* Update WMM registers */ |
| field.bit_offset = queue_idx * 4; |
| field.bit_mask = 0xf << field.bit_offset; |
| |
| rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, ®); |
| rt2x00_set_field32(®, field, queue->aifs); |
| rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, ®); |
| rt2x00_set_field32(®, field, queue->cw_min); |
| rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, ®); |
| rt2x00_set_field32(®, field, queue->cw_max); |
| rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg); |
| |
| return 0; |
| } |
| |
| static u64 rt61pci_get_tsf(struct ieee80211_hw *hw) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| u64 tsf; |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, ®); |
| tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; |
| rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, ®); |
| tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); |
| |
| return tsf; |
| } |
| |
| static const struct ieee80211_ops rt61pci_mac80211_ops = { |
| .tx = rt2x00mac_tx, |
| .start = rt2x00mac_start, |
| .stop = rt2x00mac_stop, |
| .add_interface = rt2x00mac_add_interface, |
| .remove_interface = rt2x00mac_remove_interface, |
| .config = rt2x00mac_config, |
| .configure_filter = rt2x00mac_configure_filter, |
| .set_key = rt2x00mac_set_key, |
| .get_stats = rt2x00mac_get_stats, |
| .bss_info_changed = rt2x00mac_bss_info_changed, |
| .conf_tx = rt61pci_conf_tx, |
| .get_tx_stats = rt2x00mac_get_tx_stats, |
| .get_tsf = rt61pci_get_tsf, |
| .rfkill_poll = rt2x00mac_rfkill_poll, |
| }; |
| |
| static const struct rt2x00lib_ops rt61pci_rt2x00_ops = { |
| .irq_handler = rt61pci_interrupt, |
| .probe_hw = rt61pci_probe_hw, |
| .get_firmware_name = rt61pci_get_firmware_name, |
| .check_firmware = rt61pci_check_firmware, |
| .load_firmware = rt61pci_load_firmware, |
| .initialize = rt2x00pci_initialize, |
| .uninitialize = rt2x00pci_uninitialize, |
| .get_entry_state = rt61pci_get_entry_state, |
| .clear_entry = rt61pci_clear_entry, |
| .set_device_state = rt61pci_set_device_state, |
| .rfkill_poll = rt61pci_rfkill_poll, |
| .link_stats = rt61pci_link_stats, |
| .reset_tuner = rt61pci_reset_tuner, |
| .link_tuner = rt61pci_link_tuner, |
| .write_tx_desc = rt61pci_write_tx_desc, |
| .write_tx_data = rt2x00pci_write_tx_data, |
| .write_beacon = rt61pci_write_beacon, |
| .kick_tx_queue = rt61pci_kick_tx_queue, |
| .kill_tx_queue = rt61pci_kill_tx_queue, |
| .fill_rxdone = rt61pci_fill_rxdone, |
| .config_shared_key = rt61pci_config_shared_key, |
| .config_pairwise_key = rt61pci_config_pairwise_key, |
| .config_filter = rt61pci_config_filter, |
| .config_intf = rt61pci_config_intf, |
| .config_erp = rt61pci_config_erp, |
| .config_ant = rt61pci_config_ant, |
| .config = rt61pci_config, |
| }; |
| |
| static const struct data_queue_desc rt61pci_queue_rx = { |
| .entry_num = RX_ENTRIES, |
| .data_size = DATA_FRAME_SIZE, |
| .desc_size = RXD_DESC_SIZE, |
| .priv_size = sizeof(struct queue_entry_priv_pci), |
| }; |
| |
| static const struct data_queue_desc rt61pci_queue_tx = { |
| .entry_num = TX_ENTRIES, |
| .data_size = DATA_FRAME_SIZE, |
| .desc_size = TXD_DESC_SIZE, |
| .priv_size = sizeof(struct queue_entry_priv_pci), |
| }; |
| |
| static const struct data_queue_desc rt61pci_queue_bcn = { |
| .entry_num = 4 * BEACON_ENTRIES, |
| .data_size = 0, /* No DMA required for beacons */ |
| .desc_size = TXINFO_SIZE, |
| .priv_size = sizeof(struct queue_entry_priv_pci), |
| }; |
| |
| static const struct rt2x00_ops rt61pci_ops = { |
| .name = KBUILD_MODNAME, |
| .max_sta_intf = 1, |
| .max_ap_intf = 4, |
| .eeprom_size = EEPROM_SIZE, |
| .rf_size = RF_SIZE, |
| .tx_queues = NUM_TX_QUEUES, |
| .rx = &rt61pci_queue_rx, |
| .tx = &rt61pci_queue_tx, |
| .bcn = &rt61pci_queue_bcn, |
| .lib = &rt61pci_rt2x00_ops, |
| .hw = &rt61pci_mac80211_ops, |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| .debugfs = &rt61pci_rt2x00debug, |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| }; |
| |
| /* |
| * RT61pci module information. |
| */ |
| static struct pci_device_id rt61pci_device_table[] = { |
| /* RT2561s */ |
| { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) }, |
| /* RT2561 v2 */ |
| { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) }, |
| /* RT2661 */ |
| { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) }, |
| { 0, } |
| }; |
| |
| MODULE_AUTHOR(DRV_PROJECT); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver."); |
| MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 " |
| "PCI & PCMCIA chipset based cards"); |
| MODULE_DEVICE_TABLE(pci, rt61pci_device_table); |
| MODULE_FIRMWARE(FIRMWARE_RT2561); |
| MODULE_FIRMWARE(FIRMWARE_RT2561s); |
| MODULE_FIRMWARE(FIRMWARE_RT2661); |
| MODULE_LICENSE("GPL"); |
| |
| static struct pci_driver rt61pci_driver = { |
| .name = KBUILD_MODNAME, |
| .id_table = rt61pci_device_table, |
| .probe = rt2x00pci_probe, |
| .remove = __devexit_p(rt2x00pci_remove), |
| .suspend = rt2x00pci_suspend, |
| .resume = rt2x00pci_resume, |
| }; |
| |
| static int __init rt61pci_init(void) |
| { |
| return pci_register_driver(&rt61pci_driver); |
| } |
| |
| static void __exit rt61pci_exit(void) |
| { |
| pci_unregister_driver(&rt61pci_driver); |
| } |
| |
| module_init(rt61pci_init); |
| module_exit(rt61pci_exit); |