| /* $Id: urem.S,v 1.4 1996/09/30 02:22:42 davem Exp $ |
| * urem.S: This routine was taken from glibc-1.09 and is covered |
| * by the GNU Library General Public License Version 2. |
| */ |
| |
| /* This file is generated from divrem.m4; DO NOT EDIT! */ |
| /* |
| * Division and remainder, from Appendix E of the Sparc Version 8 |
| * Architecture Manual, with fixes from Gordon Irlam. |
| */ |
| |
| /* |
| * Input: dividend and divisor in %o0 and %o1 respectively. |
| * |
| * m4 parameters: |
| * .urem name of function to generate |
| * rem rem=div => %o0 / %o1; rem=rem => %o0 % %o1 |
| * false false=true => signed; false=false => unsigned |
| * |
| * Algorithm parameters: |
| * N how many bits per iteration we try to get (4) |
| * WORDSIZE total number of bits (32) |
| * |
| * Derived constants: |
| * TOPBITS number of bits in the top decade of a number |
| * |
| * Important variables: |
| * Q the partial quotient under development (initially 0) |
| * R the remainder so far, initially the dividend |
| * ITER number of main division loop iterations required; |
| * equal to ceil(log2(quotient) / N). Note that this |
| * is the log base (2^N) of the quotient. |
| * V the current comparand, initially divisor*2^(ITER*N-1) |
| * |
| * Cost: |
| * Current estimate for non-large dividend is |
| * ceil(log2(quotient) / N) * (10 + 7N/2) + C |
| * A large dividend is one greater than 2^(31-TOPBITS) and takes a |
| * different path, as the upper bits of the quotient must be developed |
| * one bit at a time. |
| */ |
| |
| .globl .urem |
| .globl _Urem |
| .urem: |
| _Urem: /* needed for export */ |
| |
| ! Ready to divide. Compute size of quotient; scale comparand. |
| orcc %o1, %g0, %o5 |
| bne 1f |
| mov %o0, %o3 |
| |
| ! Divide by zero trap. If it returns, return 0 (about as |
| ! wrong as possible, but that is what SunOS does...). |
| ta ST_DIV0 |
| retl |
| clr %o0 |
| |
| 1: |
| cmp %o3, %o5 ! if %o1 exceeds %o0, done |
| blu Lgot_result ! (and algorithm fails otherwise) |
| clr %o2 |
| |
| sethi %hi(1 << (32 - 4 - 1)), %g1 |
| |
| cmp %o3, %g1 |
| blu Lnot_really_big |
| clr %o4 |
| |
| ! Here the dividend is >= 2**(31-N) or so. We must be careful here, |
| ! as our usual N-at-a-shot divide step will cause overflow and havoc. |
| ! The number of bits in the result here is N*ITER+SC, where SC <= N. |
| ! Compute ITER in an unorthodox manner: know we need to shift V into |
| ! the top decade: so do not even bother to compare to R. |
| 1: |
| cmp %o5, %g1 |
| bgeu 3f |
| mov 1, %g7 |
| |
| sll %o5, 4, %o5 |
| |
| b 1b |
| add %o4, 1, %o4 |
| |
| ! Now compute %g7. |
| 2: |
| addcc %o5, %o5, %o5 |
| bcc Lnot_too_big |
| add %g7, 1, %g7 |
| |
| ! We get here if the %o1 overflowed while shifting. |
| ! This means that %o3 has the high-order bit set. |
| ! Restore %o5 and subtract from %o3. |
| sll %g1, 4, %g1 ! high order bit |
| srl %o5, 1, %o5 ! rest of %o5 |
| add %o5, %g1, %o5 |
| |
| b Ldo_single_div |
| sub %g7, 1, %g7 |
| |
| Lnot_too_big: |
| 3: |
| cmp %o5, %o3 |
| blu 2b |
| nop |
| |
| be Ldo_single_div |
| nop |
| /* NB: these are commented out in the V8-Sparc manual as well */ |
| /* (I do not understand this) */ |
| ! %o5 > %o3: went too far: back up 1 step |
| ! srl %o5, 1, %o5 |
| ! dec %g7 |
| ! do single-bit divide steps |
| ! |
| ! We have to be careful here. We know that %o3 >= %o5, so we can do the |
| ! first divide step without thinking. BUT, the others are conditional, |
| ! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high- |
| ! order bit set in the first step, just falling into the regular |
| ! division loop will mess up the first time around. |
| ! So we unroll slightly... |
| Ldo_single_div: |
| subcc %g7, 1, %g7 |
| bl Lend_regular_divide |
| nop |
| |
| sub %o3, %o5, %o3 |
| mov 1, %o2 |
| |
| b Lend_single_divloop |
| nop |
| Lsingle_divloop: |
| sll %o2, 1, %o2 |
| bl 1f |
| srl %o5, 1, %o5 |
| ! %o3 >= 0 |
| sub %o3, %o5, %o3 |
| b 2f |
| add %o2, 1, %o2 |
| 1: ! %o3 < 0 |
| add %o3, %o5, %o3 |
| sub %o2, 1, %o2 |
| 2: |
| Lend_single_divloop: |
| subcc %g7, 1, %g7 |
| bge Lsingle_divloop |
| tst %o3 |
| |
| b,a Lend_regular_divide |
| |
| Lnot_really_big: |
| 1: |
| sll %o5, 4, %o5 |
| |
| cmp %o5, %o3 |
| bleu 1b |
| addcc %o4, 1, %o4 |
| |
| be Lgot_result |
| sub %o4, 1, %o4 |
| |
| tst %o3 ! set up for initial iteration |
| Ldivloop: |
| sll %o2, 4, %o2 |
| ! depth 1, accumulated bits 0 |
| bl L.1.16 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| ! depth 2, accumulated bits 1 |
| bl L.2.17 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| ! depth 3, accumulated bits 3 |
| bl L.3.19 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| ! depth 4, accumulated bits 7 |
| bl L.4.23 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (7*2+1), %o2 |
| |
| L.4.23: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (7*2-1), %o2 |
| |
| L.3.19: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| ! depth 4, accumulated bits 5 |
| bl L.4.21 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (5*2+1), %o2 |
| |
| L.4.21: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (5*2-1), %o2 |
| |
| L.2.17: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| ! depth 3, accumulated bits 1 |
| bl L.3.17 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| ! depth 4, accumulated bits 3 |
| bl L.4.19 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (3*2+1), %o2 |
| |
| L.4.19: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (3*2-1), %o2 |
| |
| L.3.17: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| ! depth 4, accumulated bits 1 |
| bl L.4.17 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (1*2+1), %o2 |
| |
| L.4.17: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (1*2-1), %o2 |
| |
| L.1.16: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| ! depth 2, accumulated bits -1 |
| bl L.2.15 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| ! depth 3, accumulated bits -1 |
| bl L.3.15 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| ! depth 4, accumulated bits -1 |
| bl L.4.15 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (-1*2+1), %o2 |
| |
| L.4.15: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (-1*2-1), %o2 |
| |
| L.3.15: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| ! depth 4, accumulated bits -3 |
| bl L.4.13 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (-3*2+1), %o2 |
| |
| L.4.13: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (-3*2-1), %o2 |
| |
| L.2.15: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| ! depth 3, accumulated bits -3 |
| bl L.3.13 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| ! depth 4, accumulated bits -5 |
| bl L.4.11 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (-5*2+1), %o2 |
| |
| L.4.11: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (-5*2-1), %o2 |
| |
| L.3.13: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| ! depth 4, accumulated bits -7 |
| bl L.4.9 |
| srl %o5,1,%o5 |
| ! remainder is positive |
| subcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (-7*2+1), %o2 |
| |
| L.4.9: |
| ! remainder is negative |
| addcc %o3,%o5,%o3 |
| b 9f |
| add %o2, (-7*2-1), %o2 |
| |
| 9: |
| Lend_regular_divide: |
| subcc %o4, 1, %o4 |
| bge Ldivloop |
| tst %o3 |
| |
| bl,a Lgot_result |
| ! non-restoring fixup here (one instruction only!) |
| add %o3, %o1, %o3 |
| |
| Lgot_result: |
| |
| retl |
| mov %o3, %o0 |
| |
| .globl .urem_patch |
| .urem_patch: |
| wr %g0, 0x0, %y |
| nop |
| nop |
| nop |
| udiv %o0, %o1, %o2 |
| umul %o2, %o1, %o2 |
| retl |
| sub %o0, %o2, %o0 |