| #ifndef _IDE_TIMING_H |
| #define _IDE_TIMING_H |
| |
| /* |
| * $Id: ide-timing.h,v 1.6 2001/12/23 22:47:56 vojtech Exp $ |
| * |
| * Copyright (c) 1999-2001 Vojtech Pavlik |
| */ |
| |
| /* |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * Should you need to contact me, the author, you can do so either by |
| * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail: |
| * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/hdreg.h> |
| |
| #define XFER_PIO_5 0x0d |
| #define XFER_UDMA_SLOW 0x4f |
| |
| struct ide_timing { |
| short mode; |
| short setup; /* t1 */ |
| short act8b; /* t2 for 8-bit io */ |
| short rec8b; /* t2i for 8-bit io */ |
| short cyc8b; /* t0 for 8-bit io */ |
| short active; /* t2 or tD */ |
| short recover; /* t2i or tK */ |
| short cycle; /* t0 */ |
| short udma; /* t2CYCTYP/2 */ |
| }; |
| |
| /* |
| * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). |
| * These were taken from ATA/ATAPI-6 standard, rev 0a, except |
| * for PIO 5, which is a nonstandard extension and UDMA6, which |
| * is currently supported only by Maxtor drives. |
| */ |
| |
| static struct ide_timing ide_timing[] = { |
| |
| { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, |
| { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, |
| { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, |
| { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, |
| |
| { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, |
| { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, |
| { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, |
| |
| { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, |
| |
| { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, |
| { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, |
| { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, |
| |
| { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, |
| { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, |
| { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, |
| |
| { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, |
| { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, |
| { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, |
| |
| { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, |
| { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, |
| { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, |
| |
| { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, |
| |
| { -1 } |
| }; |
| |
| #define IDE_TIMING_SETUP 0x01 |
| #define IDE_TIMING_ACT8B 0x02 |
| #define IDE_TIMING_REC8B 0x04 |
| #define IDE_TIMING_CYC8B 0x08 |
| #define IDE_TIMING_8BIT 0x0e |
| #define IDE_TIMING_ACTIVE 0x10 |
| #define IDE_TIMING_RECOVER 0x20 |
| #define IDE_TIMING_CYCLE 0x40 |
| #define IDE_TIMING_UDMA 0x80 |
| #define IDE_TIMING_ALL 0xff |
| |
| #define FIT(v,vmin,vmax) max_t(short,min_t(short,v,vmax),vmin) |
| #define ENOUGH(v,unit) (((v)-1)/(unit)+1) |
| #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) |
| |
| #define XFER_MODE 0xf0 |
| #define XFER_MWDMA 0x20 |
| #define XFER_EPIO 0x01 |
| #define XFER_PIO 0x00 |
| |
| static short ide_find_best_pio_mode(ide_drive_t *drive) |
| { |
| struct hd_driveid *id = drive->id; |
| short best = 0; |
| |
| /* EIDE PIO modes */ |
| if ((id->field_valid & 2) && (id->capability & 8)) { |
| if ((best = (drive->id->eide_pio_modes & 4) ? XFER_PIO_5 : |
| (drive->id->eide_pio_modes & 2) ? XFER_PIO_4 : |
| (drive->id->eide_pio_modes & 1) ? XFER_PIO_3 : 0)) return best; |
| } |
| |
| return XFER_PIO_0 + min_t(u8, id->tPIO, 2); |
| } |
| |
| static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q, int T, int UT) |
| { |
| q->setup = EZ(t->setup * 1000, T); |
| q->act8b = EZ(t->act8b * 1000, T); |
| q->rec8b = EZ(t->rec8b * 1000, T); |
| q->cyc8b = EZ(t->cyc8b * 1000, T); |
| q->active = EZ(t->active * 1000, T); |
| q->recover = EZ(t->recover * 1000, T); |
| q->cycle = EZ(t->cycle * 1000, T); |
| q->udma = EZ(t->udma * 1000, UT); |
| } |
| |
| static void ide_timing_merge(struct ide_timing *a, struct ide_timing *b, struct ide_timing *m, unsigned int what) |
| { |
| if (what & IDE_TIMING_SETUP ) m->setup = max(a->setup, b->setup); |
| if (what & IDE_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); |
| if (what & IDE_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); |
| if (what & IDE_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); |
| if (what & IDE_TIMING_ACTIVE ) m->active = max(a->active, b->active); |
| if (what & IDE_TIMING_RECOVER) m->recover = max(a->recover, b->recover); |
| if (what & IDE_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); |
| if (what & IDE_TIMING_UDMA ) m->udma = max(a->udma, b->udma); |
| } |
| |
| static struct ide_timing* ide_timing_find_mode(short speed) |
| { |
| struct ide_timing *t; |
| |
| for (t = ide_timing; t->mode != speed; t++) |
| if (t->mode < 0) |
| return NULL; |
| return t; |
| } |
| |
| static int ide_timing_compute(ide_drive_t *drive, short speed, struct ide_timing *t, int T, int UT) |
| { |
| struct hd_driveid *id = drive->id; |
| struct ide_timing *s, p; |
| |
| /* |
| * Find the mode. |
| */ |
| |
| if (!(s = ide_timing_find_mode(speed))) |
| return -EINVAL; |
| |
| /* |
| * Copy the timing from the table. |
| */ |
| |
| *t = *s; |
| |
| /* |
| * If the drive is an EIDE drive, it can tell us it needs extended |
| * PIO/MWDMA cycle timing. |
| */ |
| |
| if (id && id->field_valid & 2) { /* EIDE drive */ |
| |
| memset(&p, 0, sizeof(p)); |
| |
| switch (speed & XFER_MODE) { |
| |
| case XFER_PIO: |
| if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = id->eide_pio; |
| else p.cycle = p.cyc8b = id->eide_pio_iordy; |
| break; |
| |
| case XFER_MWDMA: |
| p.cycle = id->eide_dma_min; |
| break; |
| } |
| |
| ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B); |
| } |
| |
| /* |
| * Convert the timing to bus clock counts. |
| */ |
| |
| ide_timing_quantize(t, t, T, UT); |
| |
| /* |
| * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T |
| * and some other commands. We have to ensure that the DMA cycle timing is |
| * slower/equal than the fastest PIO timing. |
| */ |
| |
| if ((speed & XFER_MODE) != XFER_PIO) { |
| ide_timing_compute(drive, ide_find_best_pio_mode(drive), &p, T, UT); |
| ide_timing_merge(&p, t, t, IDE_TIMING_ALL); |
| } |
| |
| /* |
| * Lenghten active & recovery time so that cycle time is correct. |
| */ |
| |
| if (t->act8b + t->rec8b < t->cyc8b) { |
| t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; |
| t->rec8b = t->cyc8b - t->act8b; |
| } |
| |
| if (t->active + t->recover < t->cycle) { |
| t->active += (t->cycle - (t->active + t->recover)) / 2; |
| t->recover = t->cycle - t->active; |
| } |
| |
| return 0; |
| } |
| |
| #endif |