| /****************************************************************************** |
| * |
| * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH |
| * Copyright(c) 2016 Intel Deutschland GmbH |
| * |
| * Portions of this file are derived from the ipw3945 project, as well |
| * as portions of the ieee80211 subsystem header files. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA |
| * |
| * The full GNU General Public License is included in this distribution in the |
| * file called LICENSE. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <linuxwifi@intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| *****************************************************************************/ |
| #include <linux/etherdevice.h> |
| #include <linux/ieee80211.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/pm_runtime.h> |
| #include <net/ip6_checksum.h> |
| #include <net/tso.h> |
| |
| #include "iwl-debug.h" |
| #include "iwl-csr.h" |
| #include "iwl-prph.h" |
| #include "iwl-io.h" |
| #include "iwl-scd.h" |
| #include "iwl-op-mode.h" |
| #include "internal.h" |
| /* FIXME: need to abstract out TX command (once we know what it looks like) */ |
| #include "dvm/commands.h" |
| |
| #define IWL_TX_CRC_SIZE 4 |
| #define IWL_TX_DELIMITER_SIZE 4 |
| |
| /*************** DMA-QUEUE-GENERAL-FUNCTIONS ***** |
| * DMA services |
| * |
| * Theory of operation |
| * |
| * A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer |
| * of buffer descriptors, each of which points to one or more data buffers for |
| * the device to read from or fill. Driver and device exchange status of each |
| * queue via "read" and "write" pointers. Driver keeps minimum of 2 empty |
| * entries in each circular buffer, to protect against confusing empty and full |
| * queue states. |
| * |
| * The device reads or writes the data in the queues via the device's several |
| * DMA/FIFO channels. Each queue is mapped to a single DMA channel. |
| * |
| * For Tx queue, there are low mark and high mark limits. If, after queuing |
| * the packet for Tx, free space become < low mark, Tx queue stopped. When |
| * reclaiming packets (on 'tx done IRQ), if free space become > high mark, |
| * Tx queue resumed. |
| * |
| ***************************************************/ |
| |
| static int iwl_queue_space(const struct iwl_txq *q) |
| { |
| unsigned int max; |
| unsigned int used; |
| |
| /* |
| * To avoid ambiguity between empty and completely full queues, there |
| * should always be less than TFD_QUEUE_SIZE_MAX elements in the queue. |
| * If q->n_window is smaller than TFD_QUEUE_SIZE_MAX, there is no need |
| * to reserve any queue entries for this purpose. |
| */ |
| if (q->n_window < TFD_QUEUE_SIZE_MAX) |
| max = q->n_window; |
| else |
| max = TFD_QUEUE_SIZE_MAX - 1; |
| |
| /* |
| * TFD_QUEUE_SIZE_MAX is a power of 2, so the following is equivalent to |
| * modulo by TFD_QUEUE_SIZE_MAX and is well defined. |
| */ |
| used = (q->write_ptr - q->read_ptr) & (TFD_QUEUE_SIZE_MAX - 1); |
| |
| if (WARN_ON(used > max)) |
| return 0; |
| |
| return max - used; |
| } |
| |
| /* |
| * iwl_queue_init - Initialize queue's high/low-water and read/write indexes |
| */ |
| static int iwl_queue_init(struct iwl_txq *q, int slots_num, u32 id) |
| { |
| q->n_window = slots_num; |
| q->id = id; |
| |
| /* slots_num must be power-of-two size, otherwise |
| * get_cmd_index is broken. */ |
| if (WARN_ON(!is_power_of_2(slots_num))) |
| return -EINVAL; |
| |
| q->low_mark = q->n_window / 4; |
| if (q->low_mark < 4) |
| q->low_mark = 4; |
| |
| q->high_mark = q->n_window / 8; |
| if (q->high_mark < 2) |
| q->high_mark = 2; |
| |
| q->write_ptr = 0; |
| q->read_ptr = 0; |
| |
| return 0; |
| } |
| |
| static int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans, |
| struct iwl_dma_ptr *ptr, size_t size) |
| { |
| if (WARN_ON(ptr->addr)) |
| return -EINVAL; |
| |
| ptr->addr = dma_alloc_coherent(trans->dev, size, |
| &ptr->dma, GFP_KERNEL); |
| if (!ptr->addr) |
| return -ENOMEM; |
| ptr->size = size; |
| return 0; |
| } |
| |
| static void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, |
| struct iwl_dma_ptr *ptr) |
| { |
| if (unlikely(!ptr->addr)) |
| return; |
| |
| dma_free_coherent(trans->dev, ptr->size, ptr->addr, ptr->dma); |
| memset(ptr, 0, sizeof(*ptr)); |
| } |
| |
| static void iwl_pcie_txq_stuck_timer(unsigned long data) |
| { |
| struct iwl_txq *txq = (void *)data; |
| struct iwl_trans_pcie *trans_pcie = txq->trans_pcie; |
| struct iwl_trans *trans = iwl_trans_pcie_get_trans(trans_pcie); |
| |
| spin_lock(&txq->lock); |
| /* check if triggered erroneously */ |
| if (txq->read_ptr == txq->write_ptr) { |
| spin_unlock(&txq->lock); |
| return; |
| } |
| spin_unlock(&txq->lock); |
| |
| IWL_ERR(trans, "Queue %d stuck for %u ms.\n", txq->id, |
| jiffies_to_msecs(txq->wd_timeout)); |
| |
| iwl_trans_pcie_log_scd_error(trans, txq); |
| |
| iwl_force_nmi(trans); |
| } |
| |
| /* |
| * iwl_pcie_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array |
| */ |
| static void iwl_pcie_txq_update_byte_cnt_tbl(struct iwl_trans *trans, |
| struct iwl_txq *txq, u16 byte_cnt, |
| int num_tbs) |
| { |
| struct iwlagn_scd_bc_tbl *scd_bc_tbl; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int write_ptr = txq->write_ptr; |
| int txq_id = txq->id; |
| u8 sec_ctl = 0; |
| u16 len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE; |
| __le16 bc_ent; |
| struct iwl_tx_cmd *tx_cmd = |
| (void *)txq->entries[txq->write_ptr].cmd->payload; |
| |
| scd_bc_tbl = trans_pcie->scd_bc_tbls.addr; |
| |
| sec_ctl = tx_cmd->sec_ctl; |
| |
| switch (sec_ctl & TX_CMD_SEC_MSK) { |
| case TX_CMD_SEC_CCM: |
| len += IEEE80211_CCMP_MIC_LEN; |
| break; |
| case TX_CMD_SEC_TKIP: |
| len += IEEE80211_TKIP_ICV_LEN; |
| break; |
| case TX_CMD_SEC_WEP: |
| len += IEEE80211_WEP_IV_LEN + IEEE80211_WEP_ICV_LEN; |
| break; |
| } |
| if (trans_pcie->bc_table_dword) |
| len = DIV_ROUND_UP(len, 4); |
| |
| if (WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX)) |
| return; |
| |
| if (trans->cfg->use_tfh) { |
| u8 filled_tfd_size = offsetof(struct iwl_tfh_tfd, tbs) + |
| num_tbs * sizeof(struct iwl_tfh_tb); |
| /* |
| * filled_tfd_size contains the number of filled bytes in the |
| * TFD. |
| * Dividing it by 64 will give the number of chunks to fetch |
| * to SRAM- 0 for one chunk, 1 for 2 and so on. |
| * If, for example, TFD contains only 3 TBs then 32 bytes |
| * of the TFD are used, and only one chunk of 64 bytes should |
| * be fetched |
| */ |
| u8 num_fetch_chunks = DIV_ROUND_UP(filled_tfd_size, 64) - 1; |
| |
| bc_ent = cpu_to_le16(len | (num_fetch_chunks << 12)); |
| } else { |
| u8 sta_id = tx_cmd->sta_id; |
| |
| bc_ent = cpu_to_le16(len | (sta_id << 12)); |
| } |
| |
| scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent; |
| |
| if (write_ptr < TFD_QUEUE_SIZE_BC_DUP) |
| scd_bc_tbl[txq_id]. |
| tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] = bc_ent; |
| } |
| |
| static void iwl_pcie_txq_inval_byte_cnt_tbl(struct iwl_trans *trans, |
| struct iwl_txq *txq) |
| { |
| struct iwl_trans_pcie *trans_pcie = |
| IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwlagn_scd_bc_tbl *scd_bc_tbl = trans_pcie->scd_bc_tbls.addr; |
| int txq_id = txq->id; |
| int read_ptr = txq->read_ptr; |
| u8 sta_id = 0; |
| __le16 bc_ent; |
| struct iwl_tx_cmd *tx_cmd = |
| (void *)txq->entries[read_ptr].cmd->payload; |
| |
| WARN_ON(read_ptr >= TFD_QUEUE_SIZE_MAX); |
| |
| if (txq_id != trans_pcie->cmd_queue) |
| sta_id = tx_cmd->sta_id; |
| |
| bc_ent = cpu_to_le16(1 | (sta_id << 12)); |
| |
| scd_bc_tbl[txq_id].tfd_offset[read_ptr] = bc_ent; |
| |
| if (read_ptr < TFD_QUEUE_SIZE_BC_DUP) |
| scd_bc_tbl[txq_id]. |
| tfd_offset[TFD_QUEUE_SIZE_MAX + read_ptr] = bc_ent; |
| } |
| |
| /* |
| * iwl_pcie_txq_inc_wr_ptr - Send new write index to hardware |
| */ |
| static void iwl_pcie_txq_inc_wr_ptr(struct iwl_trans *trans, |
| struct iwl_txq *txq) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 reg = 0; |
| int txq_id = txq->id; |
| |
| lockdep_assert_held(&txq->lock); |
| |
| /* |
| * explicitly wake up the NIC if: |
| * 1. shadow registers aren't enabled |
| * 2. NIC is woken up for CMD regardless of shadow outside this function |
| * 3. there is a chance that the NIC is asleep |
| */ |
| if (!trans->cfg->base_params->shadow_reg_enable && |
| txq_id != trans_pcie->cmd_queue && |
| test_bit(STATUS_TPOWER_PMI, &trans->status)) { |
| /* |
| * wake up nic if it's powered down ... |
| * uCode will wake up, and interrupt us again, so next |
| * time we'll skip this part. |
| */ |
| reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); |
| |
| if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { |
| IWL_DEBUG_INFO(trans, "Tx queue %d requesting wakeup, GP1 = 0x%x\n", |
| txq_id, reg); |
| iwl_set_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| txq->need_update = true; |
| return; |
| } |
| } |
| |
| /* |
| * if not in power-save mode, uCode will never sleep when we're |
| * trying to tx (during RFKILL, we're not trying to tx). |
| */ |
| IWL_DEBUG_TX(trans, "Q:%d WR: 0x%x\n", txq_id, txq->write_ptr); |
| if (!txq->block) |
| iwl_write32(trans, HBUS_TARG_WRPTR, |
| txq->write_ptr | (txq_id << 8)); |
| } |
| |
| void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int i; |
| |
| for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) { |
| struct iwl_txq *txq = &trans_pcie->txq[i]; |
| |
| spin_lock_bh(&txq->lock); |
| if (trans_pcie->txq[i].need_update) { |
| iwl_pcie_txq_inc_wr_ptr(trans, txq); |
| trans_pcie->txq[i].need_update = false; |
| } |
| spin_unlock_bh(&txq->lock); |
| } |
| } |
| |
| static inline void *iwl_pcie_get_tfd(struct iwl_trans_pcie *trans_pcie, |
| struct iwl_txq *txq, int idx) |
| { |
| return txq->tfds + trans_pcie->tfd_size * idx; |
| } |
| |
| static inline dma_addr_t iwl_pcie_tfd_tb_get_addr(struct iwl_trans *trans, |
| void *_tfd, u8 idx) |
| { |
| |
| if (trans->cfg->use_tfh) { |
| struct iwl_tfh_tfd *tfd = _tfd; |
| struct iwl_tfh_tb *tb = &tfd->tbs[idx]; |
| |
| return (dma_addr_t)(le64_to_cpu(tb->addr)); |
| } else { |
| struct iwl_tfd *tfd = _tfd; |
| struct iwl_tfd_tb *tb = &tfd->tbs[idx]; |
| dma_addr_t addr = get_unaligned_le32(&tb->lo); |
| dma_addr_t hi_len; |
| |
| if (sizeof(dma_addr_t) <= sizeof(u32)) |
| return addr; |
| |
| hi_len = le16_to_cpu(tb->hi_n_len) & 0xF; |
| |
| /* |
| * shift by 16 twice to avoid warnings on 32-bit |
| * (where this code never runs anyway due to the |
| * if statement above) |
| */ |
| return addr | ((hi_len << 16) << 16); |
| } |
| } |
| |
| static inline void iwl_pcie_tfd_set_tb(struct iwl_trans *trans, void *tfd, |
| u8 idx, dma_addr_t addr, u16 len) |
| { |
| if (trans->cfg->use_tfh) { |
| struct iwl_tfh_tfd *tfd_fh = (void *)tfd; |
| struct iwl_tfh_tb *tb = &tfd_fh->tbs[idx]; |
| |
| put_unaligned_le64(addr, &tb->addr); |
| tb->tb_len = cpu_to_le16(len); |
| |
| tfd_fh->num_tbs = cpu_to_le16(idx + 1); |
| } else { |
| struct iwl_tfd *tfd_fh = (void *)tfd; |
| struct iwl_tfd_tb *tb = &tfd_fh->tbs[idx]; |
| |
| u16 hi_n_len = len << 4; |
| |
| put_unaligned_le32(addr, &tb->lo); |
| if (sizeof(dma_addr_t) > sizeof(u32)) |
| hi_n_len |= ((addr >> 16) >> 16) & 0xF; |
| |
| tb->hi_n_len = cpu_to_le16(hi_n_len); |
| |
| tfd_fh->num_tbs = idx + 1; |
| } |
| } |
| |
| static inline u8 iwl_pcie_tfd_get_num_tbs(struct iwl_trans *trans, void *_tfd) |
| { |
| if (trans->cfg->use_tfh) { |
| struct iwl_tfh_tfd *tfd = _tfd; |
| |
| return le16_to_cpu(tfd->num_tbs) & 0x1f; |
| } else { |
| struct iwl_tfd *tfd = _tfd; |
| |
| return tfd->num_tbs & 0x1f; |
| } |
| } |
| |
| static void iwl_pcie_tfd_unmap(struct iwl_trans *trans, |
| struct iwl_cmd_meta *meta, |
| struct iwl_txq *txq, int index) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int i, num_tbs; |
| void *tfd = iwl_pcie_get_tfd(trans_pcie, txq, index); |
| |
| /* Sanity check on number of chunks */ |
| num_tbs = iwl_pcie_tfd_get_num_tbs(trans, tfd); |
| |
| if (num_tbs >= trans_pcie->max_tbs) { |
| IWL_ERR(trans, "Too many chunks: %i\n", num_tbs); |
| /* @todo issue fatal error, it is quite serious situation */ |
| return; |
| } |
| |
| /* first TB is never freed - it's the bidirectional DMA data */ |
| |
| for (i = 1; i < num_tbs; i++) { |
| if (meta->tbs & BIT(i)) |
| dma_unmap_page(trans->dev, |
| iwl_pcie_tfd_tb_get_addr(trans, tfd, i), |
| iwl_pcie_tfd_tb_get_len(trans, tfd, i), |
| DMA_TO_DEVICE); |
| else |
| dma_unmap_single(trans->dev, |
| iwl_pcie_tfd_tb_get_addr(trans, tfd, |
| i), |
| iwl_pcie_tfd_tb_get_len(trans, tfd, |
| i), |
| DMA_TO_DEVICE); |
| } |
| |
| if (trans->cfg->use_tfh) { |
| struct iwl_tfh_tfd *tfd_fh = (void *)tfd; |
| |
| tfd_fh->num_tbs = 0; |
| } else { |
| struct iwl_tfd *tfd_fh = (void *)tfd; |
| |
| tfd_fh->num_tbs = 0; |
| } |
| |
| } |
| |
| /* |
| * iwl_pcie_txq_free_tfd - Free all chunks referenced by TFD [txq->q.read_ptr] |
| * @trans - transport private data |
| * @txq - tx queue |
| * @dma_dir - the direction of the DMA mapping |
| * |
| * Does NOT advance any TFD circular buffer read/write indexes |
| * Does NOT free the TFD itself (which is within circular buffer) |
| */ |
| static void iwl_pcie_txq_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq) |
| { |
| /* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and |
| * idx is bounded by n_window |
| */ |
| int rd_ptr = txq->read_ptr; |
| int idx = get_cmd_index(txq, rd_ptr); |
| |
| lockdep_assert_held(&txq->lock); |
| |
| /* We have only q->n_window txq->entries, but we use |
| * TFD_QUEUE_SIZE_MAX tfds |
| */ |
| iwl_pcie_tfd_unmap(trans, &txq->entries[idx].meta, txq, rd_ptr); |
| |
| /* free SKB */ |
| if (txq->entries) { |
| struct sk_buff *skb; |
| |
| skb = txq->entries[idx].skb; |
| |
| /* Can be called from irqs-disabled context |
| * If skb is not NULL, it means that the whole queue is being |
| * freed and that the queue is not empty - free the skb |
| */ |
| if (skb) { |
| iwl_op_mode_free_skb(trans->op_mode, skb); |
| txq->entries[idx].skb = NULL; |
| } |
| } |
| } |
| |
| static int iwl_pcie_txq_build_tfd(struct iwl_trans *trans, struct iwl_txq *txq, |
| dma_addr_t addr, u16 len, bool reset) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| void *tfd; |
| u32 num_tbs; |
| |
| tfd = txq->tfds + trans_pcie->tfd_size * txq->write_ptr; |
| |
| if (reset) |
| memset(tfd, 0, trans_pcie->tfd_size); |
| |
| num_tbs = iwl_pcie_tfd_get_num_tbs(trans, tfd); |
| |
| /* Each TFD can point to a maximum max_tbs Tx buffers */ |
| if (num_tbs >= trans_pcie->max_tbs) { |
| IWL_ERR(trans, "Error can not send more than %d chunks\n", |
| trans_pcie->max_tbs); |
| return -EINVAL; |
| } |
| |
| if (WARN(addr & ~IWL_TX_DMA_MASK, |
| "Unaligned address = %llx\n", (unsigned long long)addr)) |
| return -EINVAL; |
| |
| iwl_pcie_tfd_set_tb(trans, tfd, num_tbs, addr, len); |
| |
| return num_tbs; |
| } |
| |
| static int iwl_pcie_txq_alloc(struct iwl_trans *trans, |
| struct iwl_txq *txq, int slots_num, |
| u32 txq_id) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| size_t tfd_sz = trans_pcie->tfd_size * TFD_QUEUE_SIZE_MAX; |
| size_t tb0_buf_sz; |
| int i; |
| |
| if (WARN_ON(txq->entries || txq->tfds)) |
| return -EINVAL; |
| |
| setup_timer(&txq->stuck_timer, iwl_pcie_txq_stuck_timer, |
| (unsigned long)txq); |
| txq->trans_pcie = trans_pcie; |
| |
| txq->n_window = slots_num; |
| |
| txq->entries = kcalloc(slots_num, |
| sizeof(struct iwl_pcie_txq_entry), |
| GFP_KERNEL); |
| |
| if (!txq->entries) |
| goto error; |
| |
| if (txq_id == trans_pcie->cmd_queue) |
| for (i = 0; i < slots_num; i++) { |
| txq->entries[i].cmd = |
| kmalloc(sizeof(struct iwl_device_cmd), |
| GFP_KERNEL); |
| if (!txq->entries[i].cmd) |
| goto error; |
| } |
| |
| /* Circular buffer of transmit frame descriptors (TFDs), |
| * shared with device */ |
| txq->tfds = dma_alloc_coherent(trans->dev, tfd_sz, |
| &txq->dma_addr, GFP_KERNEL); |
| if (!txq->tfds) |
| goto error; |
| |
| BUILD_BUG_ON(IWL_FIRST_TB_SIZE_ALIGN != sizeof(*txq->first_tb_bufs)); |
| |
| tb0_buf_sz = sizeof(*txq->first_tb_bufs) * slots_num; |
| |
| txq->first_tb_bufs = dma_alloc_coherent(trans->dev, tb0_buf_sz, |
| &txq->first_tb_dma, |
| GFP_KERNEL); |
| if (!txq->first_tb_bufs) |
| goto err_free_tfds; |
| |
| txq->id = txq_id; |
| |
| return 0; |
| err_free_tfds: |
| dma_free_coherent(trans->dev, tfd_sz, txq->tfds, txq->dma_addr); |
| error: |
| if (txq->entries && txq_id == trans_pcie->cmd_queue) |
| for (i = 0; i < slots_num; i++) |
| kfree(txq->entries[i].cmd); |
| kfree(txq->entries); |
| txq->entries = NULL; |
| |
| return -ENOMEM; |
| |
| } |
| |
| static int iwl_pcie_txq_init(struct iwl_trans *trans, struct iwl_txq *txq, |
| int slots_num, u32 txq_id) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int ret; |
| |
| txq->need_update = false; |
| |
| /* TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise |
| * iwl_queue_inc_wrap and iwl_queue_dec_wrap are broken. */ |
| BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1)); |
| |
| /* Initialize queue's high/low-water marks, and head/tail indexes */ |
| ret = iwl_queue_init(txq, slots_num, txq_id); |
| if (ret) |
| return ret; |
| |
| spin_lock_init(&txq->lock); |
| |
| if (txq_id == trans_pcie->cmd_queue) { |
| static struct lock_class_key iwl_pcie_cmd_queue_lock_class; |
| |
| lockdep_set_class(&txq->lock, &iwl_pcie_cmd_queue_lock_class); |
| } |
| |
| __skb_queue_head_init(&txq->overflow_q); |
| |
| /* |
| * Tell nic where to find circular buffer of Tx Frame Descriptors for |
| * given Tx queue, and enable the DMA channel used for that queue. |
| * Circular buffer (TFD queue in DRAM) physical base address */ |
| if (trans->cfg->use_tfh) |
| iwl_write_direct64(trans, |
| FH_MEM_CBBC_QUEUE(trans, txq_id), |
| txq->dma_addr); |
| else |
| iwl_write_direct32(trans, FH_MEM_CBBC_QUEUE(trans, txq_id), |
| txq->dma_addr >> 8); |
| |
| return 0; |
| } |
| |
| static void iwl_pcie_free_tso_page(struct iwl_trans_pcie *trans_pcie, |
| struct sk_buff *skb) |
| { |
| struct page **page_ptr; |
| |
| page_ptr = (void *)((u8 *)skb->cb + trans_pcie->page_offs); |
| |
| if (*page_ptr) { |
| __free_page(*page_ptr); |
| *page_ptr = NULL; |
| } |
| } |
| |
| static void iwl_pcie_clear_cmd_in_flight(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| lockdep_assert_held(&trans_pcie->reg_lock); |
| |
| if (trans_pcie->ref_cmd_in_flight) { |
| trans_pcie->ref_cmd_in_flight = false; |
| IWL_DEBUG_RPM(trans, "clear ref_cmd_in_flight - unref\n"); |
| iwl_trans_unref(trans); |
| } |
| |
| if (!trans->cfg->base_params->apmg_wake_up_wa) |
| return; |
| if (WARN_ON(!trans_pcie->cmd_hold_nic_awake)) |
| return; |
| |
| trans_pcie->cmd_hold_nic_awake = false; |
| __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| } |
| |
| /* |
| * iwl_pcie_txq_unmap - Unmap any remaining DMA mappings and free skb's |
| */ |
| static void iwl_pcie_txq_unmap(struct iwl_trans *trans, int txq_id) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq = &trans_pcie->txq[txq_id]; |
| |
| spin_lock_bh(&txq->lock); |
| while (txq->write_ptr != txq->read_ptr) { |
| IWL_DEBUG_TX_REPLY(trans, "Q %d Free %d\n", |
| txq_id, txq->read_ptr); |
| |
| if (txq_id != trans_pcie->cmd_queue) { |
| struct sk_buff *skb = txq->entries[txq->read_ptr].skb; |
| |
| if (WARN_ON_ONCE(!skb)) |
| continue; |
| |
| iwl_pcie_free_tso_page(trans_pcie, skb); |
| } |
| iwl_pcie_txq_free_tfd(trans, txq); |
| txq->read_ptr = iwl_queue_inc_wrap(txq->read_ptr); |
| |
| if (txq->read_ptr == txq->write_ptr) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&trans_pcie->reg_lock, flags); |
| if (txq_id != trans_pcie->cmd_queue) { |
| IWL_DEBUG_RPM(trans, "Q %d - last tx freed\n", |
| txq->id); |
| iwl_trans_unref(trans); |
| } else { |
| iwl_pcie_clear_cmd_in_flight(trans); |
| } |
| spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); |
| } |
| } |
| txq->active = false; |
| |
| while (!skb_queue_empty(&txq->overflow_q)) { |
| struct sk_buff *skb = __skb_dequeue(&txq->overflow_q); |
| |
| iwl_op_mode_free_skb(trans->op_mode, skb); |
| } |
| |
| spin_unlock_bh(&txq->lock); |
| |
| /* just in case - this queue may have been stopped */ |
| iwl_wake_queue(trans, txq); |
| } |
| |
| /* |
| * iwl_pcie_txq_free - Deallocate DMA queue. |
| * @txq: Transmit queue to deallocate. |
| * |
| * Empty queue by removing and destroying all BD's. |
| * Free all buffers. |
| * 0-fill, but do not free "txq" descriptor structure. |
| */ |
| static void iwl_pcie_txq_free(struct iwl_trans *trans, int txq_id) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq = &trans_pcie->txq[txq_id]; |
| struct device *dev = trans->dev; |
| int i; |
| |
| if (WARN_ON(!txq)) |
| return; |
| |
| iwl_pcie_txq_unmap(trans, txq_id); |
| |
| /* De-alloc array of command/tx buffers */ |
| if (txq_id == trans_pcie->cmd_queue) |
| for (i = 0; i < txq->n_window; i++) { |
| kzfree(txq->entries[i].cmd); |
| kzfree(txq->entries[i].free_buf); |
| } |
| |
| /* De-alloc circular buffer of TFDs */ |
| if (txq->tfds) { |
| dma_free_coherent(dev, |
| trans_pcie->tfd_size * TFD_QUEUE_SIZE_MAX, |
| txq->tfds, txq->dma_addr); |
| txq->dma_addr = 0; |
| txq->tfds = NULL; |
| |
| dma_free_coherent(dev, |
| sizeof(*txq->first_tb_bufs) * txq->n_window, |
| txq->first_tb_bufs, txq->first_tb_dma); |
| } |
| |
| kfree(txq->entries); |
| txq->entries = NULL; |
| |
| del_timer_sync(&txq->stuck_timer); |
| |
| /* 0-fill queue descriptor structure */ |
| memset(txq, 0, sizeof(*txq)); |
| } |
| |
| void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int nq = trans->cfg->base_params->num_of_queues; |
| int chan; |
| u32 reg_val; |
| int clear_dwords = (SCD_TRANS_TBL_OFFSET_QUEUE(nq) - |
| SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(u32); |
| |
| /* make sure all queue are not stopped/used */ |
| memset(trans_pcie->queue_stopped, 0, sizeof(trans_pcie->queue_stopped)); |
| memset(trans_pcie->queue_used, 0, sizeof(trans_pcie->queue_used)); |
| |
| if (trans->cfg->use_tfh) |
| return; |
| |
| trans_pcie->scd_base_addr = |
| iwl_read_prph(trans, SCD_SRAM_BASE_ADDR); |
| |
| WARN_ON(scd_base_addr != 0 && |
| scd_base_addr != trans_pcie->scd_base_addr); |
| |
| /* reset context data, TX status and translation data */ |
| iwl_trans_write_mem(trans, trans_pcie->scd_base_addr + |
| SCD_CONTEXT_MEM_LOWER_BOUND, |
| NULL, clear_dwords); |
| |
| iwl_write_prph(trans, SCD_DRAM_BASE_ADDR, |
| trans_pcie->scd_bc_tbls.dma >> 10); |
| |
| /* The chain extension of the SCD doesn't work well. This feature is |
| * enabled by default by the HW, so we need to disable it manually. |
| */ |
| if (trans->cfg->base_params->scd_chain_ext_wa) |
| iwl_write_prph(trans, SCD_CHAINEXT_EN, 0); |
| |
| iwl_trans_ac_txq_enable(trans, trans_pcie->cmd_queue, |
| trans_pcie->cmd_fifo, |
| trans_pcie->cmd_q_wdg_timeout); |
| |
| /* Activate all Tx DMA/FIFO channels */ |
| iwl_scd_activate_fifos(trans); |
| |
| /* Enable DMA channel */ |
| for (chan = 0; chan < FH_TCSR_CHNL_NUM; chan++) |
| iwl_write_direct32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(chan), |
| FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | |
| FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE); |
| |
| /* Update FH chicken bits */ |
| reg_val = iwl_read_direct32(trans, FH_TX_CHICKEN_BITS_REG); |
| iwl_write_direct32(trans, FH_TX_CHICKEN_BITS_REG, |
| reg_val | FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN); |
| |
| /* Enable L1-Active */ |
| if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) |
| iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG, |
| APMG_PCIDEV_STT_VAL_L1_ACT_DIS); |
| } |
| |
| void iwl_trans_pcie_tx_reset(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int txq_id; |
| |
| for (txq_id = 0; txq_id < trans->cfg->base_params->num_of_queues; |
| txq_id++) { |
| struct iwl_txq *txq = &trans_pcie->txq[txq_id]; |
| if (trans->cfg->use_tfh) |
| iwl_write_direct64(trans, |
| FH_MEM_CBBC_QUEUE(trans, txq_id), |
| txq->dma_addr); |
| else |
| iwl_write_direct32(trans, |
| FH_MEM_CBBC_QUEUE(trans, txq_id), |
| txq->dma_addr >> 8); |
| iwl_pcie_txq_unmap(trans, txq_id); |
| txq->read_ptr = 0; |
| txq->write_ptr = 0; |
| } |
| |
| /* Tell NIC where to find the "keep warm" buffer */ |
| iwl_write_direct32(trans, FH_KW_MEM_ADDR_REG, |
| trans_pcie->kw.dma >> 4); |
| |
| /* |
| * Send 0 as the scd_base_addr since the device may have be reset |
| * while we were in WoWLAN in which case SCD_SRAM_BASE_ADDR will |
| * contain garbage. |
| */ |
| iwl_pcie_tx_start(trans, 0); |
| } |
| |
| static void iwl_pcie_tx_stop_fh(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| unsigned long flags; |
| int ch, ret; |
| u32 mask = 0; |
| |
| spin_lock(&trans_pcie->irq_lock); |
| |
| if (!iwl_trans_grab_nic_access(trans, &flags)) |
| goto out; |
| |
| /* Stop each Tx DMA channel */ |
| for (ch = 0; ch < FH_TCSR_CHNL_NUM; ch++) { |
| iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(ch), 0x0); |
| mask |= FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(ch); |
| } |
| |
| /* Wait for DMA channels to be idle */ |
| ret = iwl_poll_bit(trans, FH_TSSR_TX_STATUS_REG, mask, mask, 5000); |
| if (ret < 0) |
| IWL_ERR(trans, |
| "Failing on timeout while stopping DMA channel %d [0x%08x]\n", |
| ch, iwl_read32(trans, FH_TSSR_TX_STATUS_REG)); |
| |
| iwl_trans_release_nic_access(trans, &flags); |
| |
| out: |
| spin_unlock(&trans_pcie->irq_lock); |
| } |
| |
| /* |
| * iwl_pcie_tx_stop - Stop all Tx DMA channels |
| */ |
| int iwl_pcie_tx_stop(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int txq_id; |
| |
| /* Turn off all Tx DMA fifos */ |
| iwl_scd_deactivate_fifos(trans); |
| |
| /* Turn off all Tx DMA channels */ |
| iwl_pcie_tx_stop_fh(trans); |
| |
| /* |
| * This function can be called before the op_mode disabled the |
| * queues. This happens when we have an rfkill interrupt. |
| * Since we stop Tx altogether - mark the queues as stopped. |
| */ |
| memset(trans_pcie->queue_stopped, 0, sizeof(trans_pcie->queue_stopped)); |
| memset(trans_pcie->queue_used, 0, sizeof(trans_pcie->queue_used)); |
| |
| /* This can happen: start_hw, stop_device */ |
| if (!trans_pcie->txq) |
| return 0; |
| |
| /* Unmap DMA from host system and free skb's */ |
| for (txq_id = 0; txq_id < trans->cfg->base_params->num_of_queues; |
| txq_id++) |
| iwl_pcie_txq_unmap(trans, txq_id); |
| |
| return 0; |
| } |
| |
| /* |
| * iwl_trans_tx_free - Free TXQ Context |
| * |
| * Destroy all TX DMA queues and structures |
| */ |
| void iwl_pcie_tx_free(struct iwl_trans *trans) |
| { |
| int txq_id; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| /* Tx queues */ |
| if (trans_pcie->txq) { |
| for (txq_id = 0; |
| txq_id < trans->cfg->base_params->num_of_queues; txq_id++) |
| iwl_pcie_txq_free(trans, txq_id); |
| } |
| |
| kfree(trans_pcie->txq); |
| trans_pcie->txq = NULL; |
| |
| iwl_pcie_free_dma_ptr(trans, &trans_pcie->kw); |
| |
| iwl_pcie_free_dma_ptr(trans, &trans_pcie->scd_bc_tbls); |
| } |
| |
| /* |
| * iwl_pcie_tx_alloc - allocate TX context |
| * Allocate all Tx DMA structures and initialize them |
| */ |
| static int iwl_pcie_tx_alloc(struct iwl_trans *trans) |
| { |
| int ret; |
| int txq_id, slots_num; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| u16 scd_bc_tbls_size = trans->cfg->base_params->num_of_queues * |
| sizeof(struct iwlagn_scd_bc_tbl); |
| |
| /*It is not allowed to alloc twice, so warn when this happens. |
| * We cannot rely on the previous allocation, so free and fail */ |
| if (WARN_ON(trans_pcie->txq)) { |
| ret = -EINVAL; |
| goto error; |
| } |
| |
| ret = iwl_pcie_alloc_dma_ptr(trans, &trans_pcie->scd_bc_tbls, |
| scd_bc_tbls_size); |
| if (ret) { |
| IWL_ERR(trans, "Scheduler BC Table allocation failed\n"); |
| goto error; |
| } |
| |
| /* Alloc keep-warm buffer */ |
| ret = iwl_pcie_alloc_dma_ptr(trans, &trans_pcie->kw, IWL_KW_SIZE); |
| if (ret) { |
| IWL_ERR(trans, "Keep Warm allocation failed\n"); |
| goto error; |
| } |
| |
| trans_pcie->txq = kcalloc(trans->cfg->base_params->num_of_queues, |
| sizeof(struct iwl_txq), GFP_KERNEL); |
| if (!trans_pcie->txq) { |
| IWL_ERR(trans, "Not enough memory for txq\n"); |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| /* Alloc and init all Tx queues, including the command queue (#4/#9) */ |
| for (txq_id = 0; txq_id < trans->cfg->base_params->num_of_queues; |
| txq_id++) { |
| slots_num = (txq_id == trans_pcie->cmd_queue) ? |
| TFD_CMD_SLOTS : TFD_TX_CMD_SLOTS; |
| ret = iwl_pcie_txq_alloc(trans, &trans_pcie->txq[txq_id], |
| slots_num, txq_id); |
| if (ret) { |
| IWL_ERR(trans, "Tx %d queue alloc failed\n", txq_id); |
| goto error; |
| } |
| } |
| |
| return 0; |
| |
| error: |
| iwl_pcie_tx_free(trans); |
| |
| return ret; |
| } |
| int iwl_pcie_tx_init(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int ret; |
| int txq_id, slots_num; |
| bool alloc = false; |
| |
| if (!trans_pcie->txq) { |
| ret = iwl_pcie_tx_alloc(trans); |
| if (ret) |
| goto error; |
| alloc = true; |
| } |
| |
| spin_lock(&trans_pcie->irq_lock); |
| |
| /* Turn off all Tx DMA fifos */ |
| iwl_scd_deactivate_fifos(trans); |
| |
| /* Tell NIC where to find the "keep warm" buffer */ |
| iwl_write_direct32(trans, FH_KW_MEM_ADDR_REG, |
| trans_pcie->kw.dma >> 4); |
| |
| spin_unlock(&trans_pcie->irq_lock); |
| |
| /* Alloc and init all Tx queues, including the command queue (#4/#9) */ |
| for (txq_id = 0; txq_id < trans->cfg->base_params->num_of_queues; |
| txq_id++) { |
| slots_num = (txq_id == trans_pcie->cmd_queue) ? |
| TFD_CMD_SLOTS : TFD_TX_CMD_SLOTS; |
| ret = iwl_pcie_txq_init(trans, &trans_pcie->txq[txq_id], |
| slots_num, txq_id); |
| if (ret) { |
| IWL_ERR(trans, "Tx %d queue init failed\n", txq_id); |
| goto error; |
| } |
| } |
| |
| if (trans->cfg->use_tfh) { |
| iwl_write_direct32(trans, TFH_TRANSFER_MODE, |
| TFH_TRANSFER_MAX_PENDING_REQ | |
| TFH_CHUNK_SIZE_128 | |
| TFH_CHUNK_SPLIT_MODE); |
| return 0; |
| } |
| |
| iwl_set_bits_prph(trans, SCD_GP_CTRL, SCD_GP_CTRL_AUTO_ACTIVE_MODE); |
| if (trans->cfg->base_params->num_of_queues > 20) |
| iwl_set_bits_prph(trans, SCD_GP_CTRL, |
| SCD_GP_CTRL_ENABLE_31_QUEUES); |
| |
| return 0; |
| error: |
| /*Upon error, free only if we allocated something */ |
| if (alloc) |
| iwl_pcie_tx_free(trans); |
| return ret; |
| } |
| |
| static inline void iwl_pcie_txq_progress(struct iwl_txq *txq) |
| { |
| lockdep_assert_held(&txq->lock); |
| |
| if (!txq->wd_timeout) |
| return; |
| |
| /* |
| * station is asleep and we send data - that must |
| * be uAPSD or PS-Poll. Don't rearm the timer. |
| */ |
| if (txq->frozen) |
| return; |
| |
| /* |
| * if empty delete timer, otherwise move timer forward |
| * since we're making progress on this queue |
| */ |
| if (txq->read_ptr == txq->write_ptr) |
| del_timer(&txq->stuck_timer); |
| else |
| mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); |
| } |
| |
| /* Frees buffers until index _not_ inclusive */ |
| void iwl_trans_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn, |
| struct sk_buff_head *skbs) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq = &trans_pcie->txq[txq_id]; |
| int tfd_num = ssn & (TFD_QUEUE_SIZE_MAX - 1); |
| int last_to_free; |
| |
| /* This function is not meant to release cmd queue*/ |
| if (WARN_ON(txq_id == trans_pcie->cmd_queue)) |
| return; |
| |
| spin_lock_bh(&txq->lock); |
| |
| if (!txq->active) { |
| IWL_DEBUG_TX_QUEUES(trans, "Q %d inactive - ignoring idx %d\n", |
| txq_id, ssn); |
| goto out; |
| } |
| |
| if (txq->read_ptr == tfd_num) |
| goto out; |
| |
| IWL_DEBUG_TX_REPLY(trans, "[Q %d] %d -> %d (%d)\n", |
| txq_id, txq->read_ptr, tfd_num, ssn); |
| |
| /*Since we free until index _not_ inclusive, the one before index is |
| * the last we will free. This one must be used */ |
| last_to_free = iwl_queue_dec_wrap(tfd_num); |
| |
| if (!iwl_queue_used(txq, last_to_free)) { |
| IWL_ERR(trans, |
| "%s: Read index for DMA queue txq id (%d), last_to_free %d is out of range [0-%d] %d %d.\n", |
| __func__, txq_id, last_to_free, TFD_QUEUE_SIZE_MAX, |
| txq->write_ptr, txq->read_ptr); |
| goto out; |
| } |
| |
| if (WARN_ON(!skb_queue_empty(skbs))) |
| goto out; |
| |
| for (; |
| txq->read_ptr != tfd_num; |
| txq->read_ptr = iwl_queue_inc_wrap(txq->read_ptr)) { |
| struct sk_buff *skb = txq->entries[txq->read_ptr].skb; |
| |
| if (WARN_ON_ONCE(!skb)) |
| continue; |
| |
| iwl_pcie_free_tso_page(trans_pcie, skb); |
| |
| __skb_queue_tail(skbs, skb); |
| |
| txq->entries[txq->read_ptr].skb = NULL; |
| |
| if (!trans->cfg->use_tfh) |
| iwl_pcie_txq_inval_byte_cnt_tbl(trans, txq); |
| |
| iwl_pcie_txq_free_tfd(trans, txq); |
| } |
| |
| iwl_pcie_txq_progress(txq); |
| |
| if (iwl_queue_space(txq) > txq->low_mark && |
| test_bit(txq_id, trans_pcie->queue_stopped)) { |
| struct sk_buff_head overflow_skbs; |
| |
| __skb_queue_head_init(&overflow_skbs); |
| skb_queue_splice_init(&txq->overflow_q, &overflow_skbs); |
| |
| /* |
| * This is tricky: we are in reclaim path which is non |
| * re-entrant, so noone will try to take the access the |
| * txq data from that path. We stopped tx, so we can't |
| * have tx as well. Bottom line, we can unlock and re-lock |
| * later. |
| */ |
| spin_unlock_bh(&txq->lock); |
| |
| while (!skb_queue_empty(&overflow_skbs)) { |
| struct sk_buff *skb = __skb_dequeue(&overflow_skbs); |
| struct iwl_device_cmd *dev_cmd_ptr; |
| |
| dev_cmd_ptr = *(void **)((u8 *)skb->cb + |
| trans_pcie->dev_cmd_offs); |
| |
| /* |
| * Note that we can very well be overflowing again. |
| * In that case, iwl_queue_space will be small again |
| * and we won't wake mac80211's queue. |
| */ |
| iwl_trans_pcie_tx(trans, skb, dev_cmd_ptr, txq_id); |
| } |
| spin_lock_bh(&txq->lock); |
| |
| if (iwl_queue_space(txq) > txq->low_mark) |
| iwl_wake_queue(trans, txq); |
| } |
| |
| if (txq->read_ptr == txq->write_ptr) { |
| IWL_DEBUG_RPM(trans, "Q %d - last tx reclaimed\n", txq->id); |
| iwl_trans_unref(trans); |
| } |
| |
| out: |
| spin_unlock_bh(&txq->lock); |
| } |
| |
| static int iwl_pcie_set_cmd_in_flight(struct iwl_trans *trans, |
| const struct iwl_host_cmd *cmd) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int ret; |
| |
| lockdep_assert_held(&trans_pcie->reg_lock); |
| |
| if (!(cmd->flags & CMD_SEND_IN_IDLE) && |
| !trans_pcie->ref_cmd_in_flight) { |
| trans_pcie->ref_cmd_in_flight = true; |
| IWL_DEBUG_RPM(trans, "set ref_cmd_in_flight - ref\n"); |
| iwl_trans_ref(trans); |
| } |
| |
| /* |
| * wake up the NIC to make sure that the firmware will see the host |
| * command - we will let the NIC sleep once all the host commands |
| * returned. This needs to be done only on NICs that have |
| * apmg_wake_up_wa set. |
| */ |
| if (trans->cfg->base_params->apmg_wake_up_wa && |
| !trans_pcie->cmd_hold_nic_awake) { |
| __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| |
| ret = iwl_poll_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, |
| (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | |
| CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), |
| 15000); |
| if (ret < 0) { |
| __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| IWL_ERR(trans, "Failed to wake NIC for hcmd\n"); |
| return -EIO; |
| } |
| trans_pcie->cmd_hold_nic_awake = true; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * iwl_pcie_cmdq_reclaim - Reclaim TX command queue entries already Tx'd |
| * |
| * When FW advances 'R' index, all entries between old and new 'R' index |
| * need to be reclaimed. As result, some free space forms. If there is |
| * enough free space (> low mark), wake the stack that feeds us. |
| */ |
| static void iwl_pcie_cmdq_reclaim(struct iwl_trans *trans, int txq_id, int idx) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq = &trans_pcie->txq[txq_id]; |
| unsigned long flags; |
| int nfreed = 0; |
| |
| lockdep_assert_held(&txq->lock); |
| |
| if ((idx >= TFD_QUEUE_SIZE_MAX) || (!iwl_queue_used(txq, idx))) { |
| IWL_ERR(trans, |
| "%s: Read index for DMA queue txq id (%d), index %d is out of range [0-%d] %d %d.\n", |
| __func__, txq_id, idx, TFD_QUEUE_SIZE_MAX, |
| txq->write_ptr, txq->read_ptr); |
| return; |
| } |
| |
| for (idx = iwl_queue_inc_wrap(idx); txq->read_ptr != idx; |
| txq->read_ptr = iwl_queue_inc_wrap(txq->read_ptr)) { |
| |
| if (nfreed++ > 0) { |
| IWL_ERR(trans, "HCMD skipped: index (%d) %d %d\n", |
| idx, txq->write_ptr, txq->read_ptr); |
| iwl_force_nmi(trans); |
| } |
| } |
| |
| if (txq->read_ptr == txq->write_ptr) { |
| spin_lock_irqsave(&trans_pcie->reg_lock, flags); |
| iwl_pcie_clear_cmd_in_flight(trans); |
| spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); |
| } |
| |
| iwl_pcie_txq_progress(txq); |
| } |
| |
| static int iwl_pcie_txq_set_ratid_map(struct iwl_trans *trans, u16 ra_tid, |
| u16 txq_id) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 tbl_dw_addr; |
| u32 tbl_dw; |
| u16 scd_q2ratid; |
| |
| scd_q2ratid = ra_tid & SCD_QUEUE_RA_TID_MAP_RATID_MSK; |
| |
| tbl_dw_addr = trans_pcie->scd_base_addr + |
| SCD_TRANS_TBL_OFFSET_QUEUE(txq_id); |
| |
| tbl_dw = iwl_trans_read_mem32(trans, tbl_dw_addr); |
| |
| if (txq_id & 0x1) |
| tbl_dw = (scd_q2ratid << 16) | (tbl_dw & 0x0000FFFF); |
| else |
| tbl_dw = scd_q2ratid | (tbl_dw & 0xFFFF0000); |
| |
| iwl_trans_write_mem32(trans, tbl_dw_addr, tbl_dw); |
| |
| return 0; |
| } |
| |
| /* Receiver address (actually, Rx station's index into station table), |
| * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */ |
| #define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid)) |
| |
| void iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int txq_id, u16 ssn, |
| const struct iwl_trans_txq_scd_cfg *cfg, |
| unsigned int wdg_timeout) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq = &trans_pcie->txq[txq_id]; |
| int fifo = -1; |
| |
| if (test_and_set_bit(txq_id, trans_pcie->queue_used)) |
| WARN_ONCE(1, "queue %d already used - expect issues", txq_id); |
| |
| if (cfg && trans->cfg->use_tfh) |
| WARN_ONCE(1, "Expected no calls to SCD configuration"); |
| |
| txq->wd_timeout = msecs_to_jiffies(wdg_timeout); |
| |
| if (cfg) { |
| fifo = cfg->fifo; |
| |
| /* Disable the scheduler prior configuring the cmd queue */ |
| if (txq_id == trans_pcie->cmd_queue && |
| trans_pcie->scd_set_active) |
| iwl_scd_enable_set_active(trans, 0); |
| |
| /* Stop this Tx queue before configuring it */ |
| iwl_scd_txq_set_inactive(trans, txq_id); |
| |
| /* Set this queue as a chain-building queue unless it is CMD */ |
| if (txq_id != trans_pcie->cmd_queue) |
| iwl_scd_txq_set_chain(trans, txq_id); |
| |
| if (cfg->aggregate) { |
| u16 ra_tid = BUILD_RAxTID(cfg->sta_id, cfg->tid); |
| |
| /* Map receiver-address / traffic-ID to this queue */ |
| iwl_pcie_txq_set_ratid_map(trans, ra_tid, txq_id); |
| |
| /* enable aggregations for the queue */ |
| iwl_scd_txq_enable_agg(trans, txq_id); |
| txq->ampdu = true; |
| } else { |
| /* |
| * disable aggregations for the queue, this will also |
| * make the ra_tid mapping configuration irrelevant |
| * since it is now a non-AGG queue. |
| */ |
| iwl_scd_txq_disable_agg(trans, txq_id); |
| |
| ssn = txq->read_ptr; |
| } |
| } |
| |
| /* Place first TFD at index corresponding to start sequence number. |
| * Assumes that ssn_idx is valid (!= 0xFFF) */ |
| txq->read_ptr = (ssn & 0xff); |
| txq->write_ptr = (ssn & 0xff); |
| iwl_write_direct32(trans, HBUS_TARG_WRPTR, |
| (ssn & 0xff) | (txq_id << 8)); |
| |
| if (cfg) { |
| u8 frame_limit = cfg->frame_limit; |
| |
| iwl_write_prph(trans, SCD_QUEUE_RDPTR(txq_id), ssn); |
| |
| /* Set up Tx window size and frame limit for this queue */ |
| iwl_trans_write_mem32(trans, trans_pcie->scd_base_addr + |
| SCD_CONTEXT_QUEUE_OFFSET(txq_id), 0); |
| iwl_trans_write_mem32(trans, |
| trans_pcie->scd_base_addr + |
| SCD_CONTEXT_QUEUE_OFFSET(txq_id) + sizeof(u32), |
| ((frame_limit << SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) & |
| SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) | |
| ((frame_limit << SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & |
| SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK)); |
| |
| /* Set up status area in SRAM, map to Tx DMA/FIFO, activate */ |
| iwl_write_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id), |
| (1 << SCD_QUEUE_STTS_REG_POS_ACTIVE) | |
| (cfg->fifo << SCD_QUEUE_STTS_REG_POS_TXF) | |
| (1 << SCD_QUEUE_STTS_REG_POS_WSL) | |
| SCD_QUEUE_STTS_REG_MSK); |
| |
| /* enable the scheduler for this queue (only) */ |
| if (txq_id == trans_pcie->cmd_queue && |
| trans_pcie->scd_set_active) |
| iwl_scd_enable_set_active(trans, BIT(txq_id)); |
| |
| IWL_DEBUG_TX_QUEUES(trans, |
| "Activate queue %d on FIFO %d WrPtr: %d\n", |
| txq_id, fifo, ssn & 0xff); |
| } else { |
| IWL_DEBUG_TX_QUEUES(trans, |
| "Activate queue %d WrPtr: %d\n", |
| txq_id, ssn & 0xff); |
| } |
| |
| txq->active = true; |
| } |
| |
| void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id, |
| bool shared_mode) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq = &trans_pcie->txq[txq_id]; |
| |
| txq->ampdu = !shared_mode; |
| } |
| |
| dma_addr_t iwl_trans_pcie_get_txq_byte_table(struct iwl_trans *trans, int txq) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| return trans_pcie->scd_bc_tbls.dma + |
| txq * sizeof(struct iwlagn_scd_bc_tbl); |
| } |
| |
| void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int txq_id, |
| bool configure_scd) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 stts_addr = trans_pcie->scd_base_addr + |
| SCD_TX_STTS_QUEUE_OFFSET(txq_id); |
| static const u32 zero_val[4] = {}; |
| |
| trans_pcie->txq[txq_id].frozen_expiry_remainder = 0; |
| trans_pcie->txq[txq_id].frozen = false; |
| |
| /* |
| * Upon HW Rfkill - we stop the device, and then stop the queues |
| * in the op_mode. Just for the sake of the simplicity of the op_mode, |
| * allow the op_mode to call txq_disable after it already called |
| * stop_device. |
| */ |
| if (!test_and_clear_bit(txq_id, trans_pcie->queue_used)) { |
| WARN_ONCE(test_bit(STATUS_DEVICE_ENABLED, &trans->status), |
| "queue %d not used", txq_id); |
| return; |
| } |
| |
| if (configure_scd && trans->cfg->use_tfh) |
| WARN_ONCE(1, "Expected no calls to SCD configuration"); |
| |
| if (configure_scd) { |
| iwl_scd_txq_set_inactive(trans, txq_id); |
| |
| iwl_trans_write_mem(trans, stts_addr, (void *)zero_val, |
| ARRAY_SIZE(zero_val)); |
| } |
| |
| iwl_pcie_txq_unmap(trans, txq_id); |
| trans_pcie->txq[txq_id].ampdu = false; |
| |
| IWL_DEBUG_TX_QUEUES(trans, "Deactivate queue %d\n", txq_id); |
| } |
| |
| /*************** HOST COMMAND QUEUE FUNCTIONS *****/ |
| |
| /* |
| * iwl_pcie_enqueue_hcmd - enqueue a uCode command |
| * @priv: device private data point |
| * @cmd: a pointer to the ucode command structure |
| * |
| * The function returns < 0 values to indicate the operation |
| * failed. On success, it returns the index (>= 0) of command in the |
| * command queue. |
| */ |
| static int iwl_pcie_enqueue_hcmd(struct iwl_trans *trans, |
| struct iwl_host_cmd *cmd) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue]; |
| struct iwl_device_cmd *out_cmd; |
| struct iwl_cmd_meta *out_meta; |
| unsigned long flags; |
| void *dup_buf = NULL; |
| dma_addr_t phys_addr; |
| int idx; |
| u16 copy_size, cmd_size, tb0_size; |
| bool had_nocopy = false; |
| u8 group_id = iwl_cmd_groupid(cmd->id); |
| int i, ret; |
| u32 cmd_pos; |
| const u8 *cmddata[IWL_MAX_CMD_TBS_PER_TFD]; |
| u16 cmdlen[IWL_MAX_CMD_TBS_PER_TFD]; |
| |
| if (WARN(!trans->wide_cmd_header && |
| group_id > IWL_ALWAYS_LONG_GROUP, |
| "unsupported wide command %#x\n", cmd->id)) |
| return -EINVAL; |
| |
| if (group_id != 0) { |
| copy_size = sizeof(struct iwl_cmd_header_wide); |
| cmd_size = sizeof(struct iwl_cmd_header_wide); |
| } else { |
| copy_size = sizeof(struct iwl_cmd_header); |
| cmd_size = sizeof(struct iwl_cmd_header); |
| } |
| |
| /* need one for the header if the first is NOCOPY */ |
| BUILD_BUG_ON(IWL_MAX_CMD_TBS_PER_TFD > IWL_NUM_OF_TBS - 1); |
| |
| for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { |
| cmddata[i] = cmd->data[i]; |
| cmdlen[i] = cmd->len[i]; |
| |
| if (!cmd->len[i]) |
| continue; |
| |
| /* need at least IWL_FIRST_TB_SIZE copied */ |
| if (copy_size < IWL_FIRST_TB_SIZE) { |
| int copy = IWL_FIRST_TB_SIZE - copy_size; |
| |
| if (copy > cmdlen[i]) |
| copy = cmdlen[i]; |
| cmdlen[i] -= copy; |
| cmddata[i] += copy; |
| copy_size += copy; |
| } |
| |
| if (cmd->dataflags[i] & IWL_HCMD_DFL_NOCOPY) { |
| had_nocopy = true; |
| if (WARN_ON(cmd->dataflags[i] & IWL_HCMD_DFL_DUP)) { |
| idx = -EINVAL; |
| goto free_dup_buf; |
| } |
| } else if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP) { |
| /* |
| * This is also a chunk that isn't copied |
| * to the static buffer so set had_nocopy. |
| */ |
| had_nocopy = true; |
| |
| /* only allowed once */ |
| if (WARN_ON(dup_buf)) { |
| idx = -EINVAL; |
| goto free_dup_buf; |
| } |
| |
| dup_buf = kmemdup(cmddata[i], cmdlen[i], |
| GFP_ATOMIC); |
| if (!dup_buf) |
| return -ENOMEM; |
| } else { |
| /* NOCOPY must not be followed by normal! */ |
| if (WARN_ON(had_nocopy)) { |
| idx = -EINVAL; |
| goto free_dup_buf; |
| } |
| copy_size += cmdlen[i]; |
| } |
| cmd_size += cmd->len[i]; |
| } |
| |
| /* |
| * If any of the command structures end up being larger than |
| * the TFD_MAX_PAYLOAD_SIZE and they aren't dynamically |
| * allocated into separate TFDs, then we will need to |
| * increase the size of the buffers. |
| */ |
| if (WARN(copy_size > TFD_MAX_PAYLOAD_SIZE, |
| "Command %s (%#x) is too large (%d bytes)\n", |
| iwl_get_cmd_string(trans, cmd->id), |
| cmd->id, copy_size)) { |
| idx = -EINVAL; |
| goto free_dup_buf; |
| } |
| |
| spin_lock_bh(&txq->lock); |
| |
| if (iwl_queue_space(txq) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) { |
| spin_unlock_bh(&txq->lock); |
| |
| IWL_ERR(trans, "No space in command queue\n"); |
| iwl_op_mode_cmd_queue_full(trans->op_mode); |
| idx = -ENOSPC; |
| goto free_dup_buf; |
| } |
| |
| idx = get_cmd_index(txq, txq->write_ptr); |
| out_cmd = txq->entries[idx].cmd; |
| out_meta = &txq->entries[idx].meta; |
| |
| memset(out_meta, 0, sizeof(*out_meta)); /* re-initialize to NULL */ |
| if (cmd->flags & CMD_WANT_SKB) |
| out_meta->source = cmd; |
| |
| /* set up the header */ |
| if (group_id != 0) { |
| out_cmd->hdr_wide.cmd = iwl_cmd_opcode(cmd->id); |
| out_cmd->hdr_wide.group_id = group_id; |
| out_cmd->hdr_wide.version = iwl_cmd_version(cmd->id); |
| out_cmd->hdr_wide.length = |
| cpu_to_le16(cmd_size - |
| sizeof(struct iwl_cmd_header_wide)); |
| out_cmd->hdr_wide.reserved = 0; |
| out_cmd->hdr_wide.sequence = |
| cpu_to_le16(QUEUE_TO_SEQ(trans_pcie->cmd_queue) | |
| INDEX_TO_SEQ(txq->write_ptr)); |
| |
| cmd_pos = sizeof(struct iwl_cmd_header_wide); |
| copy_size = sizeof(struct iwl_cmd_header_wide); |
| } else { |
| out_cmd->hdr.cmd = iwl_cmd_opcode(cmd->id); |
| out_cmd->hdr.sequence = |
| cpu_to_le16(QUEUE_TO_SEQ(trans_pcie->cmd_queue) | |
| INDEX_TO_SEQ(txq->write_ptr)); |
| out_cmd->hdr.group_id = 0; |
| |
| cmd_pos = sizeof(struct iwl_cmd_header); |
| copy_size = sizeof(struct iwl_cmd_header); |
| } |
| |
| /* and copy the data that needs to be copied */ |
| for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { |
| int copy; |
| |
| if (!cmd->len[i]) |
| continue; |
| |
| /* copy everything if not nocopy/dup */ |
| if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY | |
| IWL_HCMD_DFL_DUP))) { |
| copy = cmd->len[i]; |
| |
| memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy); |
| cmd_pos += copy; |
| copy_size += copy; |
| continue; |
| } |
| |
| /* |
| * Otherwise we need at least IWL_FIRST_TB_SIZE copied |
| * in total (for bi-directional DMA), but copy up to what |
| * we can fit into the payload for debug dump purposes. |
| */ |
| copy = min_t(int, TFD_MAX_PAYLOAD_SIZE - cmd_pos, cmd->len[i]); |
| |
| memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy); |
| cmd_pos += copy; |
| |
| /* However, treat copy_size the proper way, we need it below */ |
| if (copy_size < IWL_FIRST_TB_SIZE) { |
| copy = IWL_FIRST_TB_SIZE - copy_size; |
| |
| if (copy > cmd->len[i]) |
| copy = cmd->len[i]; |
| copy_size += copy; |
| } |
| } |
| |
| IWL_DEBUG_HC(trans, |
| "Sending command %s (%.2x.%.2x), seq: 0x%04X, %d bytes at %d[%d]:%d\n", |
| iwl_get_cmd_string(trans, cmd->id), |
| group_id, out_cmd->hdr.cmd, |
| le16_to_cpu(out_cmd->hdr.sequence), |
| cmd_size, txq->write_ptr, idx, trans_pcie->cmd_queue); |
| |
| /* start the TFD with the minimum copy bytes */ |
| tb0_size = min_t(int, copy_size, IWL_FIRST_TB_SIZE); |
| memcpy(&txq->first_tb_bufs[idx], &out_cmd->hdr, tb0_size); |
| iwl_pcie_txq_build_tfd(trans, txq, |
| iwl_pcie_get_first_tb_dma(txq, idx), |
| tb0_size, true); |
| |
| /* map first command fragment, if any remains */ |
| if (copy_size > tb0_size) { |
| phys_addr = dma_map_single(trans->dev, |
| ((u8 *)&out_cmd->hdr) + tb0_size, |
| copy_size - tb0_size, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(trans->dev, phys_addr)) { |
| iwl_pcie_tfd_unmap(trans, out_meta, txq, |
| txq->write_ptr); |
| idx = -ENOMEM; |
| goto out; |
| } |
| |
| iwl_pcie_txq_build_tfd(trans, txq, phys_addr, |
| copy_size - tb0_size, false); |
| } |
| |
| /* map the remaining (adjusted) nocopy/dup fragments */ |
| for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { |
| const void *data = cmddata[i]; |
| |
| if (!cmdlen[i]) |
| continue; |
| if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY | |
| IWL_HCMD_DFL_DUP))) |
| continue; |
| if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP) |
| data = dup_buf; |
| phys_addr = dma_map_single(trans->dev, (void *)data, |
| cmdlen[i], DMA_TO_DEVICE); |
| if (dma_mapping_error(trans->dev, phys_addr)) { |
| iwl_pcie_tfd_unmap(trans, out_meta, txq, |
| txq->write_ptr); |
| idx = -ENOMEM; |
| goto out; |
| } |
| |
| iwl_pcie_txq_build_tfd(trans, txq, phys_addr, cmdlen[i], false); |
| } |
| |
| BUILD_BUG_ON(IWL_TFH_NUM_TBS > sizeof(out_meta->tbs) * BITS_PER_BYTE); |
| out_meta->flags = cmd->flags; |
| if (WARN_ON_ONCE(txq->entries[idx].free_buf)) |
| kzfree(txq->entries[idx].free_buf); |
| txq->entries[idx].free_buf = dup_buf; |
| |
| trace_iwlwifi_dev_hcmd(trans->dev, cmd, cmd_size, &out_cmd->hdr_wide); |
| |
| /* start timer if queue currently empty */ |
| if (txq->read_ptr == txq->write_ptr && txq->wd_timeout) |
| mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); |
| |
| spin_lock_irqsave(&trans_pcie->reg_lock, flags); |
| ret = iwl_pcie_set_cmd_in_flight(trans, cmd); |
| if (ret < 0) { |
| idx = ret; |
| spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); |
| goto out; |
| } |
| |
| /* Increment and update queue's write index */ |
| txq->write_ptr = iwl_queue_inc_wrap(txq->write_ptr); |
| iwl_pcie_txq_inc_wr_ptr(trans, txq); |
| |
| spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); |
| |
| out: |
| spin_unlock_bh(&txq->lock); |
| free_dup_buf: |
| if (idx < 0) |
| kfree(dup_buf); |
| return idx; |
| } |
| |
| /* |
| * iwl_pcie_hcmd_complete - Pull unused buffers off the queue and reclaim them |
| * @rxb: Rx buffer to reclaim |
| */ |
| void iwl_pcie_hcmd_complete(struct iwl_trans *trans, |
| struct iwl_rx_cmd_buffer *rxb) |
| { |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| u16 sequence = le16_to_cpu(pkt->hdr.sequence); |
| u8 group_id = iwl_cmd_groupid(pkt->hdr.group_id); |
| u32 cmd_id; |
| int txq_id = SEQ_TO_QUEUE(sequence); |
| int index = SEQ_TO_INDEX(sequence); |
| int cmd_index; |
| struct iwl_device_cmd *cmd; |
| struct iwl_cmd_meta *meta; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue]; |
| |
| /* If a Tx command is being handled and it isn't in the actual |
| * command queue then there a command routing bug has been introduced |
| * in the queue management code. */ |
| if (WARN(txq_id != trans_pcie->cmd_queue, |
| "wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n", |
| txq_id, trans_pcie->cmd_queue, sequence, |
| trans_pcie->txq[trans_pcie->cmd_queue].read_ptr, |
| trans_pcie->txq[trans_pcie->cmd_queue].write_ptr)) { |
| iwl_print_hex_error(trans, pkt, 32); |
| return; |
| } |
| |
| spin_lock_bh(&txq->lock); |
| |
| cmd_index = get_cmd_index(txq, index); |
| cmd = txq->entries[cmd_index].cmd; |
| meta = &txq->entries[cmd_index].meta; |
| cmd_id = iwl_cmd_id(cmd->hdr.cmd, group_id, 0); |
| |
| iwl_pcie_tfd_unmap(trans, meta, txq, index); |
| |
| /* Input error checking is done when commands are added to queue. */ |
| if (meta->flags & CMD_WANT_SKB) { |
| struct page *p = rxb_steal_page(rxb); |
| |
| meta->source->resp_pkt = pkt; |
| meta->source->_rx_page_addr = (unsigned long)page_address(p); |
| meta->source->_rx_page_order = trans_pcie->rx_page_order; |
| } |
| |
| if (meta->flags & CMD_WANT_ASYNC_CALLBACK) |
| iwl_op_mode_async_cb(trans->op_mode, cmd); |
| |
| iwl_pcie_cmdq_reclaim(trans, txq_id, index); |
| |
| if (!(meta->flags & CMD_ASYNC)) { |
| if (!test_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status)) { |
| IWL_WARN(trans, |
| "HCMD_ACTIVE already clear for command %s\n", |
| iwl_get_cmd_string(trans, cmd_id)); |
| } |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| IWL_DEBUG_INFO(trans, "Clearing HCMD_ACTIVE for command %s\n", |
| iwl_get_cmd_string(trans, cmd_id)); |
| wake_up(&trans_pcie->wait_command_queue); |
| } |
| |
| if (meta->flags & CMD_MAKE_TRANS_IDLE) { |
| IWL_DEBUG_INFO(trans, "complete %s - mark trans as idle\n", |
| iwl_get_cmd_string(trans, cmd->hdr.cmd)); |
| set_bit(STATUS_TRANS_IDLE, &trans->status); |
| wake_up(&trans_pcie->d0i3_waitq); |
| } |
| |
| if (meta->flags & CMD_WAKE_UP_TRANS) { |
| IWL_DEBUG_INFO(trans, "complete %s - clear trans idle flag\n", |
| iwl_get_cmd_string(trans, cmd->hdr.cmd)); |
| clear_bit(STATUS_TRANS_IDLE, &trans->status); |
| wake_up(&trans_pcie->d0i3_waitq); |
| } |
| |
| meta->flags = 0; |
| |
| spin_unlock_bh(&txq->lock); |
| } |
| |
| #define HOST_COMPLETE_TIMEOUT (2 * HZ) |
| |
| static int iwl_pcie_send_hcmd_async(struct iwl_trans *trans, |
| struct iwl_host_cmd *cmd) |
| { |
| int ret; |
| |
| /* An asynchronous command can not expect an SKB to be set. */ |
| if (WARN_ON(cmd->flags & CMD_WANT_SKB)) |
| return -EINVAL; |
| |
| ret = iwl_pcie_enqueue_hcmd(trans, cmd); |
| if (ret < 0) { |
| IWL_ERR(trans, |
| "Error sending %s: enqueue_hcmd failed: %d\n", |
| iwl_get_cmd_string(trans, cmd->id), ret); |
| return ret; |
| } |
| return 0; |
| } |
| |
| static int iwl_pcie_send_hcmd_sync(struct iwl_trans *trans, |
| struct iwl_host_cmd *cmd) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int cmd_idx; |
| int ret; |
| |
| IWL_DEBUG_INFO(trans, "Attempting to send sync command %s\n", |
| iwl_get_cmd_string(trans, cmd->id)); |
| |
| if (WARN(test_and_set_bit(STATUS_SYNC_HCMD_ACTIVE, |
| &trans->status), |
| "Command %s: a command is already active!\n", |
| iwl_get_cmd_string(trans, cmd->id))) |
| return -EIO; |
| |
| IWL_DEBUG_INFO(trans, "Setting HCMD_ACTIVE for command %s\n", |
| iwl_get_cmd_string(trans, cmd->id)); |
| |
| if (pm_runtime_suspended(&trans_pcie->pci_dev->dev)) { |
| ret = wait_event_timeout(trans_pcie->d0i3_waitq, |
| pm_runtime_active(&trans_pcie->pci_dev->dev), |
| msecs_to_jiffies(IWL_TRANS_IDLE_TIMEOUT)); |
| if (!ret) { |
| IWL_ERR(trans, "Timeout exiting D0i3 before hcmd\n"); |
| return -ETIMEDOUT; |
| } |
| } |
| |
| cmd_idx = iwl_pcie_enqueue_hcmd(trans, cmd); |
| if (cmd_idx < 0) { |
| ret = cmd_idx; |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| IWL_ERR(trans, |
| "Error sending %s: enqueue_hcmd failed: %d\n", |
| iwl_get_cmd_string(trans, cmd->id), ret); |
| return ret; |
| } |
| |
| ret = wait_event_timeout(trans_pcie->wait_command_queue, |
| !test_bit(STATUS_SYNC_HCMD_ACTIVE, |
| &trans->status), |
| HOST_COMPLETE_TIMEOUT); |
| if (!ret) { |
| struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue]; |
| |
| IWL_ERR(trans, "Error sending %s: time out after %dms.\n", |
| iwl_get_cmd_string(trans, cmd->id), |
| jiffies_to_msecs(HOST_COMPLETE_TIMEOUT)); |
| |
| IWL_ERR(trans, "Current CMD queue read_ptr %d write_ptr %d\n", |
| txq->read_ptr, txq->write_ptr); |
| |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| IWL_DEBUG_INFO(trans, "Clearing HCMD_ACTIVE for command %s\n", |
| iwl_get_cmd_string(trans, cmd->id)); |
| ret = -ETIMEDOUT; |
| |
| iwl_force_nmi(trans); |
| iwl_trans_fw_error(trans); |
| |
| goto cancel; |
| } |
| |
| if (test_bit(STATUS_FW_ERROR, &trans->status)) { |
| IWL_ERR(trans, "FW error in SYNC CMD %s\n", |
| iwl_get_cmd_string(trans, cmd->id)); |
| dump_stack(); |
| ret = -EIO; |
| goto cancel; |
| } |
| |
| if (!(cmd->flags & CMD_SEND_IN_RFKILL) && |
| test_bit(STATUS_RFKILL, &trans->status)) { |
| IWL_DEBUG_RF_KILL(trans, "RFKILL in SYNC CMD... no rsp\n"); |
| ret = -ERFKILL; |
| goto cancel; |
| } |
| |
| if ((cmd->flags & CMD_WANT_SKB) && !cmd->resp_pkt) { |
| IWL_ERR(trans, "Error: Response NULL in '%s'\n", |
| iwl_get_cmd_string(trans, cmd->id)); |
| ret = -EIO; |
| goto cancel; |
| } |
| |
| return 0; |
| |
| cancel: |
| if (cmd->flags & CMD_WANT_SKB) { |
| /* |
| * Cancel the CMD_WANT_SKB flag for the cmd in the |
| * TX cmd queue. Otherwise in case the cmd comes |
| * in later, it will possibly set an invalid |
| * address (cmd->meta.source). |
| */ |
| trans_pcie->txq[trans_pcie->cmd_queue]. |
| entries[cmd_idx].meta.flags &= ~CMD_WANT_SKB; |
| } |
| |
| if (cmd->resp_pkt) { |
| iwl_free_resp(cmd); |
| cmd->resp_pkt = NULL; |
| } |
| |
| return ret; |
| } |
| |
| int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd) |
| { |
| if (!(cmd->flags & CMD_SEND_IN_RFKILL) && |
| test_bit(STATUS_RFKILL, &trans->status)) { |
| IWL_DEBUG_RF_KILL(trans, "Dropping CMD 0x%x: RF KILL\n", |
| cmd->id); |
| return -ERFKILL; |
| } |
| |
| if (cmd->flags & CMD_ASYNC) |
| return iwl_pcie_send_hcmd_async(trans, cmd); |
| |
| /* We still can fail on RFKILL that can be asserted while we wait */ |
| return iwl_pcie_send_hcmd_sync(trans, cmd); |
| } |
| |
| static int iwl_fill_data_tbs(struct iwl_trans *trans, struct sk_buff *skb, |
| struct iwl_txq *txq, u8 hdr_len, |
| struct iwl_cmd_meta *out_meta, |
| struct iwl_device_cmd *dev_cmd, u16 tb1_len) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u16 tb2_len; |
| int i; |
| |
| /* |
| * Set up TFD's third entry to point directly to remainder |
| * of skb's head, if any |
| */ |
| tb2_len = skb_headlen(skb) - hdr_len; |
| |
| if (tb2_len > 0) { |
| dma_addr_t tb2_phys = dma_map_single(trans->dev, |
| skb->data + hdr_len, |
| tb2_len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(trans->dev, tb2_phys))) { |
| iwl_pcie_tfd_unmap(trans, out_meta, txq, |
| txq->write_ptr); |
| return -EINVAL; |
| } |
| iwl_pcie_txq_build_tfd(trans, txq, tb2_phys, tb2_len, false); |
| } |
| |
| /* set up the remaining entries to point to the data */ |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| dma_addr_t tb_phys; |
| int tb_idx; |
| |
| if (!skb_frag_size(frag)) |
| continue; |
| |
| tb_phys = skb_frag_dma_map(trans->dev, frag, 0, |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| |
| if (unlikely(dma_mapping_error(trans->dev, tb_phys))) { |
| iwl_pcie_tfd_unmap(trans, out_meta, txq, |
| txq->write_ptr); |
| return -EINVAL; |
| } |
| tb_idx = iwl_pcie_txq_build_tfd(trans, txq, tb_phys, |
| skb_frag_size(frag), false); |
| |
| out_meta->tbs |= BIT(tb_idx); |
| } |
| |
| trace_iwlwifi_dev_tx(trans->dev, skb, |
| iwl_pcie_get_tfd(trans_pcie, txq, txq->write_ptr), |
| trans_pcie->tfd_size, |
| &dev_cmd->hdr, IWL_FIRST_TB_SIZE + tb1_len, |
| skb->data + hdr_len, tb2_len); |
| trace_iwlwifi_dev_tx_data(trans->dev, skb, |
| hdr_len, skb->len - hdr_len); |
| return 0; |
| } |
| |
| #ifdef CONFIG_INET |
| static struct iwl_tso_hdr_page * |
| get_page_hdr(struct iwl_trans *trans, size_t len) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_tso_hdr_page *p = this_cpu_ptr(trans_pcie->tso_hdr_page); |
| |
| if (!p->page) |
| goto alloc; |
| |
| /* enough room on this page */ |
| if (p->pos + len < (u8 *)page_address(p->page) + PAGE_SIZE) |
| return p; |
| |
| /* We don't have enough room on this page, get a new one. */ |
| __free_page(p->page); |
| |
| alloc: |
| p->page = alloc_page(GFP_ATOMIC); |
| if (!p->page) |
| return NULL; |
| p->pos = page_address(p->page); |
| return p; |
| } |
| |
| static void iwl_compute_pseudo_hdr_csum(void *iph, struct tcphdr *tcph, |
| bool ipv6, unsigned int len) |
| { |
| if (ipv6) { |
| struct ipv6hdr *iphv6 = iph; |
| |
| tcph->check = ~csum_ipv6_magic(&iphv6->saddr, &iphv6->daddr, |
| len + tcph->doff * 4, |
| IPPROTO_TCP, 0); |
| } else { |
| struct iphdr *iphv4 = iph; |
| |
| ip_send_check(iphv4); |
| tcph->check = ~csum_tcpudp_magic(iphv4->saddr, iphv4->daddr, |
| len + tcph->doff * 4, |
| IPPROTO_TCP, 0); |
| } |
| } |
| |
| static int iwl_fill_data_tbs_amsdu(struct iwl_trans *trans, struct sk_buff *skb, |
| struct iwl_txq *txq, u8 hdr_len, |
| struct iwl_cmd_meta *out_meta, |
| struct iwl_device_cmd *dev_cmd, u16 tb1_len) |
| { |
| struct iwl_trans_pcie *trans_pcie = txq->trans_pcie; |
| struct ieee80211_hdr *hdr = (void *)skb->data; |
| unsigned int snap_ip_tcp_hdrlen, ip_hdrlen, total_len, hdr_room; |
| unsigned int mss = skb_shinfo(skb)->gso_size; |
| u16 length, iv_len, amsdu_pad; |
| u8 *start_hdr; |
| struct iwl_tso_hdr_page *hdr_page; |
| struct page **page_ptr; |
| int ret; |
| struct tso_t tso; |
| |
| /* if the packet is protected, then it must be CCMP or GCMP */ |
| BUILD_BUG_ON(IEEE80211_CCMP_HDR_LEN != IEEE80211_GCMP_HDR_LEN); |
| iv_len = ieee80211_has_protected(hdr->frame_control) ? |
| IEEE80211_CCMP_HDR_LEN : 0; |
| |
| trace_iwlwifi_dev_tx(trans->dev, skb, |
| iwl_pcie_get_tfd(trans_pcie, txq, txq->write_ptr), |
| trans_pcie->tfd_size, |
| &dev_cmd->hdr, IWL_FIRST_TB_SIZE + tb1_len, |
| NULL, 0); |
| |
| ip_hdrlen = skb_transport_header(skb) - skb_network_header(skb); |
| snap_ip_tcp_hdrlen = 8 + ip_hdrlen + tcp_hdrlen(skb); |
| total_len = skb->len - snap_ip_tcp_hdrlen - hdr_len - iv_len; |
| amsdu_pad = 0; |
| |
| /* total amount of header we may need for this A-MSDU */ |
| hdr_room = DIV_ROUND_UP(total_len, mss) * |
| (3 + snap_ip_tcp_hdrlen + sizeof(struct ethhdr)) + iv_len; |
| |
| /* Our device supports 9 segments at most, it will fit in 1 page */ |
| hdr_page = get_page_hdr(trans, hdr_room); |
| if (!hdr_page) |
| return -ENOMEM; |
| |
| get_page(hdr_page->page); |
| start_hdr = hdr_page->pos; |
| page_ptr = (void *)((u8 *)skb->cb + trans_pcie->page_offs); |
| *page_ptr = hdr_page->page; |
| memcpy(hdr_page->pos, skb->data + hdr_len, iv_len); |
| hdr_page->pos += iv_len; |
| |
| /* |
| * Pull the ieee80211 header + IV to be able to use TSO core, |
| * we will restore it for the tx_status flow. |
| */ |
| skb_pull(skb, hdr_len + iv_len); |
| |
| tso_start(skb, &tso); |
| |
| while (total_len) { |
| /* this is the data left for this subframe */ |
| unsigned int data_left = |
| min_t(unsigned int, mss, total_len); |
| struct sk_buff *csum_skb = NULL; |
| unsigned int hdr_tb_len; |
| dma_addr_t hdr_tb_phys; |
| struct tcphdr *tcph; |
| u8 *iph; |
| |
| total_len -= data_left; |
| |
| memset(hdr_page->pos, 0, amsdu_pad); |
| hdr_page->pos += amsdu_pad; |
| amsdu_pad = (4 - (sizeof(struct ethhdr) + snap_ip_tcp_hdrlen + |
| data_left)) & 0x3; |
| ether_addr_copy(hdr_page->pos, ieee80211_get_DA(hdr)); |
| hdr_page->pos += ETH_ALEN; |
| ether_addr_copy(hdr_page->pos, ieee80211_get_SA(hdr)); |
| hdr_page->pos += ETH_ALEN; |
| |
| length = snap_ip_tcp_hdrlen + data_left; |
| *((__be16 *)hdr_page->pos) = cpu_to_be16(length); |
| hdr_page->pos += sizeof(length); |
| |
| /* |
| * This will copy the SNAP as well which will be considered |
| * as MAC header. |
| */ |
| tso_build_hdr(skb, hdr_page->pos, &tso, data_left, !total_len); |
| iph = hdr_page->pos + 8; |
| tcph = (void *)(iph + ip_hdrlen); |
| |
| /* For testing on current hardware only */ |
| if (trans_pcie->sw_csum_tx) { |
| csum_skb = alloc_skb(data_left + tcp_hdrlen(skb), |
| GFP_ATOMIC); |
| if (!csum_skb) { |
| ret = -ENOMEM; |
| goto out_unmap; |
| } |
| |
| iwl_compute_pseudo_hdr_csum(iph, tcph, |
| skb->protocol == |
| htons(ETH_P_IPV6), |
| data_left); |
| |
| memcpy(skb_put(csum_skb, tcp_hdrlen(skb)), |
| tcph, tcp_hdrlen(skb)); |
| skb_set_transport_header(csum_skb, 0); |
| csum_skb->csum_start = |
| (unsigned char *)tcp_hdr(csum_skb) - |
| csum_skb->head; |
| } |
| |
| hdr_page->pos += snap_ip_tcp_hdrlen; |
| |
| hdr_tb_len = hdr_page->pos - start_hdr; |
| hdr_tb_phys = dma_map_single(trans->dev, start_hdr, |
| hdr_tb_len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(trans->dev, hdr_tb_phys))) { |
| dev_kfree_skb(csum_skb); |
| ret = -EINVAL; |
| goto out_unmap; |
| } |
| iwl_pcie_txq_build_tfd(trans, txq, hdr_tb_phys, |
| hdr_tb_len, false); |
| trace_iwlwifi_dev_tx_tso_chunk(trans->dev, start_hdr, |
| hdr_tb_len); |
| |
| /* prepare the start_hdr for the next subframe */ |
| start_hdr = hdr_page->pos; |
| |
| /* put the payload */ |
| while (data_left) { |
| unsigned int size = min_t(unsigned int, tso.size, |
| data_left); |
| dma_addr_t tb_phys; |
| |
| if (trans_pcie->sw_csum_tx) |
| memcpy(skb_put(csum_skb, size), tso.data, size); |
| |
| tb_phys = dma_map_single(trans->dev, tso.data, |
| size, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(trans->dev, tb_phys))) { |
| dev_kfree_skb(csum_skb); |
| ret = -EINVAL; |
| goto out_unmap; |
| } |
| |
| iwl_pcie_txq_build_tfd(trans, txq, tb_phys, |
| size, false); |
| trace_iwlwifi_dev_tx_tso_chunk(trans->dev, tso.data, |
| size); |
| |
| data_left -= size; |
| tso_build_data(skb, &tso, size); |
| } |
| |
| /* For testing on early hardware only */ |
| if (trans_pcie->sw_csum_tx) { |
| __wsum csum; |
| |
| csum = skb_checksum(csum_skb, |
| skb_checksum_start_offset(csum_skb), |
| csum_skb->len - |
| skb_checksum_start_offset(csum_skb), |
| 0); |
| dev_kfree_skb(csum_skb); |
| dma_sync_single_for_cpu(trans->dev, hdr_tb_phys, |
| hdr_tb_len, DMA_TO_DEVICE); |
| tcph->check = csum_fold(csum); |
| dma_sync_single_for_device(trans->dev, hdr_tb_phys, |
| hdr_tb_len, DMA_TO_DEVICE); |
| } |
| } |
| |
| /* re -add the WiFi header and IV */ |
| skb_push(skb, hdr_len + iv_len); |
| |
| return 0; |
| |
| out_unmap: |
| iwl_pcie_tfd_unmap(trans, out_meta, txq, txq->write_ptr); |
| return ret; |
| } |
| #else /* CONFIG_INET */ |
| static int iwl_fill_data_tbs_amsdu(struct iwl_trans *trans, struct sk_buff *skb, |
| struct iwl_txq *txq, u8 hdr_len, |
| struct iwl_cmd_meta *out_meta, |
| struct iwl_device_cmd *dev_cmd, u16 tb1_len) |
| { |
| /* No A-MSDU without CONFIG_INET */ |
| WARN_ON(1); |
| |
| return -1; |
| } |
| #endif /* CONFIG_INET */ |
| |
| int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb, |
| struct iwl_device_cmd *dev_cmd, int txq_id) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct ieee80211_hdr *hdr; |
| struct iwl_tx_cmd *tx_cmd = (struct iwl_tx_cmd *)dev_cmd->payload; |
| struct iwl_cmd_meta *out_meta; |
| struct iwl_txq *txq; |
| dma_addr_t tb0_phys, tb1_phys, scratch_phys; |
| void *tb1_addr; |
| void *tfd; |
| u16 len, tb1_len; |
| bool wait_write_ptr; |
| __le16 fc; |
| u8 hdr_len; |
| u16 wifi_seq; |
| bool amsdu; |
| |
| txq = &trans_pcie->txq[txq_id]; |
| |
| if (WARN_ONCE(!test_bit(txq_id, trans_pcie->queue_used), |
| "TX on unused queue %d\n", txq_id)) |
| return -EINVAL; |
| |
| if (unlikely(trans_pcie->sw_csum_tx && |
| skb->ip_summed == CHECKSUM_PARTIAL)) { |
| int offs = skb_checksum_start_offset(skb); |
| int csum_offs = offs + skb->csum_offset; |
| __wsum csum; |
| |
| if (skb_ensure_writable(skb, csum_offs + sizeof(__sum16))) |
| return -1; |
| |
| csum = skb_checksum(skb, offs, skb->len - offs, 0); |
| *(__sum16 *)(skb->data + csum_offs) = csum_fold(csum); |
| |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| |
| if (skb_is_nonlinear(skb) && |
| skb_shinfo(skb)->nr_frags > IWL_PCIE_MAX_FRAGS(trans_pcie) && |
| __skb_linearize(skb)) |
| return -ENOMEM; |
| |
| /* mac80211 always puts the full header into the SKB's head, |
| * so there's no need to check if it's readable there |
| */ |
| hdr = (struct ieee80211_hdr *)skb->data; |
| fc = hdr->frame_control; |
| hdr_len = ieee80211_hdrlen(fc); |
| |
| spin_lock(&txq->lock); |
| |
| if (iwl_queue_space(txq) < txq->high_mark) { |
| iwl_stop_queue(trans, txq); |
| |
| /* don't put the packet on the ring, if there is no room */ |
| if (unlikely(iwl_queue_space(txq) < 3)) { |
| struct iwl_device_cmd **dev_cmd_ptr; |
| |
| dev_cmd_ptr = (void *)((u8 *)skb->cb + |
| trans_pcie->dev_cmd_offs); |
| |
| *dev_cmd_ptr = dev_cmd; |
| __skb_queue_tail(&txq->overflow_q, skb); |
| |
| spin_unlock(&txq->lock); |
| return 0; |
| } |
| } |
| |
| /* In AGG mode, the index in the ring must correspond to the WiFi |
| * sequence number. This is a HW requirements to help the SCD to parse |
| * the BA. |
| * Check here that the packets are in the right place on the ring. |
| */ |
| wifi_seq = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl)); |
| WARN_ONCE(txq->ampdu && |
| (wifi_seq & 0xff) != txq->write_ptr, |
| "Q: %d WiFi Seq %d tfdNum %d", |
| txq_id, wifi_seq, txq->write_ptr); |
| |
| /* Set up driver data for this TFD */ |
| txq->entries[txq->write_ptr].skb = skb; |
| txq->entries[txq->write_ptr].cmd = dev_cmd; |
| |
| dev_cmd->hdr.sequence = |
| cpu_to_le16((u16)(QUEUE_TO_SEQ(txq_id) | |
| INDEX_TO_SEQ(txq->write_ptr))); |
| |
| tb0_phys = iwl_pcie_get_first_tb_dma(txq, txq->write_ptr); |
| scratch_phys = tb0_phys + sizeof(struct iwl_cmd_header) + |
| offsetof(struct iwl_tx_cmd, scratch); |
| |
| tx_cmd->dram_lsb_ptr = cpu_to_le32(scratch_phys); |
| tx_cmd->dram_msb_ptr = iwl_get_dma_hi_addr(scratch_phys); |
| |
| /* Set up first empty entry in queue's array of Tx/cmd buffers */ |
| out_meta = &txq->entries[txq->write_ptr].meta; |
| out_meta->flags = 0; |
| |
| /* |
| * The second TB (tb1) points to the remainder of the TX command |
| * and the 802.11 header - dword aligned size |
| * (This calculation modifies the TX command, so do it before the |
| * setup of the first TB) |
| */ |
| len = sizeof(struct iwl_tx_cmd) + sizeof(struct iwl_cmd_header) + |
| hdr_len - IWL_FIRST_TB_SIZE; |
| /* do not align A-MSDU to dword as the subframe header aligns it */ |
| amsdu = ieee80211_is_data_qos(fc) && |
| (*ieee80211_get_qos_ctl(hdr) & |
| IEEE80211_QOS_CTL_A_MSDU_PRESENT); |
| if (trans_pcie->sw_csum_tx || !amsdu) { |
| tb1_len = ALIGN(len, 4); |
| /* Tell NIC about any 2-byte padding after MAC header */ |
| if (tb1_len != len) |
| tx_cmd->tx_flags |= TX_CMD_FLG_MH_PAD_MSK; |
| } else { |
| tb1_len = len; |
| } |
| |
| /* The first TB points to bi-directional DMA data */ |
| memcpy(&txq->first_tb_bufs[txq->write_ptr], &dev_cmd->hdr, |
| IWL_FIRST_TB_SIZE); |
| iwl_pcie_txq_build_tfd(trans, txq, tb0_phys, |
| IWL_FIRST_TB_SIZE, true); |
| |
| /* there must be data left over for TB1 or this code must be changed */ |
| BUILD_BUG_ON(sizeof(struct iwl_tx_cmd) < IWL_FIRST_TB_SIZE); |
| |
| /* map the data for TB1 */ |
| tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE; |
| tb1_phys = dma_map_single(trans->dev, tb1_addr, tb1_len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(trans->dev, tb1_phys))) |
| goto out_err; |
| iwl_pcie_txq_build_tfd(trans, txq, tb1_phys, tb1_len, false); |
| |
| if (amsdu) { |
| if (unlikely(iwl_fill_data_tbs_amsdu(trans, skb, txq, hdr_len, |
| out_meta, dev_cmd, |
| tb1_len))) |
| goto out_err; |
| } else if (unlikely(iwl_fill_data_tbs(trans, skb, txq, hdr_len, |
| out_meta, dev_cmd, tb1_len))) { |
| goto out_err; |
| } |
| |
| tfd = iwl_pcie_get_tfd(trans_pcie, txq, txq->write_ptr); |
| /* Set up entry for this TFD in Tx byte-count array */ |
| iwl_pcie_txq_update_byte_cnt_tbl(trans, txq, le16_to_cpu(tx_cmd->len), |
| iwl_pcie_tfd_get_num_tbs(trans, tfd)); |
| |
| wait_write_ptr = ieee80211_has_morefrags(fc); |
| |
| /* start timer if queue currently empty */ |
| if (txq->read_ptr == txq->write_ptr) { |
| if (txq->wd_timeout) { |
| /* |
| * If the TXQ is active, then set the timer, if not, |
| * set the timer in remainder so that the timer will |
| * be armed with the right value when the station will |
| * wake up. |
| */ |
| if (!txq->frozen) |
| mod_timer(&txq->stuck_timer, |
| jiffies + txq->wd_timeout); |
| else |
| txq->frozen_expiry_remainder = txq->wd_timeout; |
| } |
| IWL_DEBUG_RPM(trans, "Q: %d first tx - take ref\n", txq->id); |
| iwl_trans_ref(trans); |
| } |
| |
| /* Tell device the write index *just past* this latest filled TFD */ |
| txq->write_ptr = iwl_queue_inc_wrap(txq->write_ptr); |
| if (!wait_write_ptr) |
| iwl_pcie_txq_inc_wr_ptr(trans, txq); |
| |
| /* |
| * At this point the frame is "transmitted" successfully |
| * and we will get a TX status notification eventually. |
| */ |
| spin_unlock(&txq->lock); |
| return 0; |
| out_err: |
| spin_unlock(&txq->lock); |
| return -1; |
| } |