blob: d05f7500e0c514fb966fdc12b2db8824e017ab70 [file] [log] [blame]
/*
Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
Copyright (C) Manu Abraham (abraham.manu@gmail.com)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include "dvb_frontend.h"
#include "mb86a16.h"
#include "mb86a16_priv.h"
unsigned int verbose = 5;
module_param(verbose, int, 0644);
#define ABS(x) ((x) < 0 ? (-x) : (x))
struct mb86a16_state {
struct i2c_adapter *i2c_adap;
const struct mb86a16_config *config;
struct dvb_frontend frontend;
/* tuning parameters */
int frequency;
int srate;
/* Internal stuff */
int master_clk;
int deci;
int csel;
int rsel;
};
#define MB86A16_ERROR 0
#define MB86A16_NOTICE 1
#define MB86A16_INFO 2
#define MB86A16_DEBUG 3
#define dprintk(x, y, z, format, arg...) do { \
if (z) { \
if ((x > MB86A16_ERROR) && (x > y)) \
printk(KERN_ERR "%s: " format "\n", __func__, ##arg); \
else if ((x > MB86A16_NOTICE) && (x > y)) \
printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg); \
else if ((x > MB86A16_INFO) && (x > y)) \
printk(KERN_INFO "%s: " format "\n", __func__, ##arg); \
else if ((x > MB86A16_DEBUG) && (x > y)) \
printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg); \
} else { \
if (x > y) \
printk(format, ##arg); \
} \
} while (0)
#define TRACE_IN dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
#define TRACE_OUT dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
{
int ret;
u8 buf[] = { reg, val };
struct i2c_msg msg = {
.addr = state->config->demod_address,
.flags = 0,
.buf = buf,
.len = 2
};
dprintk(verbose, MB86A16_DEBUG, 1,
"writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
state->config->demod_address, buf[0], buf[1]);
ret = i2c_transfer(state->i2c_adap, &msg, 1);
return (ret != 1) ? -EREMOTEIO : 0;
}
static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {
{
.addr = state->config->demod_address,
.flags = 0,
.buf = b0,
.len = 1
}, {
.addr = state->config->demod_address,
.flags = I2C_M_RD,
.buf = b1,
.len = 1
}
};
ret = i2c_transfer(state->i2c_adap, msg, 2);
if (ret != 2) {
dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=0x%i)",
reg, ret);
return -EREMOTEIO;
}
*val = b1[0];
return ret;
}
static int CNTM_set(struct mb86a16_state *state,
unsigned char timint1,
unsigned char timint2,
unsigned char cnext)
{
unsigned char val;
val = (timint1 << 4) | (timint2 << 2) | cnext;
if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int smrt_set(struct mb86a16_state *state, int rate)
{
int tmp ;
int m ;
unsigned char STOFS0, STOFS1;
m = 1 << state->deci;
tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
STOFS0 = tmp & 0x0ff;
STOFS1 = (tmp & 0xf00) >> 8;
if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
(state->csel << 1) |
state->rsel) < 0)
goto err;
if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
goto err;
if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -1;
}
static int srst(struct mb86a16_state *state)
{
if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int afcex_data_set(struct mb86a16_state *state,
unsigned char AFCEX_L,
unsigned char AFCEX_H)
{
if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
goto err;
if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -1;
}
static int afcofs_data_set(struct mb86a16_state *state,
unsigned char AFCEX_L,
unsigned char AFCEX_H)
{
if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
goto err;
if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int stlp_set(struct mb86a16_state *state,
unsigned char STRAS,
unsigned char STRBS)
{
if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
{
if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
goto err;
if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int initial_set(struct mb86a16_state *state)
{
if (stlp_set(state, 5, 7))
goto err;
udelay(100);
if (afcex_data_set(state, 0, 0))
goto err;
udelay(100);
if (afcofs_data_set(state, 0, 0))
goto err;
udelay(100);
if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
goto err;
if (mb86a16_write(state, 0x2f, 0x21) < 0)
goto err;
if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
goto err;
if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
goto err;
if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
goto err;
if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
goto err;
if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
goto err;
if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
goto err;
if (mb86a16_write(state, 0x54, 0xff) < 0)
goto err;
if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int S01T_set(struct mb86a16_state *state,
unsigned char s1t,
unsigned s0t)
{
if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int EN_set(struct mb86a16_state *state,
int cren,
int afcen)
{
unsigned char val;
val = 0x7a | (cren << 7) | (afcen << 2);
if (mb86a16_write(state, 0x49, val) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int AFCEXEN_set(struct mb86a16_state *state,
int afcexen,
int smrt)
{
unsigned char AFCA ;
if (smrt > 18875)
AFCA = 4;
else if (smrt > 9375)
AFCA = 3;
else if (smrt > 2250)
AFCA = 2;
else
AFCA = 1;
if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int DAGC_data_set(struct mb86a16_state *state,
unsigned char DAGCA,
unsigned char DAGCW)
{
if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static void smrt_info_get(struct mb86a16_state *state, int rate)
{
if (rate >= 37501) {
state->deci = 0; state->csel = 0; state->rsel = 0;
} else if (rate >= 30001) {
state->deci = 0; state->csel = 0; state->rsel = 1;
} else if (rate >= 26251) {
state->deci = 0; state->csel = 1; state->rsel = 0;
} else if (rate >= 22501) {
state->deci = 0; state->csel = 1; state->rsel = 1;
} else if (rate >= 18751) {
state->deci = 1; state->csel = 0; state->rsel = 0;
} else if (rate >= 15001) {
state->deci = 1; state->csel = 0; state->rsel = 1;
} else if (rate >= 13126) {
state->deci = 1; state->csel = 1; state->rsel = 0;
} else if (rate >= 11251) {
state->deci = 1; state->csel = 1; state->rsel = 1;
} else if (rate >= 9376) {
state->deci = 2; state->csel = 0; state->rsel = 0;
} else if (rate >= 7501) {
state->deci = 2; state->csel = 0; state->rsel = 1;
} else if (rate >= 6563) {
state->deci = 2; state->csel = 1; state->rsel = 0;
} else if (rate >= 5626) {
state->deci = 2; state->csel = 1; state->rsel = 1;
} else if (rate >= 4688) {
state->deci = 3; state->csel = 0; state->rsel = 0;
} else if (rate >= 3751) {
state->deci = 3; state->csel = 0; state->rsel = 1;
} else if (rate >= 3282) {
state->deci = 3; state->csel = 1; state->rsel = 0;
} else if (rate >= 2814) {
state->deci = 3; state->csel = 1; state->rsel = 1;
} else if (rate >= 2344) {
state->deci = 4; state->csel = 0; state->rsel = 0;
} else if (rate >= 1876) {
state->deci = 4; state->csel = 0; state->rsel = 1;
} else if (rate >= 1641) {
state->deci = 4; state->csel = 1; state->rsel = 0;
} else if (rate >= 1407) {
state->deci = 4; state->csel = 1; state->rsel = 1;
} else if (rate >= 1172) {
state->deci = 5; state->csel = 0; state->rsel = 0;
} else if (rate >= 939) {
state->deci = 5; state->csel = 0; state->rsel = 1;
} else if (rate >= 821) {
state->deci = 5; state->csel = 1; state->rsel = 0;
} else {
state->deci = 5; state->csel = 1; state->rsel = 1;
}
if (state->csel == 0)
state->master_clk = 92000;
else
state->master_clk = 61333;
}
static int signal_det(struct mb86a16_state *state,
int smrt,
unsigned char *SIG)
{
int ret ;
int smrtd ;
int wait_sym ;
u32 wait_t;
unsigned char S[3] ;
int i ;
if (*SIG > 45) {
if (CNTM_set(state, 2, 1, 2) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
return -1;
}
wait_sym = 40000;
} else {
if (CNTM_set(state, 3, 1, 2) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
return -1;
}
wait_sym = 80000;
}
for (i = 0; i < 3; i++) {
if (i == 0)
smrtd = smrt * 98 / 100;
else if (i == 1)
smrtd = smrt;
else
smrtd = smrt * 102 / 100;
smrt_info_get(state, smrtd);
smrt_set(state, smrtd);
srst(state);
wait_t = (wait_sym + 99 * smrtd / 100) / smrtd;
if (wait_t == 0)
wait_t = 1;
msleep_interruptible(10);
if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
}
if ((S[1] > S[0] * 112 / 100) &&
(S[1] > S[2] * 112 / 100)) {
ret = 1;
} else {
ret = 0;
}
*SIG = S[1];
if (CNTM_set(state, 0, 1, 2) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
return -1;
}
return ret;
}
static int rf_val_set(struct mb86a16_state *state,
int f,
int smrt,
unsigned char R)
{
unsigned char C, F, B;
int M;
unsigned char rf_val[5];
int ack = -1;
if (smrt > 37750)
C = 1;
else if (smrt > 18875)
C = 2;
else if (smrt > 5500)
C = 3;
else
C = 4;
if (smrt > 30500)
F = 3;
else if (smrt > 9375)
F = 1;
else if (smrt > 4625)
F = 0;
else
F = 2;
if (f < 1060)
B = 0;
else if (f < 1175)
B = 1;
else if (f < 1305)
B = 2;
else if (f < 1435)
B = 3;
else if (f < 1570)
B = 4;
else if (f < 1715)
B = 5;
else if (f < 1845)
B = 6;
else if (f < 1980)
B = 7;
else if (f < 2080)
B = 8;
else
B = 9;
M = f * (1 << R) / 2;
rf_val[0] = 0x01 | (C << 3) | (F << 1);
rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
rf_val[2] = (M & 0x00ff0) >> 4;
rf_val[3] = ((M & 0x0000f) << 4) | B;
/* Frequency Set */
if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
ack = 0;
if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
ack = 0;
if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
ack = 0;
if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
ack = 0;
if (mb86a16_write(state, 0x25, 0x01) < 0)
ack = 0;
if (ack == 0) {
dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
return -EREMOTEIO;
}
return 0;
}
static int afcerr_chk(struct mb86a16_state *state)
{
unsigned char AFCM_L, AFCM_H ;
int AFCM ;
int afcm, afcerr ;
if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
goto err;
if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
goto err;
AFCM = (AFCM_H << 8) + AFCM_L;
if (AFCM > 2048)
afcm = AFCM - 4096;
else
afcm = AFCM;
afcerr = afcm * state->master_clk / 8192;
return afcerr;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int dagcm_val_get(struct mb86a16_state *state)
{
int DAGCM;
unsigned char DAGCM_H, DAGCM_L;
if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
goto err;
if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
goto err;
DAGCM = (DAGCM_H << 8) + DAGCM_L;
return DAGCM;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int mb86a16_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
u8 stat, stat2;
struct mb86a16_state *state = fe->demodulator_priv;
*status = 0;
if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
goto err;
if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
goto err;
if ((stat > 25) && (stat2 > 25))
*status |= FE_HAS_SIGNAL;
if ((stat > 45) && (stat2 > 45))
*status |= FE_HAS_CARRIER;
if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
goto err;
if (stat & 0x01)
*status |= FE_HAS_SYNC;
if (stat & 0x01)
*status |= FE_HAS_VITERBI;
if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
goto err;
if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
*status |= FE_HAS_LOCK;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int sync_chk(struct mb86a16_state *state,
unsigned char *VIRM)
{
unsigned char val;
int sync;
if (mb86a16_read(state, 0x0d, &val) != 2)
goto err;
dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
sync = val & 0x01;
*VIRM = (val & 0x1c) >> 2;
return sync;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int freqerr_chk(struct mb86a16_state *state,
int fTP,
int smrt,
int unit)
{
unsigned char CRM, AFCML, AFCMH;
unsigned char temp1, temp2, temp3;
int crm, afcm, AFCM;
int crrerr, afcerr; /* kHz */
int frqerr; /* MHz */
int afcen, afcexen = 0;
int R, M, fOSC, fOSC_OFS;
if (mb86a16_read(state, 0x43, &CRM) != 2)
goto err;
if (CRM > 127)
crm = CRM - 256;
else
crm = CRM;
crrerr = smrt * crm / 256;
if (mb86a16_read(state, 0x49, &temp1) != 2)
goto err;
afcen = (temp1 & 0x04) >> 2;
if (afcen == 0) {
if (mb86a16_read(state, 0x2a, &temp1) != 2)
goto err;
afcexen = (temp1 & 0x20) >> 5;
}
if (afcen == 1) {
if (mb86a16_read(state, 0x0e, &AFCML) != 2)
goto err;
if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
goto err;
} else if (afcexen == 1) {
if (mb86a16_read(state, 0x2b, &AFCML) != 2)
goto err;
if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
goto err;
}
if ((afcen == 1) || (afcexen == 1)) {
smrt_info_get(state, smrt);
AFCM = ((AFCMH & 0x01) << 8) + AFCML;
if (AFCM > 255)
afcm = AFCM - 512;
else
afcm = AFCM;
afcerr = afcm * state->master_clk / 8192;
} else
afcerr = 0;
if (mb86a16_read(state, 0x22, &temp1) != 2)
goto err;
if (mb86a16_read(state, 0x23, &temp2) != 2)
goto err;
if (mb86a16_read(state, 0x24, &temp3) != 2)
goto err;
R = (temp1 & 0xe0) >> 5;
M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
if (R == 0)
fOSC = 2 * M;
else
fOSC = M;
fOSC_OFS = fOSC - fTP;
if (unit == 0) { /* MHz */
if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
else
frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
} else { /* kHz */
frqerr = crrerr + afcerr + fOSC_OFS * 1000;
}
return frqerr;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
{
unsigned char R;
if (smrt > 9375)
R = 0;
else
R = 1;
return R;
}
static void swp_info_get(struct mb86a16_state *state,
int fOSC_start,
int smrt,
int v, int R,
int swp_ofs,
int *fOSC,
int *afcex_freq,
unsigned char *AFCEX_L,
unsigned char *AFCEX_H)
{
int AFCEX ;
int crnt_swp_freq ;
crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
if (R == 0)
*fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
else
*fOSC = (crnt_swp_freq + 500) / 1000;
if (*fOSC >= crnt_swp_freq)
*afcex_freq = *fOSC * 1000 - crnt_swp_freq;
else
*afcex_freq = crnt_swp_freq - *fOSC * 1000;
AFCEX = *afcex_freq * 8192 / state->master_clk;
*AFCEX_L = AFCEX & 0x00ff;
*AFCEX_H = (AFCEX & 0x0f00) >> 8;
}
static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V, int vmax, int vmin,
int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
{
int swp_freq ;
if ((i % 2 == 1) && (v <= vmax)) {
/* positive v (case 1) */
if ((v - 1 == vmin) &&
(*(V + 30 + v) >= 0) &&
(*(V + 30 + v - 1) >= 0) &&
(*(V + 30 + v - 1) > *(V + 30 + v)) &&
(*(V + 30 + v - 1) > SIGMIN)) {
swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
*SIG1 = *(V + 30 + v - 1);
} else if ((v == vmax) &&
(*(V + 30 + v) >= 0) &&
(*(V + 30 + v - 1) >= 0) &&
(*(V + 30 + v) > *(V + 30 + v - 1)) &&
(*(V + 30 + v) > SIGMIN)) {
/* (case 2) */
swp_freq = fOSC * 1000 + afcex_freq;
*SIG1 = *(V + 30 + v);
} else if ((*(V + 30 + v) > 0) &&
(*(V + 30 + v - 1) > 0) &&
(*(V + 30 + v - 2) > 0) &&
(*(V + 30 + v - 3) > 0) &&
(*(V + 30 + v - 1) > *(V + 30 + v)) &&
(*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
((*(V + 30 + v - 1) > SIGMIN) ||
(*(V + 30 + v - 2) > SIGMIN))) {
/* (case 3) */
if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
*SIG1 = *(V + 30 + v - 1);
} else {
swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
*SIG1 = *(V + 30 + v - 2);
}
} else if ((v == vmax) &&
(*(V + 30 + v) >= 0) &&
(*(V + 30 + v - 1) >= 0) &&
(*(V + 30 + v - 2) >= 0) &&
(*(V + 30 + v) > *(V + 30 + v - 2)) &&
(*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
((*(V + 30 + v) > SIGMIN) ||
(*(V + 30 + v - 1) > SIGMIN))) {
/* (case 4) */
if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
swp_freq = fOSC * 1000 + afcex_freq;
*SIG1 = *(V + 30 + v);
} else {
swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
*SIG1 = *(V + 30 + v - 1);
}
} else {
swp_freq = -1 ;
}
} else if ((i % 2 == 0) && (v >= vmin)) {
/* Negative v (case 1) */
if ((*(V + 30 + v) > 0) &&
(*(V + 30 + v + 1) > 0) &&
(*(V + 30 + v + 2) > 0) &&
(*(V + 30 + v + 1) > *(V + 30 + v)) &&
(*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
(*(V + 30 + v + 1) > SIGMIN)) {
swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
*SIG1 = *(V + 30 + v + 1);
} else if ((v + 1 == vmax) &&
(*(V + 30 + v) >= 0) &&
(*(V + 30 + v + 1) >= 0) &&
(*(V + 30 + v + 1) > *(V + 30 + v)) &&
(*(V + 30 + v + 1) > SIGMIN)) {
/* (case 2) */
swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
*SIG1 = *(V + 30 + v);
} else if ((v == vmin) &&
(*(V + 30 + v) > 0) &&
(*(V + 30 + v + 1) > 0) &&
(*(V + 30 + v + 2) > 0) &&
(*(V + 30 + v) > *(V + 30 + v + 1)) &&
(*(V + 30 + v) > *(V + 30 + v + 2)) &&
(*(V + 30 + v) > SIGMIN)) {
/* (case 3) */
swp_freq = fOSC * 1000 + afcex_freq;
*SIG1 = *(V + 30 + v);
} else if ((*(V + 30 + v) >= 0) &&
(*(V + 30 + v + 1) >= 0) &&
(*(V + 30 + v + 2) >= 0) &&
(*(V + 30 + v + 3) >= 0) &&
(*(V + 30 + v + 1) > *(V + 30 + v)) &&
(*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
((*(V + 30 + v + 1) > SIGMIN) ||
(*(V + 30 + v + 2) > SIGMIN))) {
/* (case 4) */
if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
*SIG1 = *(V + 30 + v + 1);
} else {
swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
*SIG1 = *(V + 30 + v + 2);
}
} else if ((*(V + 30 + v) >= 0) &&
(*(V + 30 + v + 1) >= 0) &&
(*(V + 30 + v + 2) >= 0) &&
(*(V + 30 + v + 3) >= 0) &&
(*(V + 30 + v) > *(V + 30 + v + 2)) &&
(*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
(*(V + 30 + v) > *(V + 30 + v + 3)) &&
(*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
((*(V + 30 + v) > SIGMIN) ||
(*(V + 30 + v + 1) > SIGMIN))) {
/* (case 5) */
if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
swp_freq = fOSC * 1000 + afcex_freq;
*SIG1 = *(V + 30 + v);
} else {
swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
*SIG1 = *(V + 30 + v + 1);
}
} else if ((v + 2 == vmin) &&
(*(V + 30 + v) >= 0) &&
(*(V + 30 + v + 1) >= 0) &&
(*(V + 30 + v + 2) >= 0) &&
(*(V + 30 + v + 1) > *(V + 30 + v)) &&
(*(V + 30 + v + 2) > *(V + 30 + v)) &&
((*(V + 30 + v + 1) > SIGMIN) ||
(*(V + 30 + v + 2) > SIGMIN))) {
/* (case 6) */
if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
*SIG1 = *(V + 30 + v + 1);
} else {
swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
*SIG1 = *(V + 30 + v + 2);
}
} else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
swp_freq = fOSC * 1000;
*SIG1 = *(V + 30 + v);
} else
swp_freq = -1;
} else
swp_freq = -1;
return swp_freq;
}
static void swp_info_get2(struct mb86a16_state *state,
int smrt,
int R,
int swp_freq,
int *afcex_freq,
int *fOSC,
unsigned char *AFCEX_L,
unsigned char *AFCEX_H)
{
int AFCEX ;
if (R == 0)
*fOSC = (swp_freq + 1000) / 2000 * 2;
else
*fOSC = (swp_freq + 500) / 1000;
if (*fOSC >= swp_freq)
*afcex_freq = *fOSC * 1000 - swp_freq;
else
*afcex_freq = swp_freq - *fOSC * 1000;
AFCEX = *afcex_freq * 8192 / state->master_clk;
*AFCEX_L = AFCEX & 0x00ff;
*AFCEX_H = (AFCEX & 0x0f00) >> 8;
}
static void afcex_info_get(struct mb86a16_state *state,
int afcex_freq,
unsigned char *AFCEX_L,
unsigned char *AFCEX_H)
{
int AFCEX ;
AFCEX = afcex_freq * 8192 / state->master_clk;
*AFCEX_L = AFCEX & 0x00ff;
*AFCEX_H = (AFCEX & 0x0f00) >> 8;
}
static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
{
/* SLOCK0 = 0 */
if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
return 0;
}
static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
{
/* Viterbi Rate, IQ Settings */
if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
return 0;
}
static int FEC_srst(struct mb86a16_state *state)
{
if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
return 0;
}
static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
{
if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
return 0;
}
static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
{
if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
return 0;
}
static int mb86a16_set_fe(struct mb86a16_state *state)
{
u8 agcval, cnmval;
int i, j;
int fOSC = 0;
int fOSC_start = 0;
int wait_t;
int fcp;
int swp_ofs;
int V[60];
u8 SIG1MIN;
unsigned char CREN, AFCEN, AFCEXEN;
unsigned char SIG1;
unsigned char TIMINT1, TIMINT2, TIMEXT;
unsigned char S0T, S1T;
unsigned char S2T;
/* unsigned char S2T, S3T; */
unsigned char S4T, S5T;
unsigned char AFCEX_L, AFCEX_H;
unsigned char R;
unsigned char VIRM;
unsigned char ETH, VIA;
unsigned char junk;
int loop;
int ftemp;
int v, vmax, vmin;
int vmax_his, vmin_his;
int swp_freq, prev_swp_freq[20];
int prev_freq_num;
int signal_dupl;
int afcex_freq;
int signal;
int afcerr;
int temp_freq, delta_freq;
int dagcm[4];
int smrt_d;
/* int freq_err; */
int n;
int ret = -1;
int sync;
dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
fcp = 3000;
swp_ofs = state->srate / 4;
for (i = 0; i < 60; i++)
V[i] = -1;
for (i = 0; i < 20; i++)
prev_swp_freq[i] = 0;
SIG1MIN = 25;
for (n = 0; ((n < 3) && (ret == -1)); n++) {
SEQ_set(state, 0);
iq_vt_set(state, 0);
CREN = 0;
AFCEN = 0;
AFCEXEN = 1;
TIMINT1 = 0;
TIMINT2 = 1;
TIMEXT = 2;
S1T = 0;
S0T = 0;
if (initial_set(state) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
return -1;
}
if (DAGC_data_set(state, 3, 2) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
return -1;
}
if (EN_set(state, CREN, AFCEN) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
return -1; /* (0, 0) */
}
if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
return -1; /* (1, smrt) = (1, symbolrate) */
}
if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
return -1; /* (0, 1, 2) */
}
if (S01T_set(state, S1T, S0T) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
return -1; /* (0, 0) */
}
smrt_info_get(state, state->srate);
if (smrt_set(state, state->srate) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
return -1;
}
R = vco_dev_get(state, state->srate);
if (R == 1)
fOSC_start = state->frequency;
else if (R == 0) {
if (state->frequency % 2 == 0) {
fOSC_start = state->frequency;
} else {
fOSC_start = state->frequency + 1;
if (fOSC_start > 2150)
fOSC_start = state->frequency - 1;
}
}
loop = 1;
ftemp = fOSC_start * 1000;
vmax = 0 ;
while (loop == 1) {
ftemp = ftemp + swp_ofs;
vmax++;
/* Upper bound */
if (ftemp > 2150000) {
loop = 0;
vmax--;
} else {
if ((ftemp == 2150000) ||
(ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
loop = 0;
}
}
loop = 1;
ftemp = fOSC_start * 1000;
vmin = 0 ;
while (loop == 1) {
ftemp = ftemp - swp_ofs;
vmin--;
/* Lower bound */
if (ftemp < 950000) {
loop = 0;
vmin++;
} else {
if ((ftemp == 950000) ||
(state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
loop = 0;
}
}
wait_t = (8000 + state->srate / 2) / state->srate;
if (wait_t == 0)
wait_t = 1;
i = 0;
j = 0;
prev_freq_num = 0;
loop = 1;
signal = 0;
vmax_his = 0;
vmin_his = 0;
v = 0;
while (loop == 1) {
swp_info_get(state, fOSC_start, state->srate,
v, R, swp_ofs, &fOSC,
&afcex_freq, &AFCEX_L, &AFCEX_H);
udelay(100);
if (rf_val_set(state, fOSC, state->srate, R) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
return -1;
}
udelay(100);
if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
return -1;
}
if (srst(state) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "srst error");
return -1;
}
msleep_interruptible(wait_t);
if (mb86a16_read(state, 0x37, &SIG1) != 2) {
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -1;
}
V[30 + v] = SIG1 ;
swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
SIG1MIN, fOSC, afcex_freq,
swp_ofs, &SIG1); /* changed */
signal_dupl = 0;
for (j = 0; j < prev_freq_num; j++) {
if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
signal_dupl = 1;
dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
}
}
if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
prev_swp_freq[prev_freq_num] = swp_freq;
prev_freq_num++;
swp_info_get2(state, state->srate, R, swp_freq,
&afcex_freq, &fOSC,
&AFCEX_L, &AFCEX_H);
if (rf_val_set(state, fOSC, state->srate, R) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
return -1;
}
if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
return -1;
}
signal = signal_det(state, state->srate, &SIG1);
if (signal == 1) {
dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
loop = 0;
} else {
dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
smrt_info_get(state, state->srate);
if (smrt_set(state, state->srate) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
return -1;
}
}
}
if (v > vmax)
vmax_his = 1 ;
if (v < vmin)
vmin_his = 1 ;
i++;
if ((i % 2 == 1) && (vmax_his == 1))
i++;
if ((i % 2 == 0) && (vmin_his == 1))
i++;
if (i % 2 == 1)
v = (i + 1) / 2;
else
v = -i / 2;
if ((vmax_his == 1) && (vmin_his == 1))
loop = 0 ;
}
if (signal == 1) {
dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
S1T = 7 ;
S0T = 1 ;
CREN = 0 ;
AFCEN = 1 ;
AFCEXEN = 0 ;
if (S01T_set(state, S1T, S0T) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
return -1;
}
smrt_info_get(state, state->srate);
if (smrt_set(state, state->srate) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
return -1;
}
if (EN_set(state, CREN, AFCEN) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
return -1;
}
if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
return -1;
}
afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
return -1;
}
if (srst(state) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "srst error");
return -1;
}
/* delay 4~200 */
wait_t = 200000 / state->master_clk + 200000 / state->srate;
msleep(wait_t);
afcerr = afcerr_chk(state);
if (afcerr == -1)
return -1;
swp_freq = fOSC * 1000 + afcerr ;
AFCEXEN = 1 ;
if (state->srate >= 1500)
smrt_d = state->srate / 3;
else
smrt_d = state->srate / 2;
smrt_info_get(state, smrt_d);
if (smrt_set(state, smrt_d) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
return -1;
}
if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
return -1;
}
R = vco_dev_get(state, smrt_d);
if (DAGC_data_set(state, 2, 0) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
return -1;
}
for (i = 0; i < 3; i++) {
temp_freq = swp_freq + (i - 1) * state->srate / 8;
swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
return -1;
}
if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
return -1;
}
wait_t = 200000 / state->master_clk + 40000 / smrt_d;
msleep(wait_t);
dagcm[i] = dagcm_val_get(state);
}
if ((dagcm[0] > dagcm[1]) &&
(dagcm[0] > dagcm[2]) &&
(dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
temp_freq = swp_freq - 2 * state->srate / 8;
swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
return -1;
}
if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
return -1;
}
wait_t = 200000 / state->master_clk + 40000 / smrt_d;
msleep(wait_t);
dagcm[3] = dagcm_val_get(state);
if (dagcm[3] > dagcm[1])
delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
else
delta_freq = 0;
} else if ((dagcm[2] > dagcm[1]) &&
(dagcm[2] > dagcm[0]) &&
(dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
temp_freq = swp_freq + 2 * state->srate / 8;
swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
return -1;
}
if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
return -1;
}
wait_t = 200000 / state->master_clk + 40000 / smrt_d;
msleep(wait_t);
dagcm[3] = dagcm_val_get(state);
if (dagcm[3] > dagcm[1])
delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
else
delta_freq = 0 ;
} else {
delta_freq = 0 ;
}
dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
swp_freq += delta_freq;
dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
if (ABS(state->frequency * 1000 - swp_freq) > 3800) {
dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL !");
} else {
S1T = 0;
S0T = 3;
CREN = 1;
AFCEN = 0;
AFCEXEN = 1;
if (S01T_set(state, S1T, S0T) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
return -1;
}
if (DAGC_data_set(state, 0, 0) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
return -1;
}
R = vco_dev_get(state, state->srate);
smrt_info_get(state, state->srate);
if (smrt_set(state, state->srate) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
return -1;
}
if (EN_set(state, CREN, AFCEN) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
return -1;
}
if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
return -1;
}
swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
if (rf_val_set(state, fOSC, state->srate, R) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
return -1;
}
if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
return -1;
}
if (srst(state) < 0) {
dprintk(verbose, MB86A16_ERROR, 1, "srst error");
return -1;
}
wait_t = 7 + (10000 + state->srate / 2) / state->srate;
if (wait_t == 0)
wait_t = 1;
msleep_interruptible(wait_t);
if (mb86a16_read(state, 0x37, &SIG1) != 2) {
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
if (SIG1 > 110) {
S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
wait_t = 7 + (917504 + state->srate / 2) / state->srate;
} else if (SIG1 > 105) {
S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
} else if (SIG1 > 85) {
S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
} else if (SIG1 > 65) {
S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
} else {
S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
}
wait_t *= 2; /* FOS */
S2T_set(state, S2T);
S45T_set(state, S4T, S5T);
Vi_set(state, ETH, VIA);
srst(state);
msleep_interruptible(wait_t);
sync = sync_chk(state, &VIRM);
dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
if (VIRM) {
if (VIRM == 4) {
/* 5/6 */
if (SIG1 > 110)
wait_t = (786432 + state->srate / 2) / state->srate;
else
wait_t = (1572864 + state->srate / 2) / state->srate;
if (state->srate < 5000)
/* FIXME ! , should be a long wait ! */
msleep_interruptible(wait_t);
else
msleep_interruptible(wait_t);
if (sync_chk(state, &junk) == 0) {
iq_vt_set(state, 1);
FEC_srst(state);
}
}
/* 1/2, 2/3, 3/4, 7/8 */
if (SIG1 > 110)
wait_t = (786432 + state->srate / 2) / state->srate;
else
wait_t = (1572864 + state->srate / 2) / state->srate;
msleep_interruptible(wait_t);
SEQ_set(state, 1);
} else {
dprintk(verbose, MB86A16_INFO, 1, "NO -- SYNC");
SEQ_set(state, 1);
ret = -1;
}
}
} else {
dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL");
ret = -1;
}
sync = sync_chk(state, &junk);
if (sync) {
dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
freqerr_chk(state, state->frequency, state->srate, 1);
ret = 0;
break;
}
}
mb86a16_read(state, 0x15, &agcval);
mb86a16_read(state, 0x26, &cnmval);
dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
return ret;
}
static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
struct dvb_diseqc_master_cmd *cmd)
{
struct mb86a16_state *state = fe->demodulator_priv;
int i;
u8 regs;
if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
goto err;
if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
goto err;
if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
goto err;
regs = 0x18;
if (cmd->msg_len > 5 || cmd->msg_len < 4)
return -EINVAL;
for (i = 0; i < cmd->msg_len; i++) {
if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
goto err;
regs++;
}
i += 0x90;
msleep_interruptible(10);
if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
goto err;
if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
goto err;
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
{
struct mb86a16_state *state = fe->demodulator_priv;
switch (burst) {
case SEC_MINI_A:
if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
MB86A16_DCC1_TBEN |
MB86A16_DCC1_TBO) < 0)
goto err;
if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
goto err;
break;
case SEC_MINI_B:
if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
MB86A16_DCC1_TBEN) < 0)
goto err;
if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
goto err;
break;
}
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int mb86a16_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
{
struct mb86a16_state *state = fe->demodulator_priv;
switch (tone) {
case SEC_TONE_ON:
if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
goto err;
if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
MB86A16_DCC1_CTOE) < 0)
goto err;
if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
goto err;
break;
case SEC_TONE_OFF:
if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
goto err;
if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
goto err;
if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
goto err;
break;
default:
return -EINVAL;
}
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe,
struct dvb_frontend_parameters *p)
{
struct mb86a16_state *state = fe->demodulator_priv;
state->frequency = p->frequency / 1000;
state->srate = p->u.qpsk.symbol_rate / 1000;
if (!mb86a16_set_fe(state)) {
dprintk(verbose, MB86A16_ERROR, 1, "Succesfully acquired LOCK");
return DVBFE_ALGO_SEARCH_SUCCESS;
}
dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
return DVBFE_ALGO_SEARCH_FAILED;
}
static void mb86a16_release(struct dvb_frontend *fe)
{
struct mb86a16_state *state = fe->demodulator_priv;
kfree(state);
}
static int mb86a16_init(struct dvb_frontend *fe)
{
return 0;
}
static int mb86a16_sleep(struct dvb_frontend *fe)
{
return 0;
}
static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
{
u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
u32 timer;
struct mb86a16_state *state = fe->demodulator_priv;
*ber = 0;
if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
goto err;
if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
goto err;
if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
goto err;
if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
goto err;
if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
goto err;
/* BER monitor invalid when BER_EN = 0 */
if (ber_mon & 0x04) {
/* coarse, fast calculation */
*ber = ber_tab & 0x1f;
dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
if (ber_mon & 0x01) {
/*
* BER_SEL = 1, The monitored BER is the estimated
* value with a Reed-Solomon decoder error amount at
* the deinterleaver output.
* monitored BER is expressed as a 20 bit output in total
*/
ber_rst = ber_mon >> 3;
*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
if (ber_rst == 0)
timer = 12500000;
if (ber_rst == 1)
timer = 25000000;
if (ber_rst == 2)
timer = 50000000;
if (ber_rst == 3)
timer = 100000000;
*ber /= timer;
dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
} else {
/*
* BER_SEL = 0, The monitored BER is the estimated
* value with a Viterbi decoder error amount at the
* QPSK demodulator output.
* monitored BER is expressed as a 24 bit output in total
*/
ber_tim = ber_mon >> 1;
*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
if (ber_tim == 0)
timer = 16;
if (ber_tim == 1)
timer = 24;
*ber /= 2 ^ timer;
dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
}
}
return 0;
err:
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
u8 agcm = 0;
struct mb86a16_state *state = fe->demodulator_priv;
*strength = 0;
if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
*strength = ((0xff - agcm) * 100) / 256;
dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
*strength = (0xffff - 0xff) + agcm;
return 0;
}
struct cnr {
u8 cn_reg;
u8 cn_val;
};
static const struct cnr cnr_tab[] = {
{ 35, 2 },
{ 40, 3 },
{ 50, 4 },
{ 60, 5 },
{ 70, 6 },
{ 80, 7 },
{ 92, 8 },
{ 103, 9 },
{ 115, 10 },
{ 138, 12 },
{ 162, 15 },
{ 180, 18 },
{ 185, 19 },
{ 189, 20 },
{ 195, 22 },
{ 199, 24 },
{ 201, 25 },
{ 202, 26 },
{ 203, 27 },
{ 205, 28 },
{ 208, 30 }
};
static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct mb86a16_state *state = fe->demodulator_priv;
int i = 0;
int low_tide = 2, high_tide = 30, q_level;
u8 cn;
*snr = 0;
if (mb86a16_read(state, 0x26, &cn) != 2) {
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
if (cn < cnr_tab[i].cn_reg) {
*snr = cnr_tab[i].cn_val;
break;
}
}
q_level = (*snr * 100) / (high_tide - low_tide);
dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
*snr = (0xffff - 0xff) + *snr;
return 0;
}
static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
u8 dist;
struct mb86a16_state *state = fe->demodulator_priv;
if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
return -EREMOTEIO;
}
*ucblocks = dist;
return 0;
}
static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
{
return DVBFE_ALGO_CUSTOM;
}
static struct dvb_frontend_ops mb86a16_ops = {
.info = {
.name = "Fujitsu MB86A16 DVB-S",
.type = FE_QPSK,
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_stepsize = 3000,
.frequency_tolerance = 0,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
.symbol_rate_tolerance = 500,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
FE_CAN_FEC_7_8 | FE_CAN_QPSK |
FE_CAN_FEC_AUTO
},
.release = mb86a16_release,
.get_frontend_algo = mb86a16_frontend_algo,
.search = mb86a16_search,
.read_status = mb86a16_read_status,
.init = mb86a16_init,
.sleep = mb86a16_sleep,
.read_status = mb86a16_read_status,
.read_ber = mb86a16_read_ber,
.read_signal_strength = mb86a16_read_signal_strength,
.read_snr = mb86a16_read_snr,
.read_ucblocks = mb86a16_read_ucblocks,
.diseqc_send_master_cmd = mb86a16_send_diseqc_msg,
.diseqc_send_burst = mb86a16_send_diseqc_burst,
.set_tone = mb86a16_set_tone,
};
struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
struct i2c_adapter *i2c_adap)
{
u8 dev_id = 0;
struct mb86a16_state *state = NULL;
state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
if (state == NULL)
goto error;
state->config = config;
state->i2c_adap = i2c_adap;
mb86a16_read(state, 0x7f, &dev_id);
if (dev_id != 0xfe)
goto error;
memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
state->frontend.ops.set_voltage = state->config->set_voltage;
return &state->frontend;
error:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(mb86a16_attach);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Manu Abraham");