| #ifndef __ASM_CMPXCHG_H |
| #define __ASM_CMPXCHG_H |
| |
| #include <linux/bitops.h> /* for LOCK_PREFIX */ |
| |
| /* |
| * Note: if you use set64_bit(), __cmpxchg64(), or their variants, you |
| * you need to test for the feature in boot_cpu_data. |
| */ |
| |
| #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr)))) |
| |
| struct __xchg_dummy { unsigned long a[100]; }; |
| #define __xg(x) ((struct __xchg_dummy *)(x)) |
| |
| /* |
| * The semantics of XCHGCMP8B are a bit strange, this is why |
| * there is a loop and the loading of %%eax and %%edx has to |
| * be inside. This inlines well in most cases, the cached |
| * cost is around ~38 cycles. (in the future we might want |
| * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that |
| * might have an implicit FPU-save as a cost, so it's not |
| * clear which path to go.) |
| * |
| * cmpxchg8b must be used with the lock prefix here to allow |
| * the instruction to be executed atomically, see page 3-102 |
| * of the instruction set reference 24319102.pdf. We need |
| * the reader side to see the coherent 64bit value. |
| */ |
| static inline void __set_64bit (unsigned long long * ptr, |
| unsigned int low, unsigned int high) |
| { |
| __asm__ __volatile__ ( |
| "\n1:\t" |
| "movl (%0), %%eax\n\t" |
| "movl 4(%0), %%edx\n\t" |
| LOCK_PREFIX "cmpxchg8b (%0)\n\t" |
| "jnz 1b" |
| : /* no outputs */ |
| : "D"(ptr), |
| "b"(low), |
| "c"(high) |
| : "ax","dx","memory"); |
| } |
| |
| static inline void __set_64bit_constant (unsigned long long *ptr, |
| unsigned long long value) |
| { |
| __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL)); |
| } |
| #define ll_low(x) *(((unsigned int*)&(x))+0) |
| #define ll_high(x) *(((unsigned int*)&(x))+1) |
| |
| static inline void __set_64bit_var (unsigned long long *ptr, |
| unsigned long long value) |
| { |
| __set_64bit(ptr,ll_low(value), ll_high(value)); |
| } |
| |
| #define set_64bit(ptr,value) \ |
| (__builtin_constant_p(value) ? \ |
| __set_64bit_constant(ptr, value) : \ |
| __set_64bit_var(ptr, value) ) |
| |
| #define _set_64bit(ptr,value) \ |
| (__builtin_constant_p(value) ? \ |
| __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \ |
| __set_64bit(ptr, ll_low(value), ll_high(value)) ) |
| |
| /* |
| * Note: no "lock" prefix even on SMP: xchg always implies lock anyway |
| * Note 2: xchg has side effect, so that attribute volatile is necessary, |
| * but generally the primitive is invalid, *ptr is output argument. --ANK |
| */ |
| static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size) |
| { |
| switch (size) { |
| case 1: |
| __asm__ __volatile__("xchgb %b0,%1" |
| :"=q" (x) |
| :"m" (*__xg(ptr)), "0" (x) |
| :"memory"); |
| break; |
| case 2: |
| __asm__ __volatile__("xchgw %w0,%1" |
| :"=r" (x) |
| :"m" (*__xg(ptr)), "0" (x) |
| :"memory"); |
| break; |
| case 4: |
| __asm__ __volatile__("xchgl %0,%1" |
| :"=r" (x) |
| :"m" (*__xg(ptr)), "0" (x) |
| :"memory"); |
| break; |
| } |
| return x; |
| } |
| |
| /* |
| * Atomic compare and exchange. Compare OLD with MEM, if identical, |
| * store NEW in MEM. Return the initial value in MEM. Success is |
| * indicated by comparing RETURN with OLD. |
| */ |
| |
| #ifdef CONFIG_X86_CMPXCHG |
| #define __HAVE_ARCH_CMPXCHG 1 |
| #define cmpxchg(ptr, o, n) \ |
| ((__typeof__(*(ptr)))__cmpxchg((ptr), (unsigned long)(o), \ |
| (unsigned long)(n), sizeof(*(ptr)))) |
| #define sync_cmpxchg(ptr, o, n) \ |
| ((__typeof__(*(ptr)))__sync_cmpxchg((ptr), (unsigned long)(o), \ |
| (unsigned long)(n), sizeof(*(ptr)))) |
| #define cmpxchg_local(ptr, o, n) \ |
| ((__typeof__(*(ptr)))__cmpxchg_local((ptr), (unsigned long)(o), \ |
| (unsigned long)(n), sizeof(*(ptr)))) |
| #endif |
| |
| #ifdef CONFIG_X86_CMPXCHG64 |
| #define cmpxchg64(ptr, o, n) \ |
| ((__typeof__(*(ptr)))__cmpxchg64((ptr), (unsigned long long)(o), \ |
| (unsigned long long)(n))) |
| #define cmpxchg64_local(ptr, o, n) \ |
| ((__typeof__(*(ptr)))__cmpxchg64_local((ptr), (unsigned long long)(o),\ |
| (unsigned long long)(n))) |
| #endif |
| |
| static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old, |
| unsigned long new, int size) |
| { |
| unsigned long prev; |
| switch (size) { |
| case 1: |
| __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2" |
| : "=a"(prev) |
| : "q"(new), "m"(*__xg(ptr)), "0"(old) |
| : "memory"); |
| return prev; |
| case 2: |
| __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2" |
| : "=a"(prev) |
| : "r"(new), "m"(*__xg(ptr)), "0"(old) |
| : "memory"); |
| return prev; |
| case 4: |
| __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2" |
| : "=a"(prev) |
| : "r"(new), "m"(*__xg(ptr)), "0"(old) |
| : "memory"); |
| return prev; |
| } |
| return old; |
| } |
| |
| /* |
| * Always use locked operations when touching memory shared with a |
| * hypervisor, since the system may be SMP even if the guest kernel |
| * isn't. |
| */ |
| static inline unsigned long __sync_cmpxchg(volatile void *ptr, |
| unsigned long old, |
| unsigned long new, int size) |
| { |
| unsigned long prev; |
| switch (size) { |
| case 1: |
| __asm__ __volatile__("lock; cmpxchgb %b1,%2" |
| : "=a"(prev) |
| : "q"(new), "m"(*__xg(ptr)), "0"(old) |
| : "memory"); |
| return prev; |
| case 2: |
| __asm__ __volatile__("lock; cmpxchgw %w1,%2" |
| : "=a"(prev) |
| : "r"(new), "m"(*__xg(ptr)), "0"(old) |
| : "memory"); |
| return prev; |
| case 4: |
| __asm__ __volatile__("lock; cmpxchgl %1,%2" |
| : "=a"(prev) |
| : "r"(new), "m"(*__xg(ptr)), "0"(old) |
| : "memory"); |
| return prev; |
| } |
| return old; |
| } |
| |
| static inline unsigned long __cmpxchg_local(volatile void *ptr, |
| unsigned long old, unsigned long new, int size) |
| { |
| unsigned long prev; |
| switch (size) { |
| case 1: |
| __asm__ __volatile__("cmpxchgb %b1,%2" |
| : "=a"(prev) |
| : "q"(new), "m"(*__xg(ptr)), "0"(old) |
| : "memory"); |
| return prev; |
| case 2: |
| __asm__ __volatile__("cmpxchgw %w1,%2" |
| : "=a"(prev) |
| : "r"(new), "m"(*__xg(ptr)), "0"(old) |
| : "memory"); |
| return prev; |
| case 4: |
| __asm__ __volatile__("cmpxchgl %1,%2" |
| : "=a"(prev) |
| : "r"(new), "m"(*__xg(ptr)), "0"(old) |
| : "memory"); |
| return prev; |
| } |
| return old; |
| } |
| |
| static inline unsigned long long __cmpxchg64(volatile void *ptr, |
| unsigned long long old, unsigned long long new) |
| { |
| unsigned long long prev; |
| __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3" |
| : "=A"(prev) |
| : "b"((unsigned long)new), |
| "c"((unsigned long)(new >> 32)), |
| "m"(*__xg(ptr)), |
| "0"(old) |
| : "memory"); |
| return prev; |
| } |
| |
| static inline unsigned long long __cmpxchg64_local(volatile void *ptr, |
| unsigned long long old, unsigned long long new) |
| { |
| unsigned long long prev; |
| __asm__ __volatile__("cmpxchg8b %3" |
| : "=A"(prev) |
| : "b"((unsigned long)new), |
| "c"((unsigned long)(new >> 32)), |
| "m"(*__xg(ptr)), |
| "0"(old) |
| : "memory"); |
| return prev; |
| } |
| |
| #ifndef CONFIG_X86_CMPXCHG |
| /* |
| * Building a kernel capable running on 80386. It may be necessary to |
| * simulate the cmpxchg on the 80386 CPU. For that purpose we define |
| * a function for each of the sizes we support. |
| */ |
| |
| extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8); |
| extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16); |
| extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32); |
| |
| static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old, |
| unsigned long new, int size) |
| { |
| switch (size) { |
| case 1: |
| return cmpxchg_386_u8(ptr, old, new); |
| case 2: |
| return cmpxchg_386_u16(ptr, old, new); |
| case 4: |
| return cmpxchg_386_u32(ptr, old, new); |
| } |
| return old; |
| } |
| |
| #define cmpxchg(ptr, o, n) \ |
| ({ \ |
| __typeof__(*(ptr)) __ret; \ |
| if (likely(boot_cpu_data.x86 > 3)) \ |
| __ret = __cmpxchg((ptr), (unsigned long)(o), \ |
| (unsigned long)(n), sizeof(*(ptr))); \ |
| else \ |
| __ret = cmpxchg_386((ptr), (unsigned long)(o), \ |
| (unsigned long)(n), sizeof(*(ptr))); \ |
| __ret; \ |
| }) |
| #define cmpxchg_local(ptr, o, n) \ |
| ({ \ |
| __typeof__(*(ptr)) __ret; \ |
| if (likely(boot_cpu_data.x86 > 3)) \ |
| __ret = __cmpxchg_local((ptr), (unsigned long)(o), \ |
| (unsigned long)(n), sizeof(*(ptr))); \ |
| else \ |
| __ret = cmpxchg_386((ptr), (unsigned long)(o), \ |
| (unsigned long)(n), sizeof(*(ptr))); \ |
| __ret; \ |
| }) |
| #endif |
| |
| #ifndef CONFIG_X86_CMPXCHG64 |
| /* |
| * Building a kernel capable running on 80386 and 80486. It may be necessary |
| * to simulate the cmpxchg8b on the 80386 and 80486 CPU. |
| */ |
| |
| extern unsigned long long cmpxchg_486_u64(volatile void *, u64, u64); |
| |
| #define cmpxchg64(ptr, o, n) \ |
| ({ \ |
| __typeof__(*(ptr)) __ret; \ |
| if (likely(boot_cpu_data.x86 > 4)) \ |
| __ret = __cmpxchg64((ptr), (unsigned long long)(o), \ |
| (unsigned long long)(n)); \ |
| else \ |
| __ret = cmpxchg_486_u64((ptr), (unsigned long long)(o), \ |
| (unsigned long long)(n)); \ |
| __ret; \ |
| }) |
| #define cmpxchg64_local(ptr, o, n) \ |
| ({ \ |
| __typeof__(*(ptr)) __ret; \ |
| if (likely(boot_cpu_data.x86 > 4)) \ |
| __ret = __cmpxchg64_local((ptr), (unsigned long long)(o), \ |
| (unsigned long long)(n)); \ |
| else \ |
| __ret = cmpxchg_486_u64((ptr), (unsigned long long)(o), \ |
| (unsigned long long)(n)); \ |
| __ret; \ |
| }) |
| |
| #endif |
| |
| #endif |