blob: 1954a1c4b1f913c5d542bf571c2a503fb6d4c144 [file] [log] [blame]
/*
* Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/cpu.h>
#include <linux/kvm_host.h>
#include <linux/preempt.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/memblock.h>
#include <linux/sizes.h>
#include <linux/cma.h>
#include <linux/bitops.h>
#include <asm/cputable.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/archrandom.h>
#define KVM_CMA_CHUNK_ORDER 18
/*
* Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
* should be power of 2.
*/
#define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
/*
* By default we reserve 5% of memory for hash pagetable allocation.
*/
static unsigned long kvm_cma_resv_ratio = 5;
static struct cma *kvm_cma;
static int __init early_parse_kvm_cma_resv(char *p)
{
pr_debug("%s(%s)\n", __func__, p);
if (!p)
return -EINVAL;
return kstrtoul(p, 0, &kvm_cma_resv_ratio);
}
early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
struct page *kvm_alloc_hpt(unsigned long nr_pages)
{
VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES));
}
EXPORT_SYMBOL_GPL(kvm_alloc_hpt);
void kvm_release_hpt(struct page *page, unsigned long nr_pages)
{
cma_release(kvm_cma, page, nr_pages);
}
EXPORT_SYMBOL_GPL(kvm_release_hpt);
/**
* kvm_cma_reserve() - reserve area for kvm hash pagetable
*
* This function reserves memory from early allocator. It should be
* called by arch specific code once the memblock allocator
* has been activated and all other subsystems have already allocated/reserved
* memory.
*/
void __init kvm_cma_reserve(void)
{
unsigned long align_size;
struct memblock_region *reg;
phys_addr_t selected_size = 0;
/*
* We need CMA reservation only when we are in HV mode
*/
if (!cpu_has_feature(CPU_FTR_HVMODE))
return;
/*
* We cannot use memblock_phys_mem_size() here, because
* memblock_analyze() has not been called yet.
*/
for_each_memblock(memory, reg)
selected_size += memblock_region_memory_end_pfn(reg) -
memblock_region_memory_base_pfn(reg);
selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
if (selected_size) {
pr_debug("%s: reserving %ld MiB for global area\n", __func__,
(unsigned long)selected_size / SZ_1M);
align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
cma_declare_contiguous(0, selected_size, 0, align_size,
KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
}
}
/*
* Real-mode H_CONFER implementation.
* We check if we are the only vcpu out of this virtual core
* still running in the guest and not ceded. If so, we pop up
* to the virtual-mode implementation; if not, just return to
* the guest.
*/
long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
unsigned int yield_count)
{
struct kvmppc_vcore *vc = vcpu->arch.vcore;
int threads_running;
int threads_ceded;
int threads_conferring;
u64 stop = get_tb() + 10 * tb_ticks_per_usec;
int rv = H_SUCCESS; /* => don't yield */
set_bit(vcpu->arch.ptid, &vc->conferring_threads);
while ((get_tb() < stop) && (VCORE_EXIT_COUNT(vc) == 0)) {
threads_running = VCORE_ENTRY_COUNT(vc);
threads_ceded = hweight32(vc->napping_threads);
threads_conferring = hweight32(vc->conferring_threads);
if (threads_ceded + threads_conferring >= threads_running) {
rv = H_TOO_HARD; /* => do yield */
break;
}
}
clear_bit(vcpu->arch.ptid, &vc->conferring_threads);
return rv;
}
/*
* When running HV mode KVM we need to block certain operations while KVM VMs
* exist in the system. We use a counter of VMs to track this.
*
* One of the operations we need to block is onlining of secondaries, so we
* protect hv_vm_count with get/put_online_cpus().
*/
static atomic_t hv_vm_count;
void kvm_hv_vm_activated(void)
{
get_online_cpus();
atomic_inc(&hv_vm_count);
put_online_cpus();
}
EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
void kvm_hv_vm_deactivated(void)
{
get_online_cpus();
atomic_dec(&hv_vm_count);
put_online_cpus();
}
EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
bool kvm_hv_mode_active(void)
{
return atomic_read(&hv_vm_count) != 0;
}
extern int hcall_real_table[], hcall_real_table_end[];
int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
{
cmd /= 4;
if (cmd < hcall_real_table_end - hcall_real_table &&
hcall_real_table[cmd])
return 1;
return 0;
}
EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
int kvmppc_hwrng_present(void)
{
return powernv_hwrng_present();
}
EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
long kvmppc_h_random(struct kvm_vcpu *vcpu)
{
if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
return H_SUCCESS;
return H_HARDWARE;
}