| /* |
| * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. |
| * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) |
| * |
| * Right now, I am very wasteful with the buffers. I allocate memory |
| * pages and then divide them into 2K frame buffers. This way I know I |
| * have buffers large enough to hold one frame within one buffer descriptor. |
| * Once I get this working, I will use 64 or 128 byte CPM buffers, which |
| * will be much more memory efficient and will easily handle lots of |
| * small packets. |
| * |
| * Much better multiple PHY support by Magnus Damm. |
| * Copyright (c) 2000 Ericsson Radio Systems AB. |
| * |
| * Support for FEC controller of ColdFire processors. |
| * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) |
| * |
| * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) |
| * Copyright (c) 2004-2006 Macq Electronique SA. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/ptrace.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/spinlock.h> |
| #include <linux/workqueue.h> |
| #include <linux/bitops.h> |
| #include <linux/io.h> |
| #include <linux/irq.h> |
| #include <linux/clk.h> |
| #include <linux/platform_device.h> |
| #include <linux/phy.h> |
| #include <linux/fec.h> |
| |
| #include <asm/cacheflush.h> |
| |
| #ifndef CONFIG_ARCH_MXC |
| #include <asm/coldfire.h> |
| #include <asm/mcfsim.h> |
| #endif |
| |
| #include "fec.h" |
| |
| #ifdef CONFIG_ARCH_MXC |
| #include <mach/hardware.h> |
| #define FEC_ALIGNMENT 0xf |
| #else |
| #define FEC_ALIGNMENT 0x3 |
| #endif |
| |
| /* |
| * Define the fixed address of the FEC hardware. |
| */ |
| #if defined(CONFIG_M5272) |
| |
| static unsigned char fec_mac_default[] = { |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| }; |
| |
| /* |
| * Some hardware gets it MAC address out of local flash memory. |
| * if this is non-zero then assume it is the address to get MAC from. |
| */ |
| #if defined(CONFIG_NETtel) |
| #define FEC_FLASHMAC 0xf0006006 |
| #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) |
| #define FEC_FLASHMAC 0xf0006000 |
| #elif defined(CONFIG_CANCam) |
| #define FEC_FLASHMAC 0xf0020000 |
| #elif defined (CONFIG_M5272C3) |
| #define FEC_FLASHMAC (0xffe04000 + 4) |
| #elif defined(CONFIG_MOD5272) |
| #define FEC_FLASHMAC 0xffc0406b |
| #else |
| #define FEC_FLASHMAC 0 |
| #endif |
| #endif /* CONFIG_M5272 */ |
| |
| /* The number of Tx and Rx buffers. These are allocated from the page |
| * pool. The code may assume these are power of two, so it it best |
| * to keep them that size. |
| * We don't need to allocate pages for the transmitter. We just use |
| * the skbuffer directly. |
| */ |
| #define FEC_ENET_RX_PAGES 8 |
| #define FEC_ENET_RX_FRSIZE 2048 |
| #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) |
| #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) |
| #define FEC_ENET_TX_FRSIZE 2048 |
| #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE) |
| #define TX_RING_SIZE 16 /* Must be power of two */ |
| #define TX_RING_MOD_MASK 15 /* for this to work */ |
| |
| #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE) |
| #error "FEC: descriptor ring size constants too large" |
| #endif |
| |
| /* Interrupt events/masks. */ |
| #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ |
| #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ |
| #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ |
| #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ |
| #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ |
| #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ |
| #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ |
| #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ |
| #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ |
| #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ |
| |
| #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII) |
| |
| /* The FEC stores dest/src/type, data, and checksum for receive packets. |
| */ |
| #define PKT_MAXBUF_SIZE 1518 |
| #define PKT_MINBUF_SIZE 64 |
| #define PKT_MAXBLR_SIZE 1520 |
| |
| |
| /* |
| * The 5270/5271/5280/5282/532x RX control register also contains maximum frame |
| * size bits. Other FEC hardware does not, so we need to take that into |
| * account when setting it. |
| */ |
| #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ |
| defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC) |
| #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) |
| #else |
| #define OPT_FRAME_SIZE 0 |
| #endif |
| |
| /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and |
| * tx_bd_base always point to the base of the buffer descriptors. The |
| * cur_rx and cur_tx point to the currently available buffer. |
| * The dirty_tx tracks the current buffer that is being sent by the |
| * controller. The cur_tx and dirty_tx are equal under both completely |
| * empty and completely full conditions. The empty/ready indicator in |
| * the buffer descriptor determines the actual condition. |
| */ |
| struct fec_enet_private { |
| /* Hardware registers of the FEC device */ |
| void __iomem *hwp; |
| |
| struct net_device *netdev; |
| |
| struct clk *clk; |
| |
| /* The saved address of a sent-in-place packet/buffer, for skfree(). */ |
| unsigned char *tx_bounce[TX_RING_SIZE]; |
| struct sk_buff* tx_skbuff[TX_RING_SIZE]; |
| struct sk_buff* rx_skbuff[RX_RING_SIZE]; |
| ushort skb_cur; |
| ushort skb_dirty; |
| |
| /* CPM dual port RAM relative addresses */ |
| dma_addr_t bd_dma; |
| /* Address of Rx and Tx buffers */ |
| struct bufdesc *rx_bd_base; |
| struct bufdesc *tx_bd_base; |
| /* The next free ring entry */ |
| struct bufdesc *cur_rx, *cur_tx; |
| /* The ring entries to be free()ed */ |
| struct bufdesc *dirty_tx; |
| |
| uint tx_full; |
| /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */ |
| spinlock_t hw_lock; |
| |
| struct platform_device *pdev; |
| |
| int opened; |
| |
| /* Phylib and MDIO interface */ |
| struct mii_bus *mii_bus; |
| struct phy_device *phy_dev; |
| int mii_timeout; |
| uint phy_speed; |
| phy_interface_t phy_interface; |
| int index; |
| int link; |
| int full_duplex; |
| struct completion mdio_done; |
| }; |
| |
| static irqreturn_t fec_enet_interrupt(int irq, void * dev_id); |
| static void fec_enet_tx(struct net_device *dev); |
| static void fec_enet_rx(struct net_device *dev); |
| static int fec_enet_close(struct net_device *dev); |
| static void fec_restart(struct net_device *dev, int duplex); |
| static void fec_stop(struct net_device *dev); |
| |
| /* FEC MII MMFR bits definition */ |
| #define FEC_MMFR_ST (1 << 30) |
| #define FEC_MMFR_OP_READ (2 << 28) |
| #define FEC_MMFR_OP_WRITE (1 << 28) |
| #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) |
| #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) |
| #define FEC_MMFR_TA (2 << 16) |
| #define FEC_MMFR_DATA(v) (v & 0xffff) |
| |
| #define FEC_MII_TIMEOUT 1000 /* us */ |
| |
| /* Transmitter timeout */ |
| #define TX_TIMEOUT (2 * HZ) |
| |
| static netdev_tx_t |
| fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| struct bufdesc *bdp; |
| void *bufaddr; |
| unsigned short status; |
| unsigned long flags; |
| |
| if (!fep->link) { |
| /* Link is down or autonegotiation is in progress. */ |
| return NETDEV_TX_BUSY; |
| } |
| |
| spin_lock_irqsave(&fep->hw_lock, flags); |
| /* Fill in a Tx ring entry */ |
| bdp = fep->cur_tx; |
| |
| status = bdp->cbd_sc; |
| |
| if (status & BD_ENET_TX_READY) { |
| /* Ooops. All transmit buffers are full. Bail out. |
| * This should not happen, since dev->tbusy should be set. |
| */ |
| printk("%s: tx queue full!.\n", dev->name); |
| spin_unlock_irqrestore(&fep->hw_lock, flags); |
| return NETDEV_TX_BUSY; |
| } |
| |
| /* Clear all of the status flags */ |
| status &= ~BD_ENET_TX_STATS; |
| |
| /* Set buffer length and buffer pointer */ |
| bufaddr = skb->data; |
| bdp->cbd_datlen = skb->len; |
| |
| /* |
| * On some FEC implementations data must be aligned on |
| * 4-byte boundaries. Use bounce buffers to copy data |
| * and get it aligned. Ugh. |
| */ |
| if (((unsigned long) bufaddr) & FEC_ALIGNMENT) { |
| unsigned int index; |
| index = bdp - fep->tx_bd_base; |
| memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len); |
| bufaddr = fep->tx_bounce[index]; |
| } |
| |
| /* Save skb pointer */ |
| fep->tx_skbuff[fep->skb_cur] = skb; |
| |
| dev->stats.tx_bytes += skb->len; |
| fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; |
| |
| /* Push the data cache so the CPM does not get stale memory |
| * data. |
| */ |
| bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr, |
| FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); |
| |
| /* Send it on its way. Tell FEC it's ready, interrupt when done, |
| * it's the last BD of the frame, and to put the CRC on the end. |
| */ |
| status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR |
| | BD_ENET_TX_LAST | BD_ENET_TX_TC); |
| bdp->cbd_sc = status; |
| |
| /* Trigger transmission start */ |
| writel(0, fep->hwp + FEC_X_DES_ACTIVE); |
| |
| /* If this was the last BD in the ring, start at the beginning again. */ |
| if (status & BD_ENET_TX_WRAP) |
| bdp = fep->tx_bd_base; |
| else |
| bdp++; |
| |
| if (bdp == fep->dirty_tx) { |
| fep->tx_full = 1; |
| netif_stop_queue(dev); |
| } |
| |
| fep->cur_tx = bdp; |
| |
| spin_unlock_irqrestore(&fep->hw_lock, flags); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static void |
| fec_timeout(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| dev->stats.tx_errors++; |
| |
| fec_restart(dev, fep->full_duplex); |
| netif_wake_queue(dev); |
| } |
| |
| static irqreturn_t |
| fec_enet_interrupt(int irq, void * dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct fec_enet_private *fep = netdev_priv(dev); |
| uint int_events; |
| irqreturn_t ret = IRQ_NONE; |
| |
| do { |
| int_events = readl(fep->hwp + FEC_IEVENT); |
| writel(int_events, fep->hwp + FEC_IEVENT); |
| |
| if (int_events & FEC_ENET_RXF) { |
| ret = IRQ_HANDLED; |
| fec_enet_rx(dev); |
| } |
| |
| /* Transmit OK, or non-fatal error. Update the buffer |
| * descriptors. FEC handles all errors, we just discover |
| * them as part of the transmit process. |
| */ |
| if (int_events & FEC_ENET_TXF) { |
| ret = IRQ_HANDLED; |
| fec_enet_tx(dev); |
| } |
| |
| if (int_events & FEC_ENET_MII) { |
| ret = IRQ_HANDLED; |
| complete(&fep->mdio_done); |
| } |
| } while (int_events); |
| |
| return ret; |
| } |
| |
| |
| static void |
| fec_enet_tx(struct net_device *dev) |
| { |
| struct fec_enet_private *fep; |
| struct bufdesc *bdp; |
| unsigned short status; |
| struct sk_buff *skb; |
| |
| fep = netdev_priv(dev); |
| spin_lock(&fep->hw_lock); |
| bdp = fep->dirty_tx; |
| |
| while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) { |
| if (bdp == fep->cur_tx && fep->tx_full == 0) |
| break; |
| |
| dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); |
| bdp->cbd_bufaddr = 0; |
| |
| skb = fep->tx_skbuff[fep->skb_dirty]; |
| /* Check for errors. */ |
| if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | |
| BD_ENET_TX_RL | BD_ENET_TX_UN | |
| BD_ENET_TX_CSL)) { |
| dev->stats.tx_errors++; |
| if (status & BD_ENET_TX_HB) /* No heartbeat */ |
| dev->stats.tx_heartbeat_errors++; |
| if (status & BD_ENET_TX_LC) /* Late collision */ |
| dev->stats.tx_window_errors++; |
| if (status & BD_ENET_TX_RL) /* Retrans limit */ |
| dev->stats.tx_aborted_errors++; |
| if (status & BD_ENET_TX_UN) /* Underrun */ |
| dev->stats.tx_fifo_errors++; |
| if (status & BD_ENET_TX_CSL) /* Carrier lost */ |
| dev->stats.tx_carrier_errors++; |
| } else { |
| dev->stats.tx_packets++; |
| } |
| |
| if (status & BD_ENET_TX_READY) |
| printk("HEY! Enet xmit interrupt and TX_READY.\n"); |
| |
| /* Deferred means some collisions occurred during transmit, |
| * but we eventually sent the packet OK. |
| */ |
| if (status & BD_ENET_TX_DEF) |
| dev->stats.collisions++; |
| |
| /* Free the sk buffer associated with this last transmit */ |
| dev_kfree_skb_any(skb); |
| fep->tx_skbuff[fep->skb_dirty] = NULL; |
| fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; |
| |
| /* Update pointer to next buffer descriptor to be transmitted */ |
| if (status & BD_ENET_TX_WRAP) |
| bdp = fep->tx_bd_base; |
| else |
| bdp++; |
| |
| /* Since we have freed up a buffer, the ring is no longer full |
| */ |
| if (fep->tx_full) { |
| fep->tx_full = 0; |
| if (netif_queue_stopped(dev)) |
| netif_wake_queue(dev); |
| } |
| } |
| fep->dirty_tx = bdp; |
| spin_unlock(&fep->hw_lock); |
| } |
| |
| |
| /* During a receive, the cur_rx points to the current incoming buffer. |
| * When we update through the ring, if the next incoming buffer has |
| * not been given to the system, we just set the empty indicator, |
| * effectively tossing the packet. |
| */ |
| static void |
| fec_enet_rx(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| struct bufdesc *bdp; |
| unsigned short status; |
| struct sk_buff *skb; |
| ushort pkt_len; |
| __u8 *data; |
| |
| #ifdef CONFIG_M532x |
| flush_cache_all(); |
| #endif |
| |
| spin_lock(&fep->hw_lock); |
| |
| /* First, grab all of the stats for the incoming packet. |
| * These get messed up if we get called due to a busy condition. |
| */ |
| bdp = fep->cur_rx; |
| |
| while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { |
| |
| /* Since we have allocated space to hold a complete frame, |
| * the last indicator should be set. |
| */ |
| if ((status & BD_ENET_RX_LAST) == 0) |
| printk("FEC ENET: rcv is not +last\n"); |
| |
| if (!fep->opened) |
| goto rx_processing_done; |
| |
| /* Check for errors. */ |
| if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | |
| BD_ENET_RX_CR | BD_ENET_RX_OV)) { |
| dev->stats.rx_errors++; |
| if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { |
| /* Frame too long or too short. */ |
| dev->stats.rx_length_errors++; |
| } |
| if (status & BD_ENET_RX_NO) /* Frame alignment */ |
| dev->stats.rx_frame_errors++; |
| if (status & BD_ENET_RX_CR) /* CRC Error */ |
| dev->stats.rx_crc_errors++; |
| if (status & BD_ENET_RX_OV) /* FIFO overrun */ |
| dev->stats.rx_fifo_errors++; |
| } |
| |
| /* Report late collisions as a frame error. |
| * On this error, the BD is closed, but we don't know what we |
| * have in the buffer. So, just drop this frame on the floor. |
| */ |
| if (status & BD_ENET_RX_CL) { |
| dev->stats.rx_errors++; |
| dev->stats.rx_frame_errors++; |
| goto rx_processing_done; |
| } |
| |
| /* Process the incoming frame. */ |
| dev->stats.rx_packets++; |
| pkt_len = bdp->cbd_datlen; |
| dev->stats.rx_bytes += pkt_len; |
| data = (__u8*)__va(bdp->cbd_bufaddr); |
| |
| dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen, |
| DMA_FROM_DEVICE); |
| |
| /* This does 16 byte alignment, exactly what we need. |
| * The packet length includes FCS, but we don't want to |
| * include that when passing upstream as it messes up |
| * bridging applications. |
| */ |
| skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN); |
| |
| if (unlikely(!skb)) { |
| printk("%s: Memory squeeze, dropping packet.\n", |
| dev->name); |
| dev->stats.rx_dropped++; |
| } else { |
| skb_reserve(skb, NET_IP_ALIGN); |
| skb_put(skb, pkt_len - 4); /* Make room */ |
| skb_copy_to_linear_data(skb, data, pkt_len - 4); |
| skb->protocol = eth_type_trans(skb, dev); |
| netif_rx(skb); |
| } |
| |
| bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen, |
| DMA_FROM_DEVICE); |
| rx_processing_done: |
| /* Clear the status flags for this buffer */ |
| status &= ~BD_ENET_RX_STATS; |
| |
| /* Mark the buffer empty */ |
| status |= BD_ENET_RX_EMPTY; |
| bdp->cbd_sc = status; |
| |
| /* Update BD pointer to next entry */ |
| if (status & BD_ENET_RX_WRAP) |
| bdp = fep->rx_bd_base; |
| else |
| bdp++; |
| /* Doing this here will keep the FEC running while we process |
| * incoming frames. On a heavily loaded network, we should be |
| * able to keep up at the expense of system resources. |
| */ |
| writel(0, fep->hwp + FEC_R_DES_ACTIVE); |
| } |
| fep->cur_rx = bdp; |
| |
| spin_unlock(&fep->hw_lock); |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| #ifdef CONFIG_M5272 |
| static void __inline__ fec_get_mac(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| unsigned char *iap, tmpaddr[ETH_ALEN]; |
| |
| if (FEC_FLASHMAC) { |
| /* |
| * Get MAC address from FLASH. |
| * If it is all 1's or 0's, use the default. |
| */ |
| iap = (unsigned char *)FEC_FLASHMAC; |
| if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && |
| (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) |
| iap = fec_mac_default; |
| if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && |
| (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) |
| iap = fec_mac_default; |
| } else { |
| *((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW); |
| *((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16); |
| iap = &tmpaddr[0]; |
| } |
| |
| memcpy(dev->dev_addr, iap, ETH_ALEN); |
| |
| /* Adjust MAC if using default MAC address */ |
| if (iap == fec_mac_default) |
| dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; |
| } |
| #endif |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* |
| * Phy section |
| */ |
| static void fec_enet_adjust_link(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| struct phy_device *phy_dev = fep->phy_dev; |
| unsigned long flags; |
| |
| int status_change = 0; |
| |
| spin_lock_irqsave(&fep->hw_lock, flags); |
| |
| /* Prevent a state halted on mii error */ |
| if (fep->mii_timeout && phy_dev->state == PHY_HALTED) { |
| phy_dev->state = PHY_RESUMING; |
| goto spin_unlock; |
| } |
| |
| /* Duplex link change */ |
| if (phy_dev->link) { |
| if (fep->full_duplex != phy_dev->duplex) { |
| fec_restart(dev, phy_dev->duplex); |
| status_change = 1; |
| } |
| } |
| |
| /* Link on or off change */ |
| if (phy_dev->link != fep->link) { |
| fep->link = phy_dev->link; |
| if (phy_dev->link) |
| fec_restart(dev, phy_dev->duplex); |
| else |
| fec_stop(dev); |
| status_change = 1; |
| } |
| |
| spin_unlock: |
| spin_unlock_irqrestore(&fep->hw_lock, flags); |
| |
| if (status_change) |
| phy_print_status(phy_dev); |
| } |
| |
| static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) |
| { |
| struct fec_enet_private *fep = bus->priv; |
| unsigned long time_left; |
| |
| fep->mii_timeout = 0; |
| init_completion(&fep->mdio_done); |
| |
| /* start a read op */ |
| writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | |
| FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | |
| FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); |
| |
| /* wait for end of transfer */ |
| time_left = wait_for_completion_timeout(&fep->mdio_done, |
| usecs_to_jiffies(FEC_MII_TIMEOUT)); |
| if (time_left == 0) { |
| fep->mii_timeout = 1; |
| printk(KERN_ERR "FEC: MDIO read timeout\n"); |
| return -ETIMEDOUT; |
| } |
| |
| /* return value */ |
| return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); |
| } |
| |
| static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, |
| u16 value) |
| { |
| struct fec_enet_private *fep = bus->priv; |
| unsigned long time_left; |
| |
| fep->mii_timeout = 0; |
| init_completion(&fep->mdio_done); |
| |
| /* start a read op */ |
| writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | |
| FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | |
| FEC_MMFR_TA | FEC_MMFR_DATA(value), |
| fep->hwp + FEC_MII_DATA); |
| |
| /* wait for end of transfer */ |
| time_left = wait_for_completion_timeout(&fep->mdio_done, |
| usecs_to_jiffies(FEC_MII_TIMEOUT)); |
| if (time_left == 0) { |
| fep->mii_timeout = 1; |
| printk(KERN_ERR "FEC: MDIO write timeout\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static int fec_enet_mdio_reset(struct mii_bus *bus) |
| { |
| return 0; |
| } |
| |
| static int fec_enet_mii_probe(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| struct phy_device *phy_dev = NULL; |
| int ret; |
| |
| fep->phy_dev = NULL; |
| |
| /* find the first phy */ |
| phy_dev = phy_find_first(fep->mii_bus); |
| if (!phy_dev) { |
| printk(KERN_ERR "%s: no PHY found\n", dev->name); |
| return -ENODEV; |
| } |
| |
| /* attach the mac to the phy */ |
| ret = phy_connect_direct(dev, phy_dev, |
| &fec_enet_adjust_link, 0, |
| PHY_INTERFACE_MODE_MII); |
| if (ret) { |
| printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); |
| return ret; |
| } |
| |
| /* mask with MAC supported features */ |
| phy_dev->supported &= PHY_BASIC_FEATURES; |
| phy_dev->advertising = phy_dev->supported; |
| |
| fep->phy_dev = phy_dev; |
| fep->link = 0; |
| fep->full_duplex = 0; |
| |
| printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] " |
| "(mii_bus:phy_addr=%s, irq=%d)\n", dev->name, |
| fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev), |
| fep->phy_dev->irq); |
| |
| return 0; |
| } |
| |
| static int fec_enet_mii_init(struct platform_device *pdev) |
| { |
| struct net_device *dev = platform_get_drvdata(pdev); |
| struct fec_enet_private *fep = netdev_priv(dev); |
| int err = -ENXIO, i; |
| |
| fep->mii_timeout = 0; |
| |
| /* |
| * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) |
| */ |
| fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1; |
| writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); |
| |
| fep->mii_bus = mdiobus_alloc(); |
| if (fep->mii_bus == NULL) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| |
| fep->mii_bus->name = "fec_enet_mii_bus"; |
| fep->mii_bus->read = fec_enet_mdio_read; |
| fep->mii_bus->write = fec_enet_mdio_write; |
| fep->mii_bus->reset = fec_enet_mdio_reset; |
| snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id); |
| fep->mii_bus->priv = fep; |
| fep->mii_bus->parent = &pdev->dev; |
| |
| fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); |
| if (!fep->mii_bus->irq) { |
| err = -ENOMEM; |
| goto err_out_free_mdiobus; |
| } |
| |
| for (i = 0; i < PHY_MAX_ADDR; i++) |
| fep->mii_bus->irq[i] = PHY_POLL; |
| |
| platform_set_drvdata(dev, fep->mii_bus); |
| |
| if (mdiobus_register(fep->mii_bus)) |
| goto err_out_free_mdio_irq; |
| |
| return 0; |
| |
| err_out_free_mdio_irq: |
| kfree(fep->mii_bus->irq); |
| err_out_free_mdiobus: |
| mdiobus_free(fep->mii_bus); |
| err_out: |
| return err; |
| } |
| |
| static void fec_enet_mii_remove(struct fec_enet_private *fep) |
| { |
| if (fep->phy_dev) |
| phy_disconnect(fep->phy_dev); |
| mdiobus_unregister(fep->mii_bus); |
| kfree(fep->mii_bus->irq); |
| mdiobus_free(fep->mii_bus); |
| } |
| |
| static int fec_enet_get_settings(struct net_device *dev, |
| struct ethtool_cmd *cmd) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| struct phy_device *phydev = fep->phy_dev; |
| |
| if (!phydev) |
| return -ENODEV; |
| |
| return phy_ethtool_gset(phydev, cmd); |
| } |
| |
| static int fec_enet_set_settings(struct net_device *dev, |
| struct ethtool_cmd *cmd) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| struct phy_device *phydev = fep->phy_dev; |
| |
| if (!phydev) |
| return -ENODEV; |
| |
| return phy_ethtool_sset(phydev, cmd); |
| } |
| |
| static void fec_enet_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *info) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| strcpy(info->driver, fep->pdev->dev.driver->name); |
| strcpy(info->version, "Revision: 1.0"); |
| strcpy(info->bus_info, dev_name(&dev->dev)); |
| } |
| |
| static struct ethtool_ops fec_enet_ethtool_ops = { |
| .get_settings = fec_enet_get_settings, |
| .set_settings = fec_enet_set_settings, |
| .get_drvinfo = fec_enet_get_drvinfo, |
| .get_link = ethtool_op_get_link, |
| }; |
| |
| static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| struct phy_device *phydev = fep->phy_dev; |
| |
| if (!netif_running(dev)) |
| return -EINVAL; |
| |
| if (!phydev) |
| return -ENODEV; |
| |
| return phy_mii_ioctl(phydev, rq, cmd); |
| } |
| |
| static void fec_enet_free_buffers(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| int i; |
| struct sk_buff *skb; |
| struct bufdesc *bdp; |
| |
| bdp = fep->rx_bd_base; |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| skb = fep->rx_skbuff[i]; |
| |
| if (bdp->cbd_bufaddr) |
| dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, |
| FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); |
| if (skb) |
| dev_kfree_skb(skb); |
| bdp++; |
| } |
| |
| bdp = fep->tx_bd_base; |
| for (i = 0; i < TX_RING_SIZE; i++) |
| kfree(fep->tx_bounce[i]); |
| } |
| |
| static int fec_enet_alloc_buffers(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| int i; |
| struct sk_buff *skb; |
| struct bufdesc *bdp; |
| |
| bdp = fep->rx_bd_base; |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE); |
| if (!skb) { |
| fec_enet_free_buffers(dev); |
| return -ENOMEM; |
| } |
| fep->rx_skbuff[i] = skb; |
| |
| bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data, |
| FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); |
| bdp->cbd_sc = BD_ENET_RX_EMPTY; |
| bdp++; |
| } |
| |
| /* Set the last buffer to wrap. */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| |
| bdp = fep->tx_bd_base; |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); |
| |
| bdp->cbd_sc = 0; |
| bdp->cbd_bufaddr = 0; |
| bdp++; |
| } |
| |
| /* Set the last buffer to wrap. */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| |
| return 0; |
| } |
| |
| static int |
| fec_enet_open(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| int ret; |
| |
| /* I should reset the ring buffers here, but I don't yet know |
| * a simple way to do that. |
| */ |
| |
| ret = fec_enet_alloc_buffers(dev); |
| if (ret) |
| return ret; |
| |
| /* Probe and connect to PHY when open the interface */ |
| ret = fec_enet_mii_probe(dev); |
| if (ret) { |
| fec_enet_free_buffers(dev); |
| return ret; |
| } |
| phy_start(fep->phy_dev); |
| netif_start_queue(dev); |
| fep->opened = 1; |
| return 0; |
| } |
| |
| static int |
| fec_enet_close(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| /* Don't know what to do yet. */ |
| fep->opened = 0; |
| netif_stop_queue(dev); |
| fec_stop(dev); |
| |
| if (fep->phy_dev) |
| phy_disconnect(fep->phy_dev); |
| |
| fec_enet_free_buffers(dev); |
| |
| return 0; |
| } |
| |
| /* Set or clear the multicast filter for this adaptor. |
| * Skeleton taken from sunlance driver. |
| * The CPM Ethernet implementation allows Multicast as well as individual |
| * MAC address filtering. Some of the drivers check to make sure it is |
| * a group multicast address, and discard those that are not. I guess I |
| * will do the same for now, but just remove the test if you want |
| * individual filtering as well (do the upper net layers want or support |
| * this kind of feature?). |
| */ |
| |
| #define HASH_BITS 6 /* #bits in hash */ |
| #define CRC32_POLY 0xEDB88320 |
| |
| static void set_multicast_list(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| struct netdev_hw_addr *ha; |
| unsigned int i, bit, data, crc, tmp; |
| unsigned char hash; |
| |
| if (dev->flags & IFF_PROMISC) { |
| tmp = readl(fep->hwp + FEC_R_CNTRL); |
| tmp |= 0x8; |
| writel(tmp, fep->hwp + FEC_R_CNTRL); |
| return; |
| } |
| |
| tmp = readl(fep->hwp + FEC_R_CNTRL); |
| tmp &= ~0x8; |
| writel(tmp, fep->hwp + FEC_R_CNTRL); |
| |
| if (dev->flags & IFF_ALLMULTI) { |
| /* Catch all multicast addresses, so set the |
| * filter to all 1's |
| */ |
| writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); |
| writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); |
| |
| return; |
| } |
| |
| /* Clear filter and add the addresses in hash register |
| */ |
| writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); |
| writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); |
| |
| netdev_for_each_mc_addr(ha, dev) { |
| /* Only support group multicast for now */ |
| if (!(ha->addr[0] & 1)) |
| continue; |
| |
| /* calculate crc32 value of mac address */ |
| crc = 0xffffffff; |
| |
| for (i = 0; i < dev->addr_len; i++) { |
| data = ha->addr[i]; |
| for (bit = 0; bit < 8; bit++, data >>= 1) { |
| crc = (crc >> 1) ^ |
| (((crc ^ data) & 1) ? CRC32_POLY : 0); |
| } |
| } |
| |
| /* only upper 6 bits (HASH_BITS) are used |
| * which point to specific bit in he hash registers |
| */ |
| hash = (crc >> (32 - HASH_BITS)) & 0x3f; |
| |
| if (hash > 31) { |
| tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH); |
| tmp |= 1 << (hash - 32); |
| writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); |
| } else { |
| tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW); |
| tmp |= 1 << hash; |
| writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW); |
| } |
| } |
| } |
| |
| /* Set a MAC change in hardware. */ |
| static int |
| fec_set_mac_address(struct net_device *dev, void *p) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| |
| writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) | |
| (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24), |
| fep->hwp + FEC_ADDR_LOW); |
| writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24), |
| fep->hwp + FEC_ADDR_HIGH); |
| return 0; |
| } |
| |
| static const struct net_device_ops fec_netdev_ops = { |
| .ndo_open = fec_enet_open, |
| .ndo_stop = fec_enet_close, |
| .ndo_start_xmit = fec_enet_start_xmit, |
| .ndo_set_multicast_list = set_multicast_list, |
| .ndo_change_mtu = eth_change_mtu, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_tx_timeout = fec_timeout, |
| .ndo_set_mac_address = fec_set_mac_address, |
| .ndo_do_ioctl = fec_enet_ioctl, |
| }; |
| |
| /* |
| * XXX: We need to clean up on failure exits here. |
| * |
| * index is only used in legacy code |
| */ |
| static int fec_enet_init(struct net_device *dev, int index) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| struct bufdesc *cbd_base; |
| struct bufdesc *bdp; |
| int i; |
| |
| /* Allocate memory for buffer descriptors. */ |
| cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma, |
| GFP_KERNEL); |
| if (!cbd_base) { |
| printk("FEC: allocate descriptor memory failed?\n"); |
| return -ENOMEM; |
| } |
| |
| spin_lock_init(&fep->hw_lock); |
| |
| fep->index = index; |
| fep->hwp = (void __iomem *)dev->base_addr; |
| fep->netdev = dev; |
| |
| /* Set the Ethernet address */ |
| #ifdef CONFIG_M5272 |
| fec_get_mac(dev); |
| #else |
| { |
| unsigned long l; |
| l = readl(fep->hwp + FEC_ADDR_LOW); |
| dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24); |
| dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16); |
| dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8); |
| dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0); |
| l = readl(fep->hwp + FEC_ADDR_HIGH); |
| dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24); |
| dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16); |
| } |
| #endif |
| |
| /* Set receive and transmit descriptor base. */ |
| fep->rx_bd_base = cbd_base; |
| fep->tx_bd_base = cbd_base + RX_RING_SIZE; |
| |
| /* The FEC Ethernet specific entries in the device structure */ |
| dev->watchdog_timeo = TX_TIMEOUT; |
| dev->netdev_ops = &fec_netdev_ops; |
| dev->ethtool_ops = &fec_enet_ethtool_ops; |
| |
| /* Initialize the receive buffer descriptors. */ |
| bdp = fep->rx_bd_base; |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| |
| /* Initialize the BD for every fragment in the page. */ |
| bdp->cbd_sc = 0; |
| bdp++; |
| } |
| |
| /* Set the last buffer to wrap */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| |
| /* ...and the same for transmit */ |
| bdp = fep->tx_bd_base; |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| |
| /* Initialize the BD for every fragment in the page. */ |
| bdp->cbd_sc = 0; |
| bdp->cbd_bufaddr = 0; |
| bdp++; |
| } |
| |
| /* Set the last buffer to wrap */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| |
| fec_restart(dev, 0); |
| |
| return 0; |
| } |
| |
| /* This function is called to start or restart the FEC during a link |
| * change. This only happens when switching between half and full |
| * duplex. |
| */ |
| static void |
| fec_restart(struct net_device *dev, int duplex) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| int i; |
| |
| /* Whack a reset. We should wait for this. */ |
| writel(1, fep->hwp + FEC_ECNTRL); |
| udelay(10); |
| |
| /* Clear any outstanding interrupt. */ |
| writel(0xffc00000, fep->hwp + FEC_IEVENT); |
| |
| /* Reset all multicast. */ |
| writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); |
| writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); |
| #ifndef CONFIG_M5272 |
| writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); |
| writel(0, fep->hwp + FEC_HASH_TABLE_LOW); |
| #endif |
| |
| /* Set maximum receive buffer size. */ |
| writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE); |
| |
| /* Set receive and transmit descriptor base. */ |
| writel(fep->bd_dma, fep->hwp + FEC_R_DES_START); |
| writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE, |
| fep->hwp + FEC_X_DES_START); |
| |
| fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; |
| fep->cur_rx = fep->rx_bd_base; |
| |
| /* Reset SKB transmit buffers. */ |
| fep->skb_cur = fep->skb_dirty = 0; |
| for (i = 0; i <= TX_RING_MOD_MASK; i++) { |
| if (fep->tx_skbuff[i]) { |
| dev_kfree_skb_any(fep->tx_skbuff[i]); |
| fep->tx_skbuff[i] = NULL; |
| } |
| } |
| |
| /* Enable MII mode */ |
| if (duplex) { |
| /* MII enable / FD enable */ |
| writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL); |
| writel(0x04, fep->hwp + FEC_X_CNTRL); |
| } else { |
| /* MII enable / No Rcv on Xmit */ |
| writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL); |
| writel(0x0, fep->hwp + FEC_X_CNTRL); |
| } |
| fep->full_duplex = duplex; |
| |
| /* Set MII speed */ |
| writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); |
| |
| #ifdef FEC_MIIGSK_ENR |
| if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) { |
| /* disable the gasket and wait */ |
| writel(0, fep->hwp + FEC_MIIGSK_ENR); |
| while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) |
| udelay(1); |
| |
| /* configure the gasket: RMII, 50 MHz, no loopback, no echo */ |
| writel(1, fep->hwp + FEC_MIIGSK_CFGR); |
| |
| /* re-enable the gasket */ |
| writel(2, fep->hwp + FEC_MIIGSK_ENR); |
| } |
| #endif |
| |
| /* And last, enable the transmit and receive processing */ |
| writel(2, fep->hwp + FEC_ECNTRL); |
| writel(0, fep->hwp + FEC_R_DES_ACTIVE); |
| |
| /* Enable interrupts we wish to service */ |
| writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); |
| } |
| |
| static void |
| fec_stop(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| /* We cannot expect a graceful transmit stop without link !!! */ |
| if (fep->link) { |
| writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ |
| udelay(10); |
| if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) |
| printk("fec_stop : Graceful transmit stop did not complete !\n"); |
| } |
| |
| /* Whack a reset. We should wait for this. */ |
| writel(1, fep->hwp + FEC_ECNTRL); |
| udelay(10); |
| writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); |
| writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); |
| } |
| |
| static int __devinit |
| fec_probe(struct platform_device *pdev) |
| { |
| struct fec_enet_private *fep; |
| struct fec_platform_data *pdata; |
| struct net_device *ndev; |
| int i, irq, ret = 0; |
| struct resource *r; |
| |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!r) |
| return -ENXIO; |
| |
| r = request_mem_region(r->start, resource_size(r), pdev->name); |
| if (!r) |
| return -EBUSY; |
| |
| /* Init network device */ |
| ndev = alloc_etherdev(sizeof(struct fec_enet_private)); |
| if (!ndev) |
| return -ENOMEM; |
| |
| SET_NETDEV_DEV(ndev, &pdev->dev); |
| |
| /* setup board info structure */ |
| fep = netdev_priv(ndev); |
| memset(fep, 0, sizeof(*fep)); |
| |
| ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r)); |
| fep->pdev = pdev; |
| |
| if (!ndev->base_addr) { |
| ret = -ENOMEM; |
| goto failed_ioremap; |
| } |
| |
| platform_set_drvdata(pdev, ndev); |
| |
| pdata = pdev->dev.platform_data; |
| if (pdata) |
| fep->phy_interface = pdata->phy; |
| |
| /* This device has up to three irqs on some platforms */ |
| for (i = 0; i < 3; i++) { |
| irq = platform_get_irq(pdev, i); |
| if (i && irq < 0) |
| break; |
| ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev); |
| if (ret) { |
| while (i >= 0) { |
| irq = platform_get_irq(pdev, i); |
| free_irq(irq, ndev); |
| i--; |
| } |
| goto failed_irq; |
| } |
| } |
| |
| fep->clk = clk_get(&pdev->dev, "fec_clk"); |
| if (IS_ERR(fep->clk)) { |
| ret = PTR_ERR(fep->clk); |
| goto failed_clk; |
| } |
| clk_enable(fep->clk); |
| |
| ret = fec_enet_init(ndev, 0); |
| if (ret) |
| goto failed_init; |
| |
| ret = fec_enet_mii_init(pdev); |
| if (ret) |
| goto failed_mii_init; |
| |
| ret = register_netdev(ndev); |
| if (ret) |
| goto failed_register; |
| |
| return 0; |
| |
| failed_register: |
| fec_enet_mii_remove(fep); |
| failed_mii_init: |
| failed_init: |
| clk_disable(fep->clk); |
| clk_put(fep->clk); |
| failed_clk: |
| for (i = 0; i < 3; i++) { |
| irq = platform_get_irq(pdev, i); |
| if (irq > 0) |
| free_irq(irq, ndev); |
| } |
| failed_irq: |
| iounmap((void __iomem *)ndev->base_addr); |
| failed_ioremap: |
| free_netdev(ndev); |
| |
| return ret; |
| } |
| |
| static int __devexit |
| fec_drv_remove(struct platform_device *pdev) |
| { |
| struct net_device *ndev = platform_get_drvdata(pdev); |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| platform_set_drvdata(pdev, NULL); |
| |
| fec_stop(ndev); |
| fec_enet_mii_remove(fep); |
| clk_disable(fep->clk); |
| clk_put(fep->clk); |
| iounmap((void __iomem *)ndev->base_addr); |
| unregister_netdev(ndev); |
| free_netdev(ndev); |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int |
| fec_suspend(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct fec_enet_private *fep; |
| |
| if (ndev) { |
| fep = netdev_priv(ndev); |
| if (netif_running(ndev)) |
| fec_enet_close(ndev); |
| clk_disable(fep->clk); |
| } |
| return 0; |
| } |
| |
| static int |
| fec_resume(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct fec_enet_private *fep; |
| |
| if (ndev) { |
| fep = netdev_priv(ndev); |
| clk_enable(fep->clk); |
| if (netif_running(ndev)) |
| fec_enet_open(ndev); |
| } |
| return 0; |
| } |
| |
| static const struct dev_pm_ops fec_pm_ops = { |
| .suspend = fec_suspend, |
| .resume = fec_resume, |
| .freeze = fec_suspend, |
| .thaw = fec_resume, |
| .poweroff = fec_suspend, |
| .restore = fec_resume, |
| }; |
| #endif |
| |
| static struct platform_driver fec_driver = { |
| .driver = { |
| .name = "fec", |
| .owner = THIS_MODULE, |
| #ifdef CONFIG_PM |
| .pm = &fec_pm_ops, |
| #endif |
| }, |
| .probe = fec_probe, |
| .remove = __devexit_p(fec_drv_remove), |
| }; |
| |
| static int __init |
| fec_enet_module_init(void) |
| { |
| printk(KERN_INFO "FEC Ethernet Driver\n"); |
| |
| return platform_driver_register(&fec_driver); |
| } |
| |
| static void __exit |
| fec_enet_cleanup(void) |
| { |
| platform_driver_unregister(&fec_driver); |
| } |
| |
| module_exit(fec_enet_cleanup); |
| module_init(fec_enet_module_init); |
| |
| MODULE_LICENSE("GPL"); |