| /* |
| * Copyright (C) ST-Ericsson SA 2010 |
| * |
| * License Terms: GNU General Public License v2 |
| * Author: Arun R Murthy <arun.murthy@stericsson.com> |
| * Author: Daniel Willerud <daniel.willerud@stericsson.com> |
| * Author: Johan Palsson <johan.palsson@stericsson.com> |
| */ |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/platform_device.h> |
| #include <linux/completion.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/mfd/abx500.h> |
| #include <linux/mfd/abx500/ab8500.h> |
| #include <linux/mfd/abx500/ab8500-gpadc.h> |
| |
| /* |
| * GPADC register offsets |
| * Bank : 0x0A |
| */ |
| #define AB8500_GPADC_CTRL1_REG 0x00 |
| #define AB8500_GPADC_CTRL2_REG 0x01 |
| #define AB8500_GPADC_CTRL3_REG 0x02 |
| #define AB8500_GPADC_AUTO_TIMER_REG 0x03 |
| #define AB8500_GPADC_STAT_REG 0x04 |
| #define AB8500_GPADC_MANDATAL_REG 0x05 |
| #define AB8500_GPADC_MANDATAH_REG 0x06 |
| #define AB8500_GPADC_AUTODATAL_REG 0x07 |
| #define AB8500_GPADC_AUTODATAH_REG 0x08 |
| #define AB8500_GPADC_MUX_CTRL_REG 0x09 |
| #define AB8540_GPADC_MANDATA2L_REG 0x09 |
| #define AB8540_GPADC_MANDATA2H_REG 0x0A |
| #define AB8540_GPADC_APEAAX_REG 0x10 |
| #define AB8540_GPADC_APEAAT_REG 0x11 |
| #define AB8540_GPADC_APEAAM_REG 0x12 |
| #define AB8540_GPADC_APEAAH_REG 0x13 |
| #define AB8540_GPADC_APEAAL_REG 0x14 |
| |
| /* |
| * OTP register offsets |
| * Bank : 0x15 |
| */ |
| #define AB8500_GPADC_CAL_1 0x0F |
| #define AB8500_GPADC_CAL_2 0x10 |
| #define AB8500_GPADC_CAL_3 0x11 |
| #define AB8500_GPADC_CAL_4 0x12 |
| #define AB8500_GPADC_CAL_5 0x13 |
| #define AB8500_GPADC_CAL_6 0x14 |
| #define AB8500_GPADC_CAL_7 0x15 |
| /* New calibration for 8540 */ |
| #define AB8540_GPADC_OTP4_REG_7 0x38 |
| #define AB8540_GPADC_OTP4_REG_6 0x39 |
| #define AB8540_GPADC_OTP4_REG_5 0x3A |
| |
| /* gpadc constants */ |
| #define EN_VINTCORE12 0x04 |
| #define EN_VTVOUT 0x02 |
| #define EN_GPADC 0x01 |
| #define DIS_GPADC 0x00 |
| #define AVG_1 0x00 |
| #define AVG_4 0x20 |
| #define AVG_8 0x40 |
| #define AVG_16 0x60 |
| #define ADC_SW_CONV 0x04 |
| #define EN_ICHAR 0x80 |
| #define BTEMP_PULL_UP 0x08 |
| #define EN_BUF 0x40 |
| #define DIS_ZERO 0x00 |
| #define GPADC_BUSY 0x01 |
| #define EN_FALLING 0x10 |
| #define EN_TRIG_EDGE 0x02 |
| #define EN_VBIAS_XTAL_TEMP 0x02 |
| |
| /* GPADC constants from AB8500 spec, UM0836 */ |
| #define ADC_RESOLUTION 1024 |
| #define ADC_CH_BTEMP_MIN 0 |
| #define ADC_CH_BTEMP_MAX 1350 |
| #define ADC_CH_DIETEMP_MIN 0 |
| #define ADC_CH_DIETEMP_MAX 1350 |
| #define ADC_CH_CHG_V_MIN 0 |
| #define ADC_CH_CHG_V_MAX 20030 |
| #define ADC_CH_ACCDET2_MIN 0 |
| #define ADC_CH_ACCDET2_MAX 2500 |
| #define ADC_CH_VBAT_MIN 2300 |
| #define ADC_CH_VBAT_MAX 4800 |
| #define ADC_CH_CHG_I_MIN 0 |
| #define ADC_CH_CHG_I_MAX 1500 |
| #define ADC_CH_BKBAT_MIN 0 |
| #define ADC_CH_BKBAT_MAX 3200 |
| |
| /* GPADC constants from AB8540 spec */ |
| #define ADC_CH_IBAT_MIN (-6000) /* mA range measured by ADC for ibat*/ |
| #define ADC_CH_IBAT_MAX 6000 |
| #define ADC_CH_IBAT_MIN_V (-60) /* mV range measured by ADC for ibat*/ |
| #define ADC_CH_IBAT_MAX_V 60 |
| #define IBAT_VDROP_L (-56) /* mV */ |
| #define IBAT_VDROP_H 56 |
| |
| /* This is used to not lose precision when dividing to get gain and offset */ |
| #define CALIB_SCALE 1000 |
| /* |
| * Number of bits shift used to not lose precision |
| * when dividing to get ibat gain. |
| */ |
| #define CALIB_SHIFT_IBAT 20 |
| |
| /* Time in ms before disabling regulator */ |
| #define GPADC_AUDOSUSPEND_DELAY 1 |
| |
| #define CONVERSION_TIME 500 /* ms */ |
| |
| enum cal_channels { |
| ADC_INPUT_VMAIN = 0, |
| ADC_INPUT_BTEMP, |
| ADC_INPUT_VBAT, |
| ADC_INPUT_IBAT, |
| NBR_CAL_INPUTS, |
| }; |
| |
| /** |
| * struct adc_cal_data - Table for storing gain and offset for the calibrated |
| * ADC channels |
| * @gain: Gain of the ADC channel |
| * @offset: Offset of the ADC channel |
| */ |
| struct adc_cal_data { |
| s64 gain; |
| s64 offset; |
| u16 otp_calib_hi; |
| u16 otp_calib_lo; |
| }; |
| |
| /** |
| * struct ab8500_gpadc - AB8500 GPADC device information |
| * @dev: pointer to the struct device |
| * @node: a list of AB8500 GPADCs, hence prepared for |
| reentrance |
| * @parent: pointer to the struct ab8500 |
| * @ab8500_gpadc_complete: pointer to the struct completion, to indicate |
| * the completion of gpadc conversion |
| * @ab8500_gpadc_lock: structure of type mutex |
| * @regu: pointer to the struct regulator |
| * @irq_sw: interrupt number that is used by gpadc for Sw |
| * conversion |
| * @irq_hw: interrupt number that is used by gpadc for Hw |
| * conversion |
| * @cal_data array of ADC calibration data structs |
| */ |
| struct ab8500_gpadc { |
| struct device *dev; |
| struct list_head node; |
| struct ab8500 *parent; |
| struct completion ab8500_gpadc_complete; |
| struct mutex ab8500_gpadc_lock; |
| struct regulator *regu; |
| int irq_sw; |
| int irq_hw; |
| struct adc_cal_data cal_data[NBR_CAL_INPUTS]; |
| }; |
| |
| static LIST_HEAD(ab8500_gpadc_list); |
| |
| /** |
| * ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC |
| * (i.e. the first GPADC in the instance list) |
| */ |
| struct ab8500_gpadc *ab8500_gpadc_get(char *name) |
| { |
| struct ab8500_gpadc *gpadc; |
| |
| list_for_each_entry(gpadc, &ab8500_gpadc_list, node) { |
| if (!strcmp(name, dev_name(gpadc->dev))) |
| return gpadc; |
| } |
| |
| return ERR_PTR(-ENOENT); |
| } |
| EXPORT_SYMBOL(ab8500_gpadc_get); |
| |
| /** |
| * ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage |
| */ |
| int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 channel, |
| int ad_value) |
| { |
| int res; |
| |
| switch (channel) { |
| case MAIN_CHARGER_V: |
| /* For some reason we don't have calibrated data */ |
| if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) { |
| res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX - |
| ADC_CH_CHG_V_MIN) * ad_value / |
| ADC_RESOLUTION; |
| break; |
| } |
| /* Here we can use the calibrated data */ |
| res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain + |
| gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE; |
| break; |
| |
| case XTAL_TEMP: |
| case BAT_CTRL: |
| case BTEMP_BALL: |
| case ACC_DETECT1: |
| case ADC_AUX1: |
| case ADC_AUX2: |
| /* For some reason we don't have calibrated data */ |
| if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) { |
| res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX - |
| ADC_CH_BTEMP_MIN) * ad_value / |
| ADC_RESOLUTION; |
| break; |
| } |
| /* Here we can use the calibrated data */ |
| res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain + |
| gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE; |
| break; |
| |
| case MAIN_BAT_V: |
| case VBAT_TRUE_MEAS: |
| /* For some reason we don't have calibrated data */ |
| if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) { |
| res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX - |
| ADC_CH_VBAT_MIN) * ad_value / |
| ADC_RESOLUTION; |
| break; |
| } |
| /* Here we can use the calibrated data */ |
| res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain + |
| gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE; |
| break; |
| |
| case DIE_TEMP: |
| res = ADC_CH_DIETEMP_MIN + |
| (ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value / |
| ADC_RESOLUTION; |
| break; |
| |
| case ACC_DETECT2: |
| res = ADC_CH_ACCDET2_MIN + |
| (ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value / |
| ADC_RESOLUTION; |
| break; |
| |
| case VBUS_V: |
| res = ADC_CH_CHG_V_MIN + |
| (ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value / |
| ADC_RESOLUTION; |
| break; |
| |
| case MAIN_CHARGER_C: |
| case USB_CHARGER_C: |
| res = ADC_CH_CHG_I_MIN + |
| (ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value / |
| ADC_RESOLUTION; |
| break; |
| |
| case BK_BAT_V: |
| res = ADC_CH_BKBAT_MIN + |
| (ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value / |
| ADC_RESOLUTION; |
| break; |
| |
| case IBAT_VIRTUAL_CHANNEL: |
| /* For some reason we don't have calibrated data */ |
| if (!gpadc->cal_data[ADC_INPUT_IBAT].gain) { |
| res = ADC_CH_IBAT_MIN + (ADC_CH_IBAT_MAX - |
| ADC_CH_IBAT_MIN) * ad_value / |
| ADC_RESOLUTION; |
| break; |
| } |
| /* Here we can use the calibrated data */ |
| res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_IBAT].gain + |
| gpadc->cal_data[ADC_INPUT_IBAT].offset) |
| >> CALIB_SHIFT_IBAT; |
| break; |
| |
| default: |
| dev_err(gpadc->dev, |
| "unknown channel, not possible to convert\n"); |
| res = -EINVAL; |
| break; |
| |
| } |
| return res; |
| } |
| EXPORT_SYMBOL(ab8500_gpadc_ad_to_voltage); |
| |
| /** |
| * ab8500_gpadc_sw_hw_convert() - gpadc conversion |
| * @channel: analog channel to be converted to digital data |
| * @avg_sample: number of ADC sample to average |
| * @trig_egde: selected ADC trig edge |
| * @trig_timer: selected ADC trigger delay timer |
| * @conv_type: selected conversion type (HW or SW conversion) |
| * |
| * This function converts the selected analog i/p to digital |
| * data. |
| */ |
| int ab8500_gpadc_sw_hw_convert(struct ab8500_gpadc *gpadc, u8 channel, |
| u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type) |
| { |
| int ad_value; |
| int voltage; |
| |
| ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample, |
| trig_edge, trig_timer, conv_type); |
| /* On failure retry a second time */ |
| if (ad_value < 0) |
| ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample, |
| trig_edge, trig_timer, conv_type); |
| if (ad_value < 0) { |
| dev_err(gpadc->dev, "GPADC raw value failed ch: %d\n", |
| channel); |
| return ad_value; |
| } |
| |
| voltage = ab8500_gpadc_ad_to_voltage(gpadc, channel, ad_value); |
| if (voltage < 0) |
| dev_err(gpadc->dev, "GPADC to voltage conversion failed ch:" |
| " %d AD: 0x%x\n", channel, ad_value); |
| |
| return voltage; |
| } |
| EXPORT_SYMBOL(ab8500_gpadc_sw_hw_convert); |
| |
| /** |
| * ab8500_gpadc_read_raw() - gpadc read |
| * @channel: analog channel to be read |
| * @avg_sample: number of ADC sample to average |
| * @trig_edge: selected trig edge |
| * @trig_timer: selected ADC trigger delay timer |
| * @conv_type: selected conversion type (HW or SW conversion) |
| * |
| * This function obtains the raw ADC value for an hardware conversion, |
| * this then needs to be converted by calling ab8500_gpadc_ad_to_voltage() |
| */ |
| int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel, |
| u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type) |
| { |
| int raw_data; |
| raw_data = ab8500_gpadc_double_read_raw(gpadc, channel, |
| avg_sample, trig_edge, trig_timer, conv_type, NULL); |
| return raw_data; |
| } |
| |
| int ab8500_gpadc_double_read_raw(struct ab8500_gpadc *gpadc, u8 channel, |
| u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type, |
| int *ibat) |
| { |
| int ret; |
| int looplimit = 0; |
| unsigned long completion_timeout; |
| u8 val, low_data, high_data, low_data2, high_data2; |
| u8 val_reg1 = 0; |
| unsigned int delay_min = 0; |
| unsigned int delay_max = 0; |
| u8 data_low_addr, data_high_addr; |
| |
| if (!gpadc) |
| return -ENODEV; |
| |
| /* check if convertion is supported */ |
| if ((gpadc->irq_sw < 0) && (conv_type == ADC_SW)) |
| return -ENOTSUPP; |
| if ((gpadc->irq_hw < 0) && (conv_type == ADC_HW)) |
| return -ENOTSUPP; |
| |
| mutex_lock(&gpadc->ab8500_gpadc_lock); |
| /* Enable VTVout LDO this is required for GPADC */ |
| pm_runtime_get_sync(gpadc->dev); |
| |
| /* Check if ADC is not busy, lock and proceed */ |
| do { |
| ret = abx500_get_register_interruptible(gpadc->dev, |
| AB8500_GPADC, AB8500_GPADC_STAT_REG, &val); |
| if (ret < 0) |
| goto out; |
| if (!(val & GPADC_BUSY)) |
| break; |
| msleep(10); |
| } while (++looplimit < 10); |
| if (looplimit >= 10 && (val & GPADC_BUSY)) { |
| dev_err(gpadc->dev, "gpadc_conversion: GPADC busy"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Enable GPADC */ |
| val_reg1 |= EN_GPADC; |
| |
| /* Select the channel source and set average samples */ |
| switch (avg_sample) { |
| case SAMPLE_1: |
| val = channel | AVG_1; |
| break; |
| case SAMPLE_4: |
| val = channel | AVG_4; |
| break; |
| case SAMPLE_8: |
| val = channel | AVG_8; |
| break; |
| default: |
| val = channel | AVG_16; |
| break; |
| } |
| |
| if (conv_type == ADC_HW) { |
| ret = abx500_set_register_interruptible(gpadc->dev, |
| AB8500_GPADC, AB8500_GPADC_CTRL3_REG, val); |
| val_reg1 |= EN_TRIG_EDGE; |
| if (trig_edge) |
| val_reg1 |= EN_FALLING; |
| } |
| else |
| ret = abx500_set_register_interruptible(gpadc->dev, |
| AB8500_GPADC, AB8500_GPADC_CTRL2_REG, val); |
| if (ret < 0) { |
| dev_err(gpadc->dev, |
| "gpadc_conversion: set avg samples failed\n"); |
| goto out; |
| } |
| |
| /* |
| * Enable ADC, buffering, select rising edge and enable ADC path |
| * charging current sense if it needed, ABB 3.0 needs some special |
| * treatment too. |
| */ |
| switch (channel) { |
| case MAIN_CHARGER_C: |
| case USB_CHARGER_C: |
| val_reg1 |= EN_BUF | EN_ICHAR; |
| break; |
| case BTEMP_BALL: |
| if (!is_ab8500_2p0_or_earlier(gpadc->parent)) { |
| val_reg1 |= EN_BUF | BTEMP_PULL_UP; |
| /* |
| * Delay might be needed for ABB8500 cut 3.0, if not, |
| * remove when hardware will be availible |
| */ |
| delay_min = 1000; /* Delay in micro seconds */ |
| delay_max = 10000; /* large range to optimise sleep mode */ |
| break; |
| } |
| /* Intentional fallthrough */ |
| default: |
| val_reg1 |= EN_BUF; |
| break; |
| } |
| |
| /* Write configuration to register */ |
| ret = abx500_set_register_interruptible(gpadc->dev, |
| AB8500_GPADC, AB8500_GPADC_CTRL1_REG, val_reg1); |
| if (ret < 0) { |
| dev_err(gpadc->dev, |
| "gpadc_conversion: set Control register failed\n"); |
| goto out; |
| } |
| |
| if (delay_min != 0) |
| usleep_range(delay_min, delay_max); |
| |
| if (conv_type == ADC_HW) { |
| /* Set trigger delay timer */ |
| ret = abx500_set_register_interruptible(gpadc->dev, |
| AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG, trig_timer); |
| if (ret < 0) { |
| dev_err(gpadc->dev, |
| "gpadc_conversion: trig timer failed\n"); |
| goto out; |
| } |
| completion_timeout = 2 * HZ; |
| data_low_addr = AB8500_GPADC_AUTODATAL_REG; |
| data_high_addr = AB8500_GPADC_AUTODATAH_REG; |
| } else { |
| /* Start SW conversion */ |
| ret = abx500_mask_and_set_register_interruptible(gpadc->dev, |
| AB8500_GPADC, AB8500_GPADC_CTRL1_REG, |
| ADC_SW_CONV, ADC_SW_CONV); |
| if (ret < 0) { |
| dev_err(gpadc->dev, |
| "gpadc_conversion: start s/w conv failed\n"); |
| goto out; |
| } |
| completion_timeout = msecs_to_jiffies(CONVERSION_TIME); |
| data_low_addr = AB8500_GPADC_MANDATAL_REG; |
| data_high_addr = AB8500_GPADC_MANDATAH_REG; |
| } |
| |
| /* wait for completion of conversion */ |
| if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete, |
| completion_timeout)) { |
| dev_err(gpadc->dev, |
| "timeout didn't receive GPADC conv interrupt\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Read the converted RAW data */ |
| ret = abx500_get_register_interruptible(gpadc->dev, |
| AB8500_GPADC, data_low_addr, &low_data); |
| if (ret < 0) { |
| dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n"); |
| goto out; |
| } |
| |
| ret = abx500_get_register_interruptible(gpadc->dev, |
| AB8500_GPADC, data_high_addr, &high_data); |
| if (ret < 0) { |
| dev_err(gpadc->dev, "gpadc_conversion: read high data failed\n"); |
| goto out; |
| } |
| |
| /* Check if double convertion is required */ |
| if ((channel == BAT_CTRL_AND_IBAT) || |
| (channel == VBAT_MEAS_AND_IBAT) || |
| (channel == VBAT_TRUE_MEAS_AND_IBAT) || |
| (channel == BAT_TEMP_AND_IBAT)) { |
| |
| if (conv_type == ADC_HW) { |
| /* not supported */ |
| ret = -ENOTSUPP; |
| dev_err(gpadc->dev, |
| "gpadc_conversion: only SW double conversion supported\n"); |
| goto out; |
| } else { |
| /* Read the converted RAW data 2 */ |
| ret = abx500_get_register_interruptible(gpadc->dev, |
| AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG, |
| &low_data2); |
| if (ret < 0) { |
| dev_err(gpadc->dev, |
| "gpadc_conversion: read sw low data 2 failed\n"); |
| goto out; |
| } |
| |
| ret = abx500_get_register_interruptible(gpadc->dev, |
| AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG, |
| &high_data2); |
| if (ret < 0) { |
| dev_err(gpadc->dev, |
| "gpadc_conversion: read sw high data 2 failed\n"); |
| goto out; |
| } |
| if (ibat != NULL) { |
| *ibat = (high_data2 << 8) | low_data2; |
| } else { |
| dev_warn(gpadc->dev, |
| "gpadc_conversion: ibat not stored\n"); |
| } |
| |
| } |
| } |
| |
| /* Disable GPADC */ |
| ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, |
| AB8500_GPADC_CTRL1_REG, DIS_GPADC); |
| if (ret < 0) { |
| dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n"); |
| goto out; |
| } |
| |
| /* Disable VTVout LDO this is required for GPADC */ |
| pm_runtime_mark_last_busy(gpadc->dev); |
| pm_runtime_put_autosuspend(gpadc->dev); |
| |
| mutex_unlock(&gpadc->ab8500_gpadc_lock); |
| |
| return (high_data << 8) | low_data; |
| |
| out: |
| /* |
| * It has shown to be needed to turn off the GPADC if an error occurs, |
| * otherwise we might have problem when waiting for the busy bit in the |
| * GPADC status register to go low. In V1.1 there wait_for_completion |
| * seems to timeout when waiting for an interrupt.. Not seen in V2.0 |
| */ |
| (void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, |
| AB8500_GPADC_CTRL1_REG, DIS_GPADC); |
| pm_runtime_put(gpadc->dev); |
| mutex_unlock(&gpadc->ab8500_gpadc_lock); |
| dev_err(gpadc->dev, |
| "gpadc_conversion: Failed to AD convert channel %d\n", channel); |
| return ret; |
| } |
| EXPORT_SYMBOL(ab8500_gpadc_read_raw); |
| |
| /** |
| * ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion |
| * @irq: irq number |
| * @data: pointer to the data passed during request irq |
| * |
| * This is a interrupt service routine for gpadc conversion completion. |
| * Notifies the gpadc completion is completed and the converted raw value |
| * can be read from the registers. |
| * Returns IRQ status(IRQ_HANDLED) |
| */ |
| static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *_gpadc) |
| { |
| struct ab8500_gpadc *gpadc = _gpadc; |
| |
| complete(&gpadc->ab8500_gpadc_complete); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int otp_cal_regs[] = { |
| AB8500_GPADC_CAL_1, |
| AB8500_GPADC_CAL_2, |
| AB8500_GPADC_CAL_3, |
| AB8500_GPADC_CAL_4, |
| AB8500_GPADC_CAL_5, |
| AB8500_GPADC_CAL_6, |
| AB8500_GPADC_CAL_7, |
| }; |
| |
| static int otp4_cal_regs[] = { |
| AB8540_GPADC_OTP4_REG_7, |
| AB8540_GPADC_OTP4_REG_6, |
| AB8540_GPADC_OTP4_REG_5, |
| }; |
| |
| static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc) |
| { |
| int i; |
| int ret[ARRAY_SIZE(otp_cal_regs)]; |
| u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)]; |
| int ret_otp4[ARRAY_SIZE(otp4_cal_regs)]; |
| u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)]; |
| int vmain_high, vmain_low; |
| int btemp_high, btemp_low; |
| int vbat_high, vbat_low; |
| int ibat_high, ibat_low; |
| s64 V_gain, V_offset, V2A_gain, V2A_offset; |
| struct ab8500 *ab8500; |
| |
| ab8500 = gpadc->parent; |
| |
| /* First we read all OTP registers and store the error code */ |
| for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) { |
| ret[i] = abx500_get_register_interruptible(gpadc->dev, |
| AB8500_OTP_EMUL, otp_cal_regs[i], &gpadc_cal[i]); |
| if (ret[i] < 0) |
| dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n", |
| __func__, otp_cal_regs[i]); |
| } |
| |
| /* |
| * The ADC calibration data is stored in OTP registers. |
| * The layout of the calibration data is outlined below and a more |
| * detailed description can be found in UM0836 |
| * |
| * vm_h/l = vmain_high/low |
| * bt_h/l = btemp_high/low |
| * vb_h/l = vbat_high/low |
| * |
| * Data bits 8500/9540: |
| * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | | vm_h9 | vm_h8 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 | |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * |
| * Data bits 8540: |
| * OTP2 |
| * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 | |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * |
| * Data bits 8540: |
| * OTP4 |
| * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | | ib_h9 | ib_h8 | ib_h7 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5 |
| * |.......|.......|.......|.......|.......|.......|.......|....... |
| * | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 | |
| * |
| * |
| * Ideal output ADC codes corresponding to injected input voltages |
| * during manufacturing is: |
| * |
| * vmain_high: Vin = 19500mV / ADC ideal code = 997 |
| * vmain_low: Vin = 315mV / ADC ideal code = 16 |
| * btemp_high: Vin = 1300mV / ADC ideal code = 985 |
| * btemp_low: Vin = 21mV / ADC ideal code = 16 |
| * vbat_high: Vin = 4700mV / ADC ideal code = 982 |
| * vbat_low: Vin = 2380mV / ADC ideal code = 33 |
| */ |
| |
| if (is_ab8540(ab8500)) { |
| /* Calculate gain and offset for VMAIN if all reads succeeded*/ |
| if (!(ret[1] < 0 || ret[2] < 0)) { |
| vmain_high = (((gpadc_cal[1] & 0xFF) << 2) | |
| ((gpadc_cal[2] & 0xC0) >> 6)); |
| vmain_low = ((gpadc_cal[2] & 0x3E) >> 1); |
| |
| gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi = |
| (u16)vmain_high; |
| gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo = |
| (u16)vmain_low; |
| |
| gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE * |
| (19500 - 315) / (vmain_high - vmain_low); |
| gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * |
| 19500 - (CALIB_SCALE * (19500 - 315) / |
| (vmain_high - vmain_low)) * vmain_high; |
| } else { |
| gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0; |
| } |
| |
| /* Read IBAT calibration Data */ |
| for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) { |
| ret_otp4[i] = abx500_get_register_interruptible( |
| gpadc->dev, AB8500_OTP_EMUL, |
| otp4_cal_regs[i], &gpadc_otp4[i]); |
| if (ret_otp4[i] < 0) |
| dev_err(gpadc->dev, |
| "%s: read otp4 reg 0x%02x failed\n", |
| __func__, otp4_cal_regs[i]); |
| } |
| |
| /* Calculate gain and offset for IBAT if all reads succeeded */ |
| if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) { |
| ibat_high = (((gpadc_otp4[0] & 0x07) << 7) | |
| ((gpadc_otp4[1] & 0xFE) >> 1)); |
| ibat_low = (((gpadc_otp4[1] & 0x01) << 5) | |
| ((gpadc_otp4[2] & 0xF8) >> 3)); |
| |
| gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi = |
| (u16)ibat_high; |
| gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo = |
| (u16)ibat_low; |
| |
| V_gain = ((IBAT_VDROP_H - IBAT_VDROP_L) |
| << CALIB_SHIFT_IBAT) / (ibat_high - ibat_low); |
| |
| V_offset = (IBAT_VDROP_H << CALIB_SHIFT_IBAT) - |
| (((IBAT_VDROP_H - IBAT_VDROP_L) << |
| CALIB_SHIFT_IBAT) / (ibat_high - ibat_low)) |
| * ibat_high; |
| /* |
| * Result obtained is in mV (at a scale factor), |
| * we need to calculate gain and offset to get mA |
| */ |
| V2A_gain = (ADC_CH_IBAT_MAX - ADC_CH_IBAT_MIN)/ |
| (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V); |
| V2A_offset = ((ADC_CH_IBAT_MAX_V * ADC_CH_IBAT_MIN - |
| ADC_CH_IBAT_MAX * ADC_CH_IBAT_MIN_V) |
| << CALIB_SHIFT_IBAT) |
| / (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V); |
| |
| gpadc->cal_data[ADC_INPUT_IBAT].gain = V_gain * V2A_gain; |
| gpadc->cal_data[ADC_INPUT_IBAT].offset = V_offset * |
| V2A_gain + V2A_offset; |
| } else { |
| gpadc->cal_data[ADC_INPUT_IBAT].gain = 0; |
| } |
| |
| dev_dbg(gpadc->dev, "IBAT gain %llu offset %llu\n", |
| gpadc->cal_data[ADC_INPUT_IBAT].gain, |
| gpadc->cal_data[ADC_INPUT_IBAT].offset); |
| } else { |
| /* Calculate gain and offset for VMAIN if all reads succeeded */ |
| if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) { |
| vmain_high = (((gpadc_cal[0] & 0x03) << 8) | |
| ((gpadc_cal[1] & 0x3F) << 2) | |
| ((gpadc_cal[2] & 0xC0) >> 6)); |
| vmain_low = ((gpadc_cal[2] & 0x3E) >> 1); |
| |
| gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi = |
| (u16)vmain_high; |
| gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo = |
| (u16)vmain_low; |
| |
| gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE * |
| (19500 - 315) / (vmain_high - vmain_low); |
| |
| gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * |
| 19500 - (CALIB_SCALE * (19500 - 315) / |
| (vmain_high - vmain_low)) * vmain_high; |
| } else { |
| gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0; |
| } |
| } |
| |
| /* Calculate gain and offset for BTEMP if all reads succeeded */ |
| if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) { |
| btemp_high = (((gpadc_cal[2] & 0x01) << 9) | |
| (gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7)); |
| btemp_low = ((gpadc_cal[4] & 0x7C) >> 2); |
| |
| gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi = (u16)btemp_high; |
| gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo = (u16)btemp_low; |
| |
| gpadc->cal_data[ADC_INPUT_BTEMP].gain = |
| CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low); |
| gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 - |
| (CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low)) |
| * btemp_high; |
| } else { |
| gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0; |
| } |
| |
| /* Calculate gain and offset for VBAT if all reads succeeded */ |
| if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) { |
| vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]); |
| vbat_low = ((gpadc_cal[6] & 0xFC) >> 2); |
| |
| gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi = (u16)vbat_high; |
| gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo = (u16)vbat_low; |
| |
| gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE * |
| (4700 - 2380) / (vbat_high - vbat_low); |
| gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 - |
| (CALIB_SCALE * (4700 - 2380) / |
| (vbat_high - vbat_low)) * vbat_high; |
| } else { |
| gpadc->cal_data[ADC_INPUT_VBAT].gain = 0; |
| } |
| |
| dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n", |
| gpadc->cal_data[ADC_INPUT_VMAIN].gain, |
| gpadc->cal_data[ADC_INPUT_VMAIN].offset); |
| |
| dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n", |
| gpadc->cal_data[ADC_INPUT_BTEMP].gain, |
| gpadc->cal_data[ADC_INPUT_BTEMP].offset); |
| |
| dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n", |
| gpadc->cal_data[ADC_INPUT_VBAT].gain, |
| gpadc->cal_data[ADC_INPUT_VBAT].offset); |
| } |
| |
| #ifdef CONFIG_PM_RUNTIME |
| static int ab8500_gpadc_runtime_suspend(struct device *dev) |
| { |
| struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); |
| |
| regulator_disable(gpadc->regu); |
| return 0; |
| } |
| |
| static int ab8500_gpadc_runtime_resume(struct device *dev) |
| { |
| struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = regulator_enable(gpadc->regu); |
| if (ret) |
| dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret); |
| return ret; |
| } |
| #endif |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int ab8500_gpadc_suspend(struct device *dev) |
| { |
| struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); |
| |
| mutex_lock(&gpadc->ab8500_gpadc_lock); |
| |
| pm_runtime_get_sync(dev); |
| |
| regulator_disable(gpadc->regu); |
| return 0; |
| } |
| |
| static int ab8500_gpadc_resume(struct device *dev) |
| { |
| struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = regulator_enable(gpadc->regu); |
| if (ret) |
| dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret); |
| |
| pm_runtime_mark_last_busy(gpadc->dev); |
| pm_runtime_put_autosuspend(gpadc->dev); |
| |
| mutex_unlock(&gpadc->ab8500_gpadc_lock); |
| return ret; |
| } |
| #endif |
| |
| static int ab8500_gpadc_probe(struct platform_device *pdev) |
| { |
| int ret = 0; |
| struct ab8500_gpadc *gpadc; |
| |
| gpadc = devm_kzalloc(&pdev->dev, sizeof(struct ab8500_gpadc), GFP_KERNEL); |
| if (!gpadc) { |
| dev_err(&pdev->dev, "Error: No memory\n"); |
| return -ENOMEM; |
| } |
| |
| gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END"); |
| if (gpadc->irq_sw < 0) |
| dev_err(gpadc->dev, "failed to get platform sw_conv_end irq\n"); |
| |
| gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END"); |
| if (gpadc->irq_hw < 0) |
| dev_err(gpadc->dev, "failed to get platform hw_conv_end irq\n"); |
| |
| gpadc->dev = &pdev->dev; |
| gpadc->parent = dev_get_drvdata(pdev->dev.parent); |
| mutex_init(&gpadc->ab8500_gpadc_lock); |
| |
| /* Initialize completion used to notify completion of conversion */ |
| init_completion(&gpadc->ab8500_gpadc_complete); |
| |
| /* Register interrupts */ |
| if (gpadc->irq_sw >= 0) { |
| ret = request_threaded_irq(gpadc->irq_sw, NULL, |
| ab8500_bm_gpadcconvend_handler, |
| IRQF_NO_SUSPEND | IRQF_SHARED, "ab8500-gpadc-sw", |
| gpadc); |
| if (ret < 0) { |
| dev_err(gpadc->dev, |
| "Failed to register interrupt irq: %d\n", |
| gpadc->irq_sw); |
| goto fail; |
| } |
| } |
| |
| if (gpadc->irq_hw >= 0) { |
| ret = request_threaded_irq(gpadc->irq_hw, NULL, |
| ab8500_bm_gpadcconvend_handler, |
| IRQF_NO_SUSPEND | IRQF_SHARED, "ab8500-gpadc-hw", |
| gpadc); |
| if (ret < 0) { |
| dev_err(gpadc->dev, |
| "Failed to register interrupt irq: %d\n", |
| gpadc->irq_hw); |
| goto fail_irq; |
| } |
| } |
| |
| /* VTVout LDO used to power up ab8500-GPADC */ |
| gpadc->regu = devm_regulator_get(&pdev->dev, "vddadc"); |
| if (IS_ERR(gpadc->regu)) { |
| ret = PTR_ERR(gpadc->regu); |
| dev_err(gpadc->dev, "failed to get vtvout LDO\n"); |
| goto fail_irq; |
| } |
| |
| platform_set_drvdata(pdev, gpadc); |
| |
| ret = regulator_enable(gpadc->regu); |
| if (ret) { |
| dev_err(gpadc->dev, "Failed to enable vtvout LDO: %d\n", ret); |
| goto fail_enable; |
| } |
| |
| pm_runtime_set_autosuspend_delay(gpadc->dev, GPADC_AUDOSUSPEND_DELAY); |
| pm_runtime_use_autosuspend(gpadc->dev); |
| pm_runtime_set_active(gpadc->dev); |
| pm_runtime_enable(gpadc->dev); |
| |
| ab8500_gpadc_read_calibration_data(gpadc); |
| list_add_tail(&gpadc->node, &ab8500_gpadc_list); |
| dev_dbg(gpadc->dev, "probe success\n"); |
| |
| return 0; |
| |
| fail_enable: |
| fail_irq: |
| free_irq(gpadc->irq_sw, gpadc); |
| free_irq(gpadc->irq_hw, gpadc); |
| fail: |
| return ret; |
| } |
| |
| static int ab8500_gpadc_remove(struct platform_device *pdev) |
| { |
| struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev); |
| |
| /* remove this gpadc entry from the list */ |
| list_del(&gpadc->node); |
| /* remove interrupt - completion of Sw ADC conversion */ |
| if (gpadc->irq_sw >= 0) |
| free_irq(gpadc->irq_sw, gpadc); |
| if (gpadc->irq_hw >= 0) |
| free_irq(gpadc->irq_hw, gpadc); |
| |
| pm_runtime_get_sync(gpadc->dev); |
| pm_runtime_disable(gpadc->dev); |
| |
| regulator_disable(gpadc->regu); |
| |
| pm_runtime_set_suspended(gpadc->dev); |
| |
| pm_runtime_put_noidle(gpadc->dev); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops ab8500_gpadc_pm_ops = { |
| SET_RUNTIME_PM_OPS(ab8500_gpadc_runtime_suspend, |
| ab8500_gpadc_runtime_resume, |
| NULL) |
| SET_SYSTEM_SLEEP_PM_OPS(ab8500_gpadc_suspend, |
| ab8500_gpadc_resume) |
| |
| }; |
| |
| static struct platform_driver ab8500_gpadc_driver = { |
| .probe = ab8500_gpadc_probe, |
| .remove = ab8500_gpadc_remove, |
| .driver = { |
| .name = "ab8500-gpadc", |
| .owner = THIS_MODULE, |
| .pm = &ab8500_gpadc_pm_ops, |
| }, |
| }; |
| |
| static int __init ab8500_gpadc_init(void) |
| { |
| return platform_driver_register(&ab8500_gpadc_driver); |
| } |
| |
| static void __exit ab8500_gpadc_exit(void) |
| { |
| platform_driver_unregister(&ab8500_gpadc_driver); |
| } |
| |
| /** |
| * ab8540_gpadc_get_otp() - returns OTP values |
| * |
| */ |
| void ab8540_gpadc_get_otp(struct ab8500_gpadc *gpadc, |
| u16 *vmain_l, u16 *vmain_h, u16 *btemp_l, u16 *btemp_h, |
| u16 *vbat_l, u16 *vbat_h, u16 *ibat_l, u16 *ibat_h) |
| { |
| *vmain_l = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo; |
| *vmain_h = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi; |
| *btemp_l = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo; |
| *btemp_h = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi; |
| *vbat_l = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo; |
| *vbat_h = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi; |
| *ibat_l = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo; |
| *ibat_h = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi; |
| return ; |
| } |
| |
| subsys_initcall_sync(ab8500_gpadc_init); |
| module_exit(ab8500_gpadc_exit); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Arun R Murthy, Daniel Willerud, Johan Palsson," |
| "M'boumba Cedric Madianga"); |
| MODULE_ALIAS("platform:ab8500_gpadc"); |
| MODULE_DESCRIPTION("AB8500 GPADC driver"); |