| /* |
| * Driver for Xceive XC4000 "QAM/8VSB single chip tuner" |
| * |
| * Copyright (c) 2007 Xceive Corporation |
| * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org> |
| * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com> |
| * Copyright (c) 2009 Davide Ferri <d.ferri@zero11.it> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/videodev2.h> |
| #include <linux/delay.h> |
| #include <linux/dvb/frontend.h> |
| #include <linux/i2c.h> |
| #include <asm/unaligned.h> |
| |
| #include "dvb_frontend.h" |
| |
| #include "xc4000.h" |
| #include "tuner-i2c.h" |
| #include "tuner-xc2028-types.h" |
| |
| static int debug=1; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); |
| |
| static int no_poweroff; |
| module_param(no_poweroff, int, 0644); |
| MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n" |
| "\t\t1 keep device energized and with tuner ready all the times.\n" |
| "\t\tFaster, but consumes more power and keeps the device hotter"); |
| |
| static DEFINE_MUTEX(xc4000_list_mutex); |
| static LIST_HEAD(hybrid_tuner_instance_list); |
| |
| #define dprintk(level, fmt, arg...) if (debug >= level) \ |
| printk(KERN_INFO "%s: " fmt, "xc4000", ## arg) |
| |
| #define XC4000_DEFAULT_FIRMWARE "xc4000-02.fw" |
| #define XC4000_DEFAULT_FIRMWARE_SIZE 18643 |
| |
| |
| /* struct for storing firmware table */ |
| struct firmware_description { |
| unsigned int type; |
| v4l2_std_id id; |
| __u16 int_freq; |
| unsigned char *ptr; |
| unsigned int size; |
| }; |
| |
| struct firmware_properties { |
| unsigned int type; |
| v4l2_std_id id; |
| v4l2_std_id std_req; |
| __u16 int_freq; |
| unsigned int scode_table; |
| int scode_nr; |
| }; |
| |
| struct xc4000_priv { |
| struct tuner_i2c_props i2c_props; |
| struct list_head hybrid_tuner_instance_list; |
| struct firmware_description *firm; |
| int firm_size; |
| __u16 firm_version; |
| u32 if_khz; |
| u32 freq_hz; |
| u32 bandwidth; |
| u8 video_standard; |
| u8 rf_mode; |
| // struct xc2028_ctrl ctrl; |
| struct firmware_properties cur_fw; |
| __u16 hwmodel; |
| __u16 hwvers; |
| u8 ignore_i2c_write_errors; |
| }; |
| |
| /* Misc Defines */ |
| #define MAX_TV_STANDARD 23 |
| #define XC_MAX_I2C_WRITE_LENGTH 64 |
| |
| /* Signal Types */ |
| #define XC_RF_MODE_AIR 0 |
| #define XC_RF_MODE_CABLE 1 |
| |
| /* Result codes */ |
| #define XC_RESULT_SUCCESS 0 |
| #define XC_RESULT_RESET_FAILURE 1 |
| #define XC_RESULT_I2C_WRITE_FAILURE 2 |
| #define XC_RESULT_I2C_READ_FAILURE 3 |
| #define XC_RESULT_OUT_OF_RANGE 5 |
| |
| /* Product id */ |
| #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000 |
| #define XC_PRODUCT_ID_FW_LOADED 0x0FA0 |
| |
| /* Registers (Write-only) */ |
| #define XREG_INIT 0x00 |
| #define XREG_VIDEO_MODE 0x01 |
| #define XREG_AUDIO_MODE 0x02 |
| #define XREG_RF_FREQ 0x03 |
| #define XREG_D_CODE 0x04 |
| #define XREG_DIRECTSITTING_MODE 0x05 |
| #define XREG_SEEK_MODE 0x06 |
| #define XREG_POWER_DOWN 0x08 |
| #define XREG_SIGNALSOURCE 0x0A |
| #define XREG_AMPLITUDE 0x10 |
| |
| /* Registers (Read-only) */ |
| #define XREG_ADC_ENV 0x00 |
| #define XREG_QUALITY 0x01 |
| #define XREG_FRAME_LINES 0x02 |
| #define XREG_HSYNC_FREQ 0x03 |
| #define XREG_LOCK 0x04 |
| #define XREG_FREQ_ERROR 0x05 |
| #define XREG_SNR 0x06 |
| #define XREG_VERSION 0x07 |
| #define XREG_PRODUCT_ID 0x08 |
| |
| /* |
| Basic firmware description. This will remain with |
| the driver for documentation purposes. |
| |
| This represents an I2C firmware file encoded as a |
| string of unsigned char. Format is as follows: |
| |
| char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB |
| char[1 ]=len0_LSB -> length of first write transaction |
| char[2 ]=data0 -> first byte to be sent |
| char[3 ]=data1 |
| char[4 ]=data2 |
| char[ ]=... |
| char[M ]=dataN -> last byte to be sent |
| char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB |
| char[M+2]=len1_LSB -> length of second write transaction |
| char[M+3]=data0 |
| char[M+4]=data1 |
| ... |
| etc. |
| |
| The [len] value should be interpreted as follows: |
| |
| len= len_MSB _ len_LSB |
| len=1111_1111_1111_1111 : End of I2C_SEQUENCE |
| len=0000_0000_0000_0000 : Reset command: Do hardware reset |
| len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767) |
| len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms |
| |
| For the RESET and WAIT commands, the two following bytes will contain |
| immediately the length of the following transaction. |
| |
| */ |
| struct XC_TV_STANDARD { |
| char *Name; |
| u16 AudioMode; |
| u16 VideoMode; |
| }; |
| |
| /* Tuner standards */ |
| #define XC4000_MN_NTSC_PAL_BTSC 0 |
| #define XC4000_MN_NTSC_PAL_A2 1 |
| #define XC4000_MN_NTSC_PAL_EIAJ 2 |
| #define XC4000_MN_NTSC_PAL_Mono 3 |
| #define XC4000_BG_PAL_A2 4 |
| #define XC4000_BG_PAL_NICAM 5 |
| #define XC4000_BG_PAL_MONO 6 |
| #define XC4000_I_PAL_NICAM 7 |
| #define XC4000_I_PAL_NICAM_MONO 8 |
| #define XC4000_DK_PAL_A2 9 |
| #define XC4000_DK_PAL_NICAM 10 |
| #define XC4000_DK_PAL_MONO 11 |
| #define XC4000_DK_SECAM_A2DK1 12 |
| #define XC4000_DK_SECAM_A2LDK3 13 |
| #define XC4000_DK_SECAM_A2MONO 14 |
| #define XC4000_L_SECAM_NICAM 15 |
| #define XC4000_LC_SECAM_NICAM 16 |
| #define XC4000_DTV6 17 |
| #define XC4000_DTV8 18 |
| #define XC4000_DTV7_8 19 |
| #define XC4000_DTV7 20 |
| #define XC4000_FM_Radio_INPUT2 21 |
| #define XC4000_FM_Radio_INPUT1 22 |
| |
| /* WAS : |
| static struct XC_TV_STANDARD XC4000_Standard[MAX_TV_STANDARD] = { |
| {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020}, |
| {"M/N-NTSC/PAL-A2", 0x0600, 0x8020}, |
| {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020}, |
| {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020}, |
| {"B/G-PAL-A2", 0x0A00, 0x8049}, |
| {"B/G-PAL-NICAM", 0x0C04, 0x8049}, |
| {"B/G-PAL-MONO", 0x0878, 0x8059}, |
| {"I-PAL-NICAM", 0x1080, 0x8009}, |
| {"I-PAL-NICAM-MONO", 0x0E78, 0x8009}, |
| {"D/K-PAL-A2", 0x1600, 0x8009}, |
| {"D/K-PAL-NICAM", 0x0E80, 0x8009}, |
| {"D/K-PAL-MONO", 0x1478, 0x8009}, |
| {"D/K-SECAM-A2 DK1", 0x1200, 0x8009}, |
| {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009}, |
| {"D/K-SECAM-A2 MONO", 0x1478, 0x8009}, |
| {"L-SECAM-NICAM", 0x8E82, 0x0009}, |
| {"L'-SECAM-NICAM", 0x8E82, 0x4009}, |
| {"DTV6", 0x00C0, 0x8002}, |
| {"DTV8", 0x00C0, 0x800B}, |
| {"DTV7/8", 0x00C0, 0x801B}, |
| {"DTV7", 0x00C0, 0x8007}, |
| {"FM Radio-INPUT2", 0x9802, 0x9002}, |
| {"FM Radio-INPUT1", 0x0208, 0x9002} |
| };*/ |
| |
| static struct XC_TV_STANDARD XC4000_Standard[MAX_TV_STANDARD] = { |
| {"M/N-NTSC/PAL-BTSC", 0x0000, 0x8020}, |
| {"M/N-NTSC/PAL-A2", 0x0000, 0x8020}, |
| {"M/N-NTSC/PAL-EIAJ", 0x0040, 0x8020}, |
| {"M/N-NTSC/PAL-Mono", 0x0078, 0x8020}, |
| {"B/G-PAL-A2", 0x0000, 0x8059}, |
| {"B/G-PAL-NICAM", 0x0004, 0x8059}, |
| {"B/G-PAL-MONO", 0x0078, 0x8059}, |
| {"I-PAL-NICAM", 0x0080, 0x8049}, |
| {"I-PAL-NICAM-MONO", 0x0078, 0x8049}, |
| {"D/K-PAL-A2", 0x0000, 0x8049}, |
| {"D/K-PAL-NICAM", 0x0080, 0x8049}, |
| {"D/K-PAL-MONO", 0x0078, 0x8049}, |
| {"D/K-SECAM-A2 DK1", 0x0000, 0x8049}, |
| {"D/K-SECAM-A2 L/DK3", 0x0000, 0x8049}, |
| {"D/K-SECAM-A2 MONO", 0x0078, 0x8049}, |
| {"L-SECAM-NICAM", 0x8080, 0x0009}, |
| {"L'-SECAM-NICAM", 0x8080, 0x4009}, |
| {"DTV6", 0x00C0, 0x8002}, |
| {"DTV8", 0x00C0, 0x800B}, |
| {"DTV7/8", 0x00C0, 0x801B}, |
| {"DTV7", 0x00C0, 0x8007}, |
| {"FM Radio-INPUT2", 0x0008, 0x9800}, |
| {"FM Radio-INPUT1", 0x0008, 0x9000} |
| }; |
| |
| static int xc4000_is_firmware_loaded(struct dvb_frontend *fe); |
| static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val); |
| static int xc4000_TunerReset(struct dvb_frontend *fe); |
| |
| static int xc_send_i2c_data(struct xc4000_priv *priv, u8 *buf, int len) |
| { |
| struct i2c_msg msg = { .addr = priv->i2c_props.addr, |
| .flags = 0, .buf = buf, .len = len }; |
| if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { |
| if (priv->ignore_i2c_write_errors == 0) { |
| printk(KERN_ERR "xc4000: I2C write failed (len=%i)\n", |
| len); |
| if (len == 4) { |
| printk("bytes %02x %02x %02x %02x\n", buf[0], |
| buf[1], buf[2], buf[3]); |
| } |
| return XC_RESULT_I2C_WRITE_FAILURE; |
| } |
| } |
| return XC_RESULT_SUCCESS; |
| } |
| |
| /* This routine is never used because the only time we read data from the |
| i2c bus is when we read registers, and we want that to be an atomic i2c |
| transaction in case we are on a multi-master bus */ |
| |
| static void xc_wait(int wait_ms) |
| { |
| msleep(wait_ms); |
| } |
| |
| static int xc4000_TunerReset(struct dvb_frontend *fe) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| int ret; |
| |
| dprintk(1, "%s()\n", __func__); |
| |
| if (fe->callback) { |
| ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ? |
| fe->dvb->priv : |
| priv->i2c_props.adap->algo_data, |
| DVB_FRONTEND_COMPONENT_TUNER, |
| XC4000_TUNER_RESET, 0); |
| if (ret) { |
| printk(KERN_ERR "xc4000: reset failed\n"); |
| return XC_RESULT_RESET_FAILURE; |
| } |
| } else { |
| printk(KERN_ERR "xc4000: no tuner reset callback function, fatal\n"); |
| return XC_RESULT_RESET_FAILURE; |
| } |
| return XC_RESULT_SUCCESS; |
| } |
| |
| static int xc_write_reg(struct xc4000_priv *priv, u16 regAddr, u16 i2cData) |
| { |
| u8 buf[4]; |
| int result; |
| |
| buf[0] = (regAddr >> 8) & 0xFF; |
| buf[1] = regAddr & 0xFF; |
| buf[2] = (i2cData >> 8) & 0xFF; |
| buf[3] = i2cData & 0xFF; |
| result = xc_send_i2c_data(priv, buf, 4); |
| |
| return result; |
| } |
| |
| static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| |
| int i, nbytes_to_send, result; |
| unsigned int len, pos, index; |
| u8 buf[XC_MAX_I2C_WRITE_LENGTH]; |
| |
| index = 0; |
| while ((i2c_sequence[index] != 0xFF) || |
| (i2c_sequence[index + 1] != 0xFF)) { |
| len = i2c_sequence[index] * 256 + i2c_sequence[index+1]; |
| if (len == 0x0000) { |
| /* RESET command */ |
| result = xc4000_TunerReset(fe); |
| index += 2; |
| if (result != XC_RESULT_SUCCESS) |
| return result; |
| } else if (len & 0x8000) { |
| /* WAIT command */ |
| xc_wait(len & 0x7FFF); |
| index += 2; |
| } else { |
| /* Send i2c data whilst ensuring individual transactions |
| * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes. |
| */ |
| index += 2; |
| buf[0] = i2c_sequence[index]; |
| buf[1] = i2c_sequence[index + 1]; |
| pos = 2; |
| while (pos < len) { |
| if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) |
| nbytes_to_send = |
| XC_MAX_I2C_WRITE_LENGTH; |
| else |
| nbytes_to_send = (len - pos + 2); |
| for (i = 2; i < nbytes_to_send; i++) { |
| buf[i] = i2c_sequence[index + pos + |
| i - 2]; |
| } |
| result = xc_send_i2c_data(priv, buf, |
| nbytes_to_send); |
| |
| if (result != XC_RESULT_SUCCESS) |
| return result; |
| |
| pos += nbytes_to_send - 2; |
| } |
| index += len; |
| } |
| } |
| return XC_RESULT_SUCCESS; |
| } |
| |
| static int xc_SetTVStandard(struct xc4000_priv *priv, |
| u16 VideoMode, u16 AudioMode) |
| { |
| int ret; |
| dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode); |
| dprintk(1, "%s() Standard = %s\n", |
| __func__, |
| XC4000_Standard[priv->video_standard].Name); |
| |
| /* Don't complain when the request fails because of i2c stretching */ |
| priv->ignore_i2c_write_errors = 1; |
| |
| ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode); |
| if (ret == XC_RESULT_SUCCESS) |
| ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode); |
| |
| priv->ignore_i2c_write_errors = 0; |
| |
| return ret; |
| } |
| |
| static int xc_SetSignalSource(struct xc4000_priv *priv, u16 rf_mode) |
| { |
| dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode, |
| rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE"); |
| |
| if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) { |
| rf_mode = XC_RF_MODE_CABLE; |
| printk(KERN_ERR |
| "%s(), Invalid mode, defaulting to CABLE", |
| __func__); |
| } |
| return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode); |
| } |
| |
| static const struct dvb_tuner_ops xc4000_tuner_ops; |
| |
| static int xc_set_RF_frequency(struct xc4000_priv *priv, u32 freq_hz) |
| { |
| u16 freq_code; |
| |
| dprintk(1, "%s(%u)\n", __func__, freq_hz); |
| |
| if ((freq_hz > xc4000_tuner_ops.info.frequency_max) || |
| (freq_hz < xc4000_tuner_ops.info.frequency_min)) |
| return XC_RESULT_OUT_OF_RANGE; |
| |
| freq_code = (u16)(freq_hz / 15625); |
| |
| /* WAS: Starting in firmware version 1.1.44, Xceive recommends using the |
| FINERFREQ for all normal tuning (the doc indicates reg 0x03 should |
| only be used for fast scanning for channel lock) */ |
| return xc_write_reg(priv, XREG_RF_FREQ, freq_code); /* WAS: XREG_FINERFREQ */ |
| } |
| |
| |
| static int xc_get_ADC_Envelope(struct xc4000_priv *priv, u16 *adc_envelope) |
| { |
| return xc4000_readreg(priv, XREG_ADC_ENV, adc_envelope); |
| } |
| |
| static int xc_get_frequency_error(struct xc4000_priv *priv, u32 *freq_error_hz) |
| { |
| int result; |
| u16 regData; |
| u32 tmp; |
| |
| result = xc4000_readreg(priv, XREG_FREQ_ERROR, ®Data); |
| if (result != XC_RESULT_SUCCESS) |
| return result; |
| |
| tmp = (u32)regData; |
| (*freq_error_hz) = (tmp * 15625) / 1000; |
| return result; |
| } |
| |
| static int xc_get_lock_status(struct xc4000_priv *priv, u16 *lock_status) |
| { |
| return xc4000_readreg(priv, XREG_LOCK, lock_status); |
| } |
| |
| static int xc_get_version(struct xc4000_priv *priv, |
| u8 *hw_majorversion, u8 *hw_minorversion, |
| u8 *fw_majorversion, u8 *fw_minorversion) |
| { |
| u16 data; |
| int result; |
| |
| result = xc4000_readreg(priv, XREG_VERSION, &data); |
| if (result != XC_RESULT_SUCCESS) |
| return result; |
| |
| (*hw_majorversion) = (data >> 12) & 0x0F; |
| (*hw_minorversion) = (data >> 8) & 0x0F; |
| (*fw_majorversion) = (data >> 4) & 0x0F; |
| (*fw_minorversion) = data & 0x0F; |
| |
| return 0; |
| } |
| |
| /* WAS THERE |
| static int xc_get_buildversion(struct xc4000_priv *priv, u16 *buildrev) |
| { |
| return xc4000_readreg(priv, XREG_BUILD, buildrev); |
| }*/ |
| |
| static int xc_get_hsync_freq(struct xc4000_priv *priv, u32 *hsync_freq_hz) |
| { |
| u16 regData; |
| int result; |
| |
| result = xc4000_readreg(priv, XREG_HSYNC_FREQ, ®Data); |
| if (result != XC_RESULT_SUCCESS) |
| return result; |
| |
| (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100; |
| return result; |
| } |
| |
| static int xc_get_frame_lines(struct xc4000_priv *priv, u16 *frame_lines) |
| { |
| return xc4000_readreg(priv, XREG_FRAME_LINES, frame_lines); |
| } |
| |
| static int xc_get_quality(struct xc4000_priv *priv, u16 *quality) |
| { |
| return xc4000_readreg(priv, XREG_QUALITY, quality); |
| } |
| |
| static u16 WaitForLock(struct xc4000_priv *priv) |
| { |
| u16 lockState = 0; |
| int watchDogCount = 40; |
| |
| while ((lockState == 0) && (watchDogCount > 0)) { |
| xc_get_lock_status(priv, &lockState); |
| if (lockState != 1) { |
| xc_wait(5); |
| watchDogCount--; |
| } |
| } |
| return lockState; |
| } |
| |
| #define XC_TUNE_ANALOG 0 |
| #define XC_TUNE_DIGITAL 1 |
| static int xc_tune_channel(struct xc4000_priv *priv, u32 freq_hz, int mode) |
| { |
| int found = 0; |
| int result = 0; |
| |
| dprintk(1, "%s(%u)\n", __func__, freq_hz); |
| |
| /* Don't complain when the request fails because of i2c stretching */ |
| priv->ignore_i2c_write_errors = 1; |
| result = xc_set_RF_frequency(priv, freq_hz); |
| priv->ignore_i2c_write_errors = 0; |
| |
| if (result != XC_RESULT_SUCCESS) |
| return 0; |
| |
| if (mode == XC_TUNE_ANALOG) { |
| if (WaitForLock(priv) == 1) |
| found = 1; |
| } |
| |
| return found; |
| } |
| |
| static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val) |
| { |
| u8 buf[2] = { reg >> 8, reg & 0xff }; |
| u8 bval[2] = { 0, 0 }; |
| struct i2c_msg msg[2] = { |
| { .addr = priv->i2c_props.addr, |
| .flags = 0, .buf = &buf[0], .len = 2 }, |
| { .addr = priv->i2c_props.addr, |
| .flags = I2C_M_RD, .buf = &bval[0], .len = 2 }, |
| }; |
| |
| if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) { |
| printk(KERN_WARNING "xc4000: I2C read failed\n"); |
| return -EREMOTEIO; |
| } |
| |
| *val = (bval[0] << 8) | bval[1]; |
| return XC_RESULT_SUCCESS; |
| } |
| |
| #define dump_firm_type(t) dump_firm_type_and_int_freq(t, 0) |
| static void dump_firm_type_and_int_freq(unsigned int type, u16 int_freq) |
| { |
| if (type & BASE) |
| printk("BASE "); |
| if (type & INIT1) |
| printk("INIT1 "); |
| if (type & F8MHZ) |
| printk("F8MHZ "); |
| if (type & MTS) |
| printk("MTS "); |
| if (type & D2620) |
| printk("D2620 "); |
| if (type & D2633) |
| printk("D2633 "); |
| if (type & DTV6) |
| printk("DTV6 "); |
| if (type & QAM) |
| printk("QAM "); |
| if (type & DTV7) |
| printk("DTV7 "); |
| if (type & DTV78) |
| printk("DTV78 "); |
| if (type & DTV8) |
| printk("DTV8 "); |
| if (type & FM) |
| printk("FM "); |
| if (type & INPUT1) |
| printk("INPUT1 "); |
| if (type & LCD) |
| printk("LCD "); |
| if (type & NOGD) |
| printk("NOGD "); |
| if (type & MONO) |
| printk("MONO "); |
| if (type & ATSC) |
| printk("ATSC "); |
| if (type & IF) |
| printk("IF "); |
| if (type & LG60) |
| printk("LG60 "); |
| if (type & ATI638) |
| printk("ATI638 "); |
| if (type & OREN538) |
| printk("OREN538 "); |
| if (type & OREN36) |
| printk("OREN36 "); |
| if (type & TOYOTA388) |
| printk("TOYOTA388 "); |
| if (type & TOYOTA794) |
| printk("TOYOTA794 "); |
| if (type & DIBCOM52) |
| printk("DIBCOM52 "); |
| if (type & ZARLINK456) |
| printk("ZARLINK456 "); |
| if (type & CHINA) |
| printk("CHINA "); |
| if (type & F6MHZ) |
| printk("F6MHZ "); |
| if (type & INPUT2) |
| printk("INPUT2 "); |
| if (type & SCODE) |
| printk("SCODE "); |
| if (type & HAS_IF) |
| printk("HAS_IF_%d ", int_freq); |
| } |
| |
| static int seek_firmware(struct dvb_frontend *fe, unsigned int type, |
| v4l2_std_id *id) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| int i, best_i = -1, best_nr_matches = 0; |
| unsigned int type_mask = 0; |
| |
| printk("%s called, want type=", __func__); |
| if (debug) { |
| dump_firm_type(type); |
| printk("(%x), id %016llx.\n", type, (unsigned long long)*id); |
| } |
| |
| if (!priv->firm) { |
| printk("Error! firmware not loaded\n"); |
| return -EINVAL; |
| } |
| |
| if (((type & ~SCODE) == 0) && (*id == 0)) |
| *id = V4L2_STD_PAL; |
| |
| if (type & BASE) |
| type_mask = BASE_TYPES; |
| else if (type & SCODE) { |
| type &= SCODE_TYPES; |
| type_mask = SCODE_TYPES & ~HAS_IF; |
| } else if (type & DTV_TYPES) |
| type_mask = DTV_TYPES; |
| else if (type & STD_SPECIFIC_TYPES) |
| type_mask = STD_SPECIFIC_TYPES; |
| |
| type &= type_mask; |
| |
| if (!(type & SCODE)) |
| type_mask = ~0; |
| |
| /* Seek for exact match */ |
| for (i = 0; i < priv->firm_size; i++) { |
| if ((type == (priv->firm[i].type & type_mask)) && |
| (*id == priv->firm[i].id)) |
| goto found; |
| } |
| |
| /* Seek for generic video standard match */ |
| for (i = 0; i < priv->firm_size; i++) { |
| v4l2_std_id match_mask; |
| int nr_matches; |
| |
| if (type != (priv->firm[i].type & type_mask)) |
| continue; |
| |
| match_mask = *id & priv->firm[i].id; |
| if (!match_mask) |
| continue; |
| |
| if ((*id & match_mask) == *id) |
| goto found; /* Supports all the requested standards */ |
| |
| nr_matches = hweight64(match_mask); |
| if (nr_matches > best_nr_matches) { |
| best_nr_matches = nr_matches; |
| best_i = i; |
| } |
| } |
| |
| if (best_nr_matches > 0) { |
| printk("Selecting best matching firmware (%d bits) for " |
| "type=", best_nr_matches); |
| // dump_firm_type(type); |
| printk("(%x), id %016llx:\n", type, (unsigned long long)*id); |
| i = best_i; |
| goto found; |
| } |
| |
| /*FIXME: Would make sense to seek for type "hint" match ? */ |
| |
| i = -ENOENT; |
| goto ret; |
| |
| found: |
| *id = priv->firm[i].id; |
| |
| ret: |
| printk("%s firmware for type=", (i < 0) ? "Can't find" : "Found"); |
| if (debug) { |
| dump_firm_type(type); |
| printk("(%x), id %016llx.\n", type, (unsigned long long)*id); |
| if (i < 0) |
| dump_stack(); |
| } |
| return i; |
| } |
| |
| static int load_firmware(struct dvb_frontend *fe, unsigned int type, |
| v4l2_std_id *id) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| int pos, rc; |
| unsigned char *p; |
| |
| printk("%s called\n", __func__); |
| |
| pos = seek_firmware(fe, type, id); |
| if (pos < 0) |
| return pos; |
| |
| printk("Loading firmware for type="); |
| // dump_firm_type(priv->firm[pos].type); |
| printk("(%x), id %016llx.\n", priv->firm[pos].type, |
| (unsigned long long)*id); |
| |
| p = priv->firm[pos].ptr; |
| printk("firmware length = %d\n", priv->firm[pos].size); |
| |
| /* Don't complain when the request fails because of i2c stretching */ |
| priv->ignore_i2c_write_errors = 1; |
| |
| rc = xc_load_i2c_sequence(fe, p); |
| |
| priv->ignore_i2c_write_errors = 0; |
| |
| return rc; |
| } |
| |
| static int xc4000_fwupload(struct dvb_frontend *fe) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| const struct firmware *fw = NULL; |
| const unsigned char *p, *endp; |
| int rc = 0; |
| int n, n_array; |
| char name[33]; |
| char *fname; |
| |
| printk("%s called\n", __func__); |
| |
| fname = XC4000_DEFAULT_FIRMWARE; |
| |
| printk("Reading firmware %s\n", fname); |
| rc = request_firmware(&fw, fname, priv->i2c_props.adap->dev.parent); |
| if (rc < 0) { |
| if (rc == -ENOENT) |
| printk("Error: firmware %s not found.\n", |
| fname); |
| else |
| printk("Error %d while requesting firmware %s \n", |
| rc, fname); |
| |
| return rc; |
| } |
| p = fw->data; |
| endp = p + fw->size; |
| |
| if (fw->size < sizeof(name) - 1 + 2 + 2) { |
| printk("Error: firmware file %s has invalid size!\n", |
| fname); |
| goto corrupt; |
| } |
| |
| memcpy(name, p, sizeof(name) - 1); |
| name[sizeof(name) - 1] = 0; |
| p += sizeof(name) - 1; |
| |
| priv->firm_version = get_unaligned_le16(p); |
| p += 2; |
| |
| n_array = get_unaligned_le16(p); |
| p += 2; |
| |
| printk("Loading %d firmware images from %s, type: %s, ver %d.%d\n", |
| n_array, fname, name, |
| priv->firm_version >> 8, priv->firm_version & 0xff); |
| |
| priv->firm = kzalloc(sizeof(*priv->firm) * n_array, GFP_KERNEL); |
| if (priv->firm == NULL) { |
| printk("Not enough memory to load firmware file.\n"); |
| rc = -ENOMEM; |
| goto err; |
| } |
| priv->firm_size = n_array; |
| |
| n = -1; |
| while (p < endp) { |
| __u32 type, size; |
| v4l2_std_id id; |
| __u16 int_freq = 0; |
| |
| n++; |
| if (n >= n_array) { |
| printk("More firmware images in file than " |
| "were expected!\n"); |
| goto corrupt; |
| } |
| |
| /* Checks if there's enough bytes to read */ |
| if (endp - p < sizeof(type) + sizeof(id) + sizeof(size)) |
| goto header; |
| |
| type = get_unaligned_le32(p); |
| p += sizeof(type); |
| |
| id = get_unaligned_le64(p); |
| p += sizeof(id); |
| |
| if (type & HAS_IF) { |
| int_freq = get_unaligned_le16(p); |
| p += sizeof(int_freq); |
| if (endp - p < sizeof(size)) |
| goto header; |
| } |
| |
| size = get_unaligned_le32(p); |
| p += sizeof(size); |
| |
| if (!size || size > endp - p) { |
| printk("Firmware type "); |
| // dump_firm_type(type); |
| printk("(%x), id %llx is corrupted " |
| "(size=%d, expected %d)\n", |
| type, (unsigned long long)id, |
| (unsigned)(endp - p), size); |
| goto corrupt; |
| } |
| |
| priv->firm[n].ptr = kzalloc(size, GFP_KERNEL); |
| if (priv->firm[n].ptr == NULL) { |
| printk("Not enough memory to load firmware file.\n"); |
| rc = -ENOMEM; |
| goto err; |
| } |
| |
| if (debug) { |
| printk("Reading firmware type "); |
| dump_firm_type_and_int_freq(type, int_freq); |
| printk("(%x), id %llx, size=%d.\n", |
| type, (unsigned long long)id, size); |
| } |
| |
| memcpy(priv->firm[n].ptr, p, size); |
| priv->firm[n].type = type; |
| priv->firm[n].id = id; |
| priv->firm[n].size = size; |
| priv->firm[n].int_freq = int_freq; |
| |
| p += size; |
| } |
| |
| if (n + 1 != priv->firm_size) { |
| printk("Firmware file is incomplete!\n"); |
| goto corrupt; |
| } |
| |
| goto done; |
| |
| header: |
| printk("Firmware header is incomplete!\n"); |
| corrupt: |
| rc = -EINVAL; |
| printk("Error: firmware file is corrupted!\n"); |
| |
| err: |
| printk("Releasing partially loaded firmware file.\n"); |
| // free_firmware(priv); |
| |
| done: |
| release_firmware(fw); |
| if (rc == 0) |
| printk("Firmware files loaded.\n"); |
| |
| return rc; |
| } |
| |
| static int load_scode(struct dvb_frontend *fe, unsigned int type, |
| v4l2_std_id *id, __u16 int_freq, int scode) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| int pos, rc; |
| unsigned char *p; |
| u8 scode_buf[13]; |
| u8 indirect_mode[5]; |
| |
| dprintk(1, "%s called int_freq=%d\n", __func__, int_freq); |
| |
| if (!int_freq) { |
| pos = seek_firmware(fe, type, id); |
| if (pos < 0) |
| return pos; |
| } else { |
| for (pos = 0; pos < priv->firm_size; pos++) { |
| if ((priv->firm[pos].int_freq == int_freq) && |
| (priv->firm[pos].type & HAS_IF)) |
| break; |
| } |
| if (pos == priv->firm_size) |
| return -ENOENT; |
| } |
| |
| p = priv->firm[pos].ptr; |
| |
| if (priv->firm[pos].type & HAS_IF) { |
| if (priv->firm[pos].size != 12 * 16 || scode >= 16) |
| return -EINVAL; |
| p += 12 * scode; |
| } else { |
| /* 16 SCODE entries per file; each SCODE entry is 12 bytes and |
| * has a 2-byte size header in the firmware format. */ |
| if (priv->firm[pos].size != 14 * 16 || scode >= 16 || |
| le16_to_cpu(*(__u16 *)(p + 14 * scode)) != 12) |
| return -EINVAL; |
| p += 14 * scode + 2; |
| } |
| |
| tuner_info("Loading SCODE for type="); |
| dump_firm_type_and_int_freq(priv->firm[pos].type, |
| priv->firm[pos].int_freq); |
| printk("(%x), id %016llx.\n", priv->firm[pos].type, |
| (unsigned long long)*id); |
| |
| scode_buf[0] = 0x00; |
| memcpy(&scode_buf[1], p, 12); |
| |
| /* Enter direct-mode */ |
| rc = xc_write_reg(priv, XREG_DIRECTSITTING_MODE, 0); |
| if (rc < 0) { |
| printk("failed to put device into direct mode!\n"); |
| return -EIO; |
| } |
| |
| rc = xc_send_i2c_data(priv, scode_buf, 13); |
| if (rc != XC_RESULT_SUCCESS) { |
| /* Even if the send failed, make sure we set back to indirect |
| mode */ |
| printk("Failed to set scode %d\n", rc); |
| } |
| |
| /* Switch back to indirect-mode */ |
| memset(indirect_mode, 0, sizeof(indirect_mode)); |
| indirect_mode[4] = 0x88; |
| xc_send_i2c_data(priv, indirect_mode, sizeof(indirect_mode)); |
| msleep(10); |
| |
| return 0; |
| } |
| |
| static int check_firmware(struct dvb_frontend *fe, unsigned int type, |
| v4l2_std_id std, __u16 int_freq) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| struct firmware_properties new_fw; |
| int rc = 0, is_retry = 0; |
| u16 version, hwmodel; |
| v4l2_std_id std0; |
| u8 hw_major, hw_minor, fw_major, fw_minor; |
| |
| dprintk(1, "%s called\n", __func__); |
| |
| if (!priv->firm) { |
| rc = xc4000_fwupload(fe); |
| if (rc < 0) |
| return rc; |
| } |
| |
| #ifdef DJH_DEBUG |
| if (priv->ctrl.mts && !(type & FM)) |
| type |= MTS; |
| #endif |
| |
| retry: |
| new_fw.type = type; |
| new_fw.id = std; |
| new_fw.std_req = std; |
| // new_fw.scode_table = SCODE | priv->ctrl.scode_table; |
| new_fw.scode_table = SCODE; |
| new_fw.scode_nr = 0; |
| new_fw.int_freq = int_freq; |
| |
| dprintk(1, "checking firmware, user requested type="); |
| if (debug) { |
| dump_firm_type(new_fw.type); |
| printk("(%x), id %016llx, ", new_fw.type, |
| (unsigned long long)new_fw.std_req); |
| if (!int_freq) { |
| printk("scode_tbl "); |
| #ifdef DJH_DEBUG |
| dump_firm_type(priv->ctrl.scode_table); |
| printk("(%x), ", priv->ctrl.scode_table); |
| #endif |
| } else |
| printk("int_freq %d, ", new_fw.int_freq); |
| printk("scode_nr %d\n", new_fw.scode_nr); |
| } |
| |
| /* No need to reload base firmware if it matches */ |
| if (((BASE | new_fw.type) & BASE_TYPES) == |
| (priv->cur_fw.type & BASE_TYPES)) { |
| dprintk(1, "BASE firmware not changed.\n"); |
| goto skip_base; |
| } |
| |
| /* Updating BASE - forget about all currently loaded firmware */ |
| memset(&priv->cur_fw, 0, sizeof(priv->cur_fw)); |
| |
| /* Reset is needed before loading firmware */ |
| rc = xc4000_TunerReset(fe); |
| if (rc < 0) |
| goto fail; |
| |
| /* BASE firmwares are all std0 */ |
| std0 = 0; |
| rc = load_firmware(fe, BASE | new_fw.type, &std0); |
| if (rc < 0) { |
| printk("Error %d while loading base firmware\n", rc); |
| goto fail; |
| } |
| |
| /* Load INIT1, if needed */ |
| dprintk(1, "Load init1 firmware, if exists\n"); |
| |
| rc = load_firmware(fe, BASE | INIT1 | new_fw.type, &std0); |
| if (rc == -ENOENT) |
| rc = load_firmware(fe, (BASE | INIT1 | new_fw.type) & ~F8MHZ, |
| &std0); |
| if (rc < 0 && rc != -ENOENT) { |
| tuner_err("Error %d while loading init1 firmware\n", |
| rc); |
| goto fail; |
| } |
| |
| printk("Done with init1\n"); |
| |
| skip_base: |
| /* |
| * No need to reload standard specific firmware if base firmware |
| * was not reloaded and requested video standards have not changed. |
| */ |
| if (priv->cur_fw.type == (BASE | new_fw.type) && |
| priv->cur_fw.std_req == std) { |
| dprintk(1, "Std-specific firmware already loaded.\n"); |
| goto skip_std_specific; |
| } |
| |
| /* Reloading std-specific firmware forces a SCODE update */ |
| priv->cur_fw.scode_table = 0; |
| |
| /* Load the standard firmware */ |
| rc = load_firmware(fe, new_fw.type, &new_fw.id); |
| |
| if (rc < 0) |
| goto fail; |
| |
| skip_std_specific: |
| if (priv->cur_fw.scode_table == new_fw.scode_table && |
| priv->cur_fw.scode_nr == new_fw.scode_nr) { |
| dprintk(1, "SCODE firmware already loaded.\n"); |
| goto check_device; |
| } |
| |
| if (new_fw.type & FM) |
| goto check_device; |
| |
| /* Load SCODE firmware, if exists */ |
| rc = load_scode(fe, new_fw.type | new_fw.scode_table, &new_fw.id, |
| new_fw.int_freq, new_fw.scode_nr); |
| if (rc != XC_RESULT_SUCCESS) |
| dprintk(1, "load scode failed %d\n", rc); |
| |
| check_device: |
| rc = xc4000_readreg(priv, XREG_PRODUCT_ID, &hwmodel); |
| |
| if (xc_get_version(priv, &hw_major, &hw_minor, &fw_major, |
| &fw_minor) != XC_RESULT_SUCCESS) { |
| printk("Unable to read tuner registers.\n"); |
| goto fail; |
| } |
| |
| dprintk(1, "Device is Xceive %d version %d.%d, " |
| "firmware version %d.%d\n", |
| hwmodel, hw_major, hw_minor, fw_major, fw_minor); |
| |
| /* Check firmware version against what we downloaded. */ |
| #ifdef DJH_DEBUG |
| if (priv->firm_version != ((version & 0xf0) << 4 | (version & 0x0f))) { |
| printk("Incorrect readback of firmware version %x.\n", |
| (version & 0xff)); |
| goto fail; |
| } |
| #endif |
| |
| /* Check that the tuner hardware model remains consistent over time. */ |
| if (priv->hwmodel == 0 && hwmodel == 4000) { |
| priv->hwmodel = hwmodel; |
| priv->hwvers = version & 0xff00; |
| } else if (priv->hwmodel == 0 || priv->hwmodel != hwmodel || |
| priv->hwvers != (version & 0xff00)) { |
| printk("Read invalid device hardware information - tuner " |
| "hung?\n"); |
| goto fail; |
| } |
| |
| memcpy(&priv->cur_fw, &new_fw, sizeof(priv->cur_fw)); |
| |
| /* |
| * By setting BASE in cur_fw.type only after successfully loading all |
| * firmwares, we can: |
| * 1. Identify that BASE firmware with type=0 has been loaded; |
| * 2. Tell whether BASE firmware was just changed the next time through. |
| */ |
| priv->cur_fw.type |= BASE; |
| |
| return 0; |
| |
| fail: |
| memset(&priv->cur_fw, 0, sizeof(priv->cur_fw)); |
| if (!is_retry) { |
| msleep(50); |
| is_retry = 1; |
| dprintk(1, "Retrying firmware load\n"); |
| goto retry; |
| } |
| |
| if (rc == -ENOENT) |
| rc = -EINVAL; |
| return rc; |
| } |
| |
| static void xc_debug_dump(struct xc4000_priv *priv) |
| { |
| u16 adc_envelope; |
| u32 freq_error_hz = 0; |
| u16 lock_status; |
| u32 hsync_freq_hz = 0; |
| u16 frame_lines; |
| u16 quality; |
| u8 hw_majorversion = 0, hw_minorversion = 0; |
| u8 fw_majorversion = 0, fw_minorversion = 0; |
| // u16 fw_buildversion = 0; |
| |
| /* Wait for stats to stabilize. |
| * Frame Lines needs two frame times after initial lock |
| * before it is valid. |
| */ |
| xc_wait(100); |
| |
| xc_get_ADC_Envelope(priv, &adc_envelope); |
| dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope); |
| |
| xc_get_frequency_error(priv, &freq_error_hz); |
| dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz); |
| |
| xc_get_lock_status(priv, &lock_status); |
| dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n", |
| lock_status); |
| |
| xc_get_version(priv, &hw_majorversion, &hw_minorversion, |
| &fw_majorversion, &fw_minorversion); |
| // WAS: |
| // xc_get_buildversion(priv, &fw_buildversion); |
| // dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n", |
| // hw_majorversion, hw_minorversion, |
| // fw_majorversion, fw_minorversion, fw_buildversion); |
| // NOW: |
| dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n", |
| hw_majorversion, hw_minorversion, |
| fw_majorversion, fw_minorversion); |
| |
| xc_get_hsync_freq(priv, &hsync_freq_hz); |
| dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz); |
| |
| xc_get_frame_lines(priv, &frame_lines); |
| dprintk(1, "*** Frame lines = %d\n", frame_lines); |
| |
| xc_get_quality(priv, &quality); |
| dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality); |
| } |
| |
| static int xc4000_set_params(struct dvb_frontend *fe, |
| struct dvb_frontend_parameters *params) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| unsigned int type; |
| int ret; |
| |
| dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency); |
| |
| if (fe->ops.info.type == FE_ATSC) { |
| dprintk(1, "%s() ATSC\n", __func__); |
| switch (params->u.vsb.modulation) { |
| case VSB_8: |
| case VSB_16: |
| dprintk(1, "%s() VSB modulation\n", __func__); |
| priv->rf_mode = XC_RF_MODE_AIR; |
| priv->freq_hz = params->frequency - 1750000; |
| priv->bandwidth = BANDWIDTH_6_MHZ; |
| priv->video_standard = XC4000_DTV6; |
| type = DTV6; |
| break; |
| case QAM_64: |
| case QAM_256: |
| case QAM_AUTO: |
| dprintk(1, "%s() QAM modulation\n", __func__); |
| priv->rf_mode = XC_RF_MODE_CABLE; |
| priv->freq_hz = params->frequency - 1750000; |
| priv->bandwidth = BANDWIDTH_6_MHZ; |
| priv->video_standard = XC4000_DTV6; |
| type = DTV6; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } else if (fe->ops.info.type == FE_OFDM) { |
| dprintk(1, "%s() OFDM\n", __func__); |
| switch (params->u.ofdm.bandwidth) { |
| case BANDWIDTH_6_MHZ: |
| priv->bandwidth = BANDWIDTH_6_MHZ; |
| priv->video_standard = XC4000_DTV6; |
| priv->freq_hz = params->frequency - 1750000; |
| type = DTV6; |
| break; |
| case BANDWIDTH_7_MHZ: |
| printk(KERN_ERR "xc4000 bandwidth 7MHz not supported\n"); |
| type = DTV7; |
| return -EINVAL; |
| case BANDWIDTH_8_MHZ: |
| priv->bandwidth = BANDWIDTH_8_MHZ; |
| priv->video_standard = XC4000_DTV8; |
| priv->freq_hz = params->frequency - 2750000; |
| type = DTV8; |
| break; |
| default: |
| printk(KERN_ERR "xc4000 bandwidth not set!\n"); |
| return -EINVAL; |
| } |
| priv->rf_mode = XC_RF_MODE_AIR; |
| } else { |
| printk(KERN_ERR "xc4000 modulation type not supported!\n"); |
| return -EINVAL; |
| } |
| |
| dprintk(1, "%s() frequency=%d (compensated)\n", |
| __func__, priv->freq_hz); |
| |
| /* Make sure the correct firmware type is loaded */ |
| if (check_firmware(fe, type, 0, priv->if_khz) != XC_RESULT_SUCCESS) { |
| return -EREMOTEIO; |
| } |
| |
| ret = xc_SetSignalSource(priv, priv->rf_mode); |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR |
| "xc4000: xc_SetSignalSource(%d) failed\n", |
| priv->rf_mode); |
| return -EREMOTEIO; |
| } |
| |
| ret = xc_SetTVStandard(priv, |
| XC4000_Standard[priv->video_standard].VideoMode, |
| XC4000_Standard[priv->video_standard].AudioMode); |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR "xc4000: xc_SetTVStandard failed\n"); |
| return -EREMOTEIO; |
| } |
| #ifdef DJH_DEBUG |
| ret = xc_set_IF_frequency(priv, priv->if_khz); |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR "xc4000: xc_Set_IF_frequency(%d) failed\n", |
| priv->if_khz); |
| return -EIO; |
| } |
| #endif |
| xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL); |
| |
| if (debug) |
| xc_debug_dump(priv); |
| |
| return 0; |
| } |
| |
| static int xc4000_is_firmware_loaded(struct dvb_frontend *fe) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| int ret; |
| u16 id; |
| |
| ret = xc4000_readreg(priv, XREG_PRODUCT_ID, &id); |
| if (ret == XC_RESULT_SUCCESS) { |
| if (id == XC_PRODUCT_ID_FW_NOT_LOADED) |
| ret = XC_RESULT_RESET_FAILURE; |
| else |
| ret = XC_RESULT_SUCCESS; |
| } |
| |
| dprintk(1, "%s() returns %s id = 0x%x\n", __func__, |
| ret == XC_RESULT_SUCCESS ? "True" : "False", id); |
| return ret; |
| } |
| |
| static int xc4000_set_analog_params(struct dvb_frontend *fe, |
| struct analog_parameters *params) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| int ret; |
| |
| dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n", |
| __func__, params->frequency); |
| |
| /* Fix me: it could be air. */ |
| priv->rf_mode = params->mode; |
| if (params->mode > XC_RF_MODE_CABLE) |
| priv->rf_mode = XC_RF_MODE_CABLE; |
| |
| /* params->frequency is in units of 62.5khz */ |
| priv->freq_hz = params->frequency * 62500; |
| |
| /* FIX ME: Some video standards may have several possible audio |
| standards. We simply default to one of them here. |
| */ |
| if (params->std & V4L2_STD_MN) { |
| /* default to BTSC audio standard */ |
| priv->video_standard = XC4000_MN_NTSC_PAL_BTSC; |
| goto tune_channel; |
| } |
| |
| if (params->std & V4L2_STD_PAL_BG) { |
| /* default to NICAM audio standard */ |
| priv->video_standard = XC4000_BG_PAL_NICAM; |
| goto tune_channel; |
| } |
| |
| if (params->std & V4L2_STD_PAL_I) { |
| /* default to NICAM audio standard */ |
| priv->video_standard = XC4000_I_PAL_NICAM; |
| goto tune_channel; |
| } |
| |
| if (params->std & V4L2_STD_PAL_DK) { |
| /* default to NICAM audio standard */ |
| priv->video_standard = XC4000_DK_PAL_NICAM; |
| goto tune_channel; |
| } |
| |
| if (params->std & V4L2_STD_SECAM_DK) { |
| /* default to A2 DK1 audio standard */ |
| priv->video_standard = XC4000_DK_SECAM_A2DK1; |
| goto tune_channel; |
| } |
| |
| if (params->std & V4L2_STD_SECAM_L) { |
| priv->video_standard = XC4000_L_SECAM_NICAM; |
| goto tune_channel; |
| } |
| |
| if (params->std & V4L2_STD_SECAM_LC) { |
| priv->video_standard = XC4000_LC_SECAM_NICAM; |
| goto tune_channel; |
| } |
| |
| tune_channel: |
| |
| /* FIXME - firmware type not being set properly */ |
| if (check_firmware(fe, DTV8, 0, priv->if_khz) != XC_RESULT_SUCCESS) { |
| return -EREMOTEIO; |
| } |
| |
| ret = xc_SetSignalSource(priv, priv->rf_mode); |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR |
| "xc4000: xc_SetSignalSource(%d) failed\n", |
| priv->rf_mode); |
| return -EREMOTEIO; |
| } |
| |
| ret = xc_SetTVStandard(priv, |
| XC4000_Standard[priv->video_standard].VideoMode, |
| XC4000_Standard[priv->video_standard].AudioMode); |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR "xc4000: xc_SetTVStandard failed\n"); |
| return -EREMOTEIO; |
| } |
| |
| xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG); |
| |
| if (debug) |
| xc_debug_dump(priv); |
| |
| return 0; |
| } |
| |
| static int xc4000_get_frequency(struct dvb_frontend *fe, u32 *freq) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| dprintk(1, "%s()\n", __func__); |
| *freq = priv->freq_hz; |
| return 0; |
| } |
| |
| static int xc4000_get_bandwidth(struct dvb_frontend *fe, u32 *bw) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| dprintk(1, "%s()\n", __func__); |
| |
| *bw = priv->bandwidth; |
| return 0; |
| } |
| |
| static int xc4000_get_status(struct dvb_frontend *fe, u32 *status) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| u16 lock_status = 0; |
| |
| xc_get_lock_status(priv, &lock_status); |
| |
| dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status); |
| |
| *status = lock_status; |
| |
| return 0; |
| } |
| |
| static int xc4000_sleep(struct dvb_frontend *fe) |
| { |
| /* FIXME: djh disable this for now... */ |
| return XC_RESULT_SUCCESS; |
| } |
| |
| static int xc4000_init(struct dvb_frontend *fe) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| dprintk(1, "%s()\n", __func__); |
| |
| if (check_firmware(fe, DTV8, 0, priv->if_khz) != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR "xc4000: Unable to initialise tuner\n"); |
| return -EREMOTEIO; |
| } |
| |
| if (debug) |
| xc_debug_dump(priv); |
| |
| return 0; |
| } |
| |
| static int xc4000_release(struct dvb_frontend *fe) |
| { |
| struct xc4000_priv *priv = fe->tuner_priv; |
| |
| dprintk(1, "%s()\n", __func__); |
| |
| mutex_lock(&xc4000_list_mutex); |
| |
| if (priv) |
| hybrid_tuner_release_state(priv); |
| |
| mutex_unlock(&xc4000_list_mutex); |
| |
| fe->tuner_priv = NULL; |
| |
| return 0; |
| } |
| |
| static const struct dvb_tuner_ops xc4000_tuner_ops = { |
| .info = { |
| .name = "Xceive XC4000", |
| .frequency_min = 1000000, |
| .frequency_max = 1023000000, |
| .frequency_step = 50000, |
| }, |
| |
| .release = xc4000_release, |
| .init = xc4000_init, |
| .sleep = xc4000_sleep, |
| |
| .set_params = xc4000_set_params, |
| .set_analog_params = xc4000_set_analog_params, |
| .get_frequency = xc4000_get_frequency, |
| .get_bandwidth = xc4000_get_bandwidth, |
| .get_status = xc4000_get_status |
| }; |
| |
| struct dvb_frontend *xc4000_attach(struct dvb_frontend *fe, |
| struct i2c_adapter *i2c, |
| struct xc4000_config *cfg) |
| { |
| struct xc4000_priv *priv = NULL; |
| int instance; |
| u16 id = 0; |
| |
| dprintk(1, "%s(%d-%04x)\n", __func__, |
| i2c ? i2c_adapter_id(i2c) : -1, |
| cfg ? cfg->i2c_address : -1); |
| |
| mutex_lock(&xc4000_list_mutex); |
| |
| instance = hybrid_tuner_request_state(struct xc4000_priv, priv, |
| hybrid_tuner_instance_list, |
| i2c, cfg->i2c_address, "xc4000"); |
| switch (instance) { |
| case 0: |
| goto fail; |
| break; |
| case 1: |
| /* new tuner instance */ |
| priv->bandwidth = BANDWIDTH_6_MHZ; |
| fe->tuner_priv = priv; |
| break; |
| default: |
| /* existing tuner instance */ |
| fe->tuner_priv = priv; |
| break; |
| } |
| |
| if (priv->if_khz == 0) { |
| /* If the IF hasn't been set yet, use the value provided by |
| the caller (occurs in hybrid devices where the analog |
| call to xc4000_attach occurs before the digital side) */ |
| priv->if_khz = cfg->if_khz; |
| } |
| |
| /* Check if firmware has been loaded. It is possible that another |
| instance of the driver has loaded the firmware. |
| */ |
| |
| if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS) |
| goto fail; |
| |
| switch (id) { |
| case XC_PRODUCT_ID_FW_LOADED: |
| printk(KERN_INFO |
| "xc4000: Successfully identified at address 0x%02x\n", |
| cfg->i2c_address); |
| printk(KERN_INFO |
| "xc4000: Firmware has been loaded previously\n"); |
| break; |
| case XC_PRODUCT_ID_FW_NOT_LOADED: |
| printk(KERN_INFO |
| "xc4000: Successfully identified at address 0x%02x\n", |
| cfg->i2c_address); |
| printk(KERN_INFO |
| "xc4000: Firmware has not been loaded previously\n"); |
| break; |
| default: |
| printk(KERN_ERR |
| "xc4000: Device not found at addr 0x%02x (0x%x)\n", |
| cfg->i2c_address, id); |
| goto fail; |
| } |
| |
| mutex_unlock(&xc4000_list_mutex); |
| |
| memcpy(&fe->ops.tuner_ops, &xc4000_tuner_ops, |
| sizeof(struct dvb_tuner_ops)); |
| |
| /* FIXME: For now, load the firmware at startup. We will remove this |
| before the code goes to production... */ |
| check_firmware(fe, DTV8, 0, priv->if_khz); |
| |
| return fe; |
| fail: |
| mutex_unlock(&xc4000_list_mutex); |
| |
| xc4000_release(fe); |
| return NULL; |
| } |
| EXPORT_SYMBOL(xc4000_attach); |
| |
| MODULE_AUTHOR("Steven Toth, Davide Ferri"); |
| MODULE_DESCRIPTION("Xceive xc4000 silicon tuner driver"); |
| MODULE_LICENSE("GPL"); |