blob: 3a94f465e8e05eb46e197fcf0e31758c6fdfaf90 [file] [log] [blame]
/*
* Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd
* Author: Addy Ke <addy.ke@rock-chips.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/pm_runtime.h>
#include <linux/scatterlist.h>
#define DRIVER_NAME "rockchip-spi"
/* SPI register offsets */
#define ROCKCHIP_SPI_CTRLR0 0x0000
#define ROCKCHIP_SPI_CTRLR1 0x0004
#define ROCKCHIP_SPI_SSIENR 0x0008
#define ROCKCHIP_SPI_SER 0x000c
#define ROCKCHIP_SPI_BAUDR 0x0010
#define ROCKCHIP_SPI_TXFTLR 0x0014
#define ROCKCHIP_SPI_RXFTLR 0x0018
#define ROCKCHIP_SPI_TXFLR 0x001c
#define ROCKCHIP_SPI_RXFLR 0x0020
#define ROCKCHIP_SPI_SR 0x0024
#define ROCKCHIP_SPI_IPR 0x0028
#define ROCKCHIP_SPI_IMR 0x002c
#define ROCKCHIP_SPI_ISR 0x0030
#define ROCKCHIP_SPI_RISR 0x0034
#define ROCKCHIP_SPI_ICR 0x0038
#define ROCKCHIP_SPI_DMACR 0x003c
#define ROCKCHIP_SPI_DMATDLR 0x0040
#define ROCKCHIP_SPI_DMARDLR 0x0044
#define ROCKCHIP_SPI_TXDR 0x0400
#define ROCKCHIP_SPI_RXDR 0x0800
/* Bit fields in CTRLR0 */
#define CR0_DFS_OFFSET 0
#define CR0_CFS_OFFSET 2
#define CR0_SCPH_OFFSET 6
#define CR0_SCPOL_OFFSET 7
#define CR0_CSM_OFFSET 8
#define CR0_CSM_KEEP 0x0
/* ss_n be high for half sclk_out cycles */
#define CR0_CSM_HALF 0X1
/* ss_n be high for one sclk_out cycle */
#define CR0_CSM_ONE 0x2
/* ss_n to sclk_out delay */
#define CR0_SSD_OFFSET 10
/*
* The period between ss_n active and
* sclk_out active is half sclk_out cycles
*/
#define CR0_SSD_HALF 0x0
/*
* The period between ss_n active and
* sclk_out active is one sclk_out cycle
*/
#define CR0_SSD_ONE 0x1
#define CR0_EM_OFFSET 11
#define CR0_EM_LITTLE 0x0
#define CR0_EM_BIG 0x1
#define CR0_FBM_OFFSET 12
#define CR0_FBM_MSB 0x0
#define CR0_FBM_LSB 0x1
#define CR0_BHT_OFFSET 13
#define CR0_BHT_16BIT 0x0
#define CR0_BHT_8BIT 0x1
#define CR0_RSD_OFFSET 14
#define CR0_FRF_OFFSET 16
#define CR0_FRF_SPI 0x0
#define CR0_FRF_SSP 0x1
#define CR0_FRF_MICROWIRE 0x2
#define CR0_XFM_OFFSET 18
#define CR0_XFM_MASK (0x03 << SPI_XFM_OFFSET)
#define CR0_XFM_TR 0x0
#define CR0_XFM_TO 0x1
#define CR0_XFM_RO 0x2
#define CR0_OPM_OFFSET 20
#define CR0_OPM_MASTER 0x0
#define CR0_OPM_SLAVE 0x1
#define CR0_MTM_OFFSET 0x21
/* Bit fields in SER, 2bit */
#define SER_MASK 0x3
/* Bit fields in SR, 5bit */
#define SR_MASK 0x1f
#define SR_BUSY (1 << 0)
#define SR_TF_FULL (1 << 1)
#define SR_TF_EMPTY (1 << 2)
#define SR_RF_EMPTY (1 << 3)
#define SR_RF_FULL (1 << 4)
/* Bit fields in ISR, IMR, ISR, RISR, 5bit */
#define INT_MASK 0x1f
#define INT_TF_EMPTY (1 << 0)
#define INT_TF_OVERFLOW (1 << 1)
#define INT_RF_UNDERFLOW (1 << 2)
#define INT_RF_OVERFLOW (1 << 3)
#define INT_RF_FULL (1 << 4)
/* Bit fields in ICR, 4bit */
#define ICR_MASK 0x0f
#define ICR_ALL (1 << 0)
#define ICR_RF_UNDERFLOW (1 << 1)
#define ICR_RF_OVERFLOW (1 << 2)
#define ICR_TF_OVERFLOW (1 << 3)
/* Bit fields in DMACR */
#define RF_DMA_EN (1 << 0)
#define TF_DMA_EN (1 << 1)
#define RXBUSY (1 << 0)
#define TXBUSY (1 << 1)
/* sclk_out: spi master internal logic in rk3x can support 50Mhz */
#define MAX_SCLK_OUT 50000000
/*
* SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However,
* the controller seems to hang when given 0x10000, so stick with this for now.
*/
#define ROCKCHIP_SPI_MAX_TRANLEN 0xffff
enum rockchip_ssi_type {
SSI_MOTO_SPI = 0,
SSI_TI_SSP,
SSI_NS_MICROWIRE,
};
struct rockchip_spi_dma_data {
struct dma_chan *ch;
enum dma_transfer_direction direction;
dma_addr_t addr;
};
struct rockchip_spi {
struct device *dev;
struct spi_master *master;
struct clk *spiclk;
struct clk *apb_pclk;
void __iomem *regs;
/*depth of the FIFO buffer */
u32 fifo_len;
/* max bus freq supported */
u32 max_freq;
/* supported slave numbers */
enum rockchip_ssi_type type;
u16 mode;
u8 tmode;
u8 bpw;
u8 n_bytes;
u32 rsd_nsecs;
unsigned len;
u32 speed;
const void *tx;
const void *tx_end;
void *rx;
void *rx_end;
u32 state;
/* protect state */
spinlock_t lock;
u32 use_dma;
struct sg_table tx_sg;
struct sg_table rx_sg;
struct rockchip_spi_dma_data dma_rx;
struct rockchip_spi_dma_data dma_tx;
struct dma_slave_caps dma_caps;
};
static inline void spi_enable_chip(struct rockchip_spi *rs, int enable)
{
writel_relaxed((enable ? 1 : 0), rs->regs + ROCKCHIP_SPI_SSIENR);
}
static inline void spi_set_clk(struct rockchip_spi *rs, u16 div)
{
writel_relaxed(div, rs->regs + ROCKCHIP_SPI_BAUDR);
}
static inline void flush_fifo(struct rockchip_spi *rs)
{
while (readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR))
readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
}
static inline void wait_for_idle(struct rockchip_spi *rs)
{
unsigned long timeout = jiffies + msecs_to_jiffies(5);
do {
if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY))
return;
} while (!time_after(jiffies, timeout));
dev_warn(rs->dev, "spi controller is in busy state!\n");
}
static u32 get_fifo_len(struct rockchip_spi *rs)
{
u32 fifo;
for (fifo = 2; fifo < 32; fifo++) {
writel_relaxed(fifo, rs->regs + ROCKCHIP_SPI_TXFTLR);
if (fifo != readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFTLR))
break;
}
writel_relaxed(0, rs->regs + ROCKCHIP_SPI_TXFTLR);
return (fifo == 31) ? 0 : fifo;
}
static inline u32 tx_max(struct rockchip_spi *rs)
{
u32 tx_left, tx_room;
tx_left = (rs->tx_end - rs->tx) / rs->n_bytes;
tx_room = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR);
return min(tx_left, tx_room);
}
static inline u32 rx_max(struct rockchip_spi *rs)
{
u32 rx_left = (rs->rx_end - rs->rx) / rs->n_bytes;
u32 rx_room = (u32)readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
return min(rx_left, rx_room);
}
static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
{
u32 ser;
struct spi_master *master = spi->master;
struct rockchip_spi *rs = spi_master_get_devdata(master);
pm_runtime_get_sync(rs->dev);
ser = readl_relaxed(rs->regs + ROCKCHIP_SPI_SER) & SER_MASK;
/*
* drivers/spi/spi.c:
* static void spi_set_cs(struct spi_device *spi, bool enable)
* {
* if (spi->mode & SPI_CS_HIGH)
* enable = !enable;
*
* if (spi->cs_gpio >= 0)
* gpio_set_value(spi->cs_gpio, !enable);
* else if (spi->master->set_cs)
* spi->master->set_cs(spi, !enable);
* }
*
* Note: enable(rockchip_spi_set_cs) = !enable(spi_set_cs)
*/
if (!enable)
ser |= 1 << spi->chip_select;
else
ser &= ~(1 << spi->chip_select);
writel_relaxed(ser, rs->regs + ROCKCHIP_SPI_SER);
pm_runtime_put_sync(rs->dev);
}
static int rockchip_spi_prepare_message(struct spi_master *master,
struct spi_message *msg)
{
struct rockchip_spi *rs = spi_master_get_devdata(master);
struct spi_device *spi = msg->spi;
rs->mode = spi->mode;
return 0;
}
static void rockchip_spi_handle_err(struct spi_master *master,
struct spi_message *msg)
{
unsigned long flags;
struct rockchip_spi *rs = spi_master_get_devdata(master);
spin_lock_irqsave(&rs->lock, flags);
/*
* For DMA mode, we need terminate DMA channel and flush
* fifo for the next transfer if DMA thansfer timeout.
* handle_err() was called by core if transfer failed.
* Maybe it is reasonable for error handling here.
*/
if (rs->use_dma) {
if (rs->state & RXBUSY) {
dmaengine_terminate_async(rs->dma_rx.ch);
flush_fifo(rs);
}
if (rs->state & TXBUSY)
dmaengine_terminate_async(rs->dma_tx.ch);
}
spin_unlock_irqrestore(&rs->lock, flags);
}
static int rockchip_spi_unprepare_message(struct spi_master *master,
struct spi_message *msg)
{
struct rockchip_spi *rs = spi_master_get_devdata(master);
spi_enable_chip(rs, 0);
return 0;
}
static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
{
u32 max = tx_max(rs);
u32 txw = 0;
while (max--) {
if (rs->n_bytes == 1)
txw = *(u8 *)(rs->tx);
else
txw = *(u16 *)(rs->tx);
writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR);
rs->tx += rs->n_bytes;
}
}
static void rockchip_spi_pio_reader(struct rockchip_spi *rs)
{
u32 max = rx_max(rs);
u32 rxw;
while (max--) {
rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
if (rs->n_bytes == 1)
*(u8 *)(rs->rx) = (u8)rxw;
else
*(u16 *)(rs->rx) = (u16)rxw;
rs->rx += rs->n_bytes;
}
}
static int rockchip_spi_pio_transfer(struct rockchip_spi *rs)
{
int remain = 0;
do {
if (rs->tx) {
remain = rs->tx_end - rs->tx;
rockchip_spi_pio_writer(rs);
}
if (rs->rx) {
remain = rs->rx_end - rs->rx;
rockchip_spi_pio_reader(rs);
}
cpu_relax();
} while (remain);
/* If tx, wait until the FIFO data completely. */
if (rs->tx)
wait_for_idle(rs);
spi_enable_chip(rs, 0);
return 0;
}
static void rockchip_spi_dma_rxcb(void *data)
{
unsigned long flags;
struct rockchip_spi *rs = data;
spin_lock_irqsave(&rs->lock, flags);
rs->state &= ~RXBUSY;
if (!(rs->state & TXBUSY)) {
spi_enable_chip(rs, 0);
spi_finalize_current_transfer(rs->master);
}
spin_unlock_irqrestore(&rs->lock, flags);
}
static void rockchip_spi_dma_txcb(void *data)
{
unsigned long flags;
struct rockchip_spi *rs = data;
/* Wait until the FIFO data completely. */
wait_for_idle(rs);
spin_lock_irqsave(&rs->lock, flags);
rs->state &= ~TXBUSY;
if (!(rs->state & RXBUSY)) {
spi_enable_chip(rs, 0);
spi_finalize_current_transfer(rs->master);
}
spin_unlock_irqrestore(&rs->lock, flags);
}
static int rockchip_spi_prepare_dma(struct rockchip_spi *rs)
{
unsigned long flags;
struct dma_slave_config rxconf, txconf;
struct dma_async_tx_descriptor *rxdesc, *txdesc;
memset(&rxconf, 0, sizeof(rxconf));
memset(&txconf, 0, sizeof(txconf));
spin_lock_irqsave(&rs->lock, flags);
rs->state &= ~RXBUSY;
rs->state &= ~TXBUSY;
spin_unlock_irqrestore(&rs->lock, flags);
rxdesc = NULL;
if (rs->rx) {
rxconf.direction = rs->dma_rx.direction;
rxconf.src_addr = rs->dma_rx.addr;
rxconf.src_addr_width = rs->n_bytes;
if (rs->dma_caps.max_burst > 4)
rxconf.src_maxburst = 4;
else
rxconf.src_maxburst = 1;
dmaengine_slave_config(rs->dma_rx.ch, &rxconf);
rxdesc = dmaengine_prep_slave_sg(
rs->dma_rx.ch,
rs->rx_sg.sgl, rs->rx_sg.nents,
rs->dma_rx.direction, DMA_PREP_INTERRUPT);
if (!rxdesc)
return -EINVAL;
rxdesc->callback = rockchip_spi_dma_rxcb;
rxdesc->callback_param = rs;
}
txdesc = NULL;
if (rs->tx) {
txconf.direction = rs->dma_tx.direction;
txconf.dst_addr = rs->dma_tx.addr;
txconf.dst_addr_width = rs->n_bytes;
if (rs->dma_caps.max_burst > 4)
txconf.dst_maxburst = 4;
else
txconf.dst_maxburst = 1;
dmaengine_slave_config(rs->dma_tx.ch, &txconf);
txdesc = dmaengine_prep_slave_sg(
rs->dma_tx.ch,
rs->tx_sg.sgl, rs->tx_sg.nents,
rs->dma_tx.direction, DMA_PREP_INTERRUPT);
if (!txdesc) {
if (rxdesc)
dmaengine_terminate_sync(rs->dma_rx.ch);
return -EINVAL;
}
txdesc->callback = rockchip_spi_dma_txcb;
txdesc->callback_param = rs;
}
/* rx must be started before tx due to spi instinct */
if (rxdesc) {
spin_lock_irqsave(&rs->lock, flags);
rs->state |= RXBUSY;
spin_unlock_irqrestore(&rs->lock, flags);
dmaengine_submit(rxdesc);
dma_async_issue_pending(rs->dma_rx.ch);
}
if (txdesc) {
spin_lock_irqsave(&rs->lock, flags);
rs->state |= TXBUSY;
spin_unlock_irqrestore(&rs->lock, flags);
dmaengine_submit(txdesc);
dma_async_issue_pending(rs->dma_tx.ch);
}
return 0;
}
static void rockchip_spi_config(struct rockchip_spi *rs)
{
u32 div = 0;
u32 dmacr = 0;
int rsd = 0;
u32 cr0 = (CR0_BHT_8BIT << CR0_BHT_OFFSET)
| (CR0_SSD_ONE << CR0_SSD_OFFSET)
| (CR0_EM_BIG << CR0_EM_OFFSET);
cr0 |= (rs->n_bytes << CR0_DFS_OFFSET);
cr0 |= ((rs->mode & 0x3) << CR0_SCPH_OFFSET);
cr0 |= (rs->tmode << CR0_XFM_OFFSET);
cr0 |= (rs->type << CR0_FRF_OFFSET);
if (rs->use_dma) {
if (rs->tx)
dmacr |= TF_DMA_EN;
if (rs->rx)
dmacr |= RF_DMA_EN;
}
if (WARN_ON(rs->speed > MAX_SCLK_OUT))
rs->speed = MAX_SCLK_OUT;
/* the minimum divisor is 2 */
if (rs->max_freq < 2 * rs->speed) {
clk_set_rate(rs->spiclk, 2 * rs->speed);
rs->max_freq = clk_get_rate(rs->spiclk);
}
/* div doesn't support odd number */
div = DIV_ROUND_UP(rs->max_freq, rs->speed);
div = (div + 1) & 0xfffe;
/* Rx sample delay is expressed in parent clock cycles (max 3) */
rsd = DIV_ROUND_CLOSEST(rs->rsd_nsecs * (rs->max_freq >> 8),
1000000000 >> 8);
if (!rsd && rs->rsd_nsecs) {
pr_warn_once("rockchip-spi: %u Hz are too slow to express %u ns delay\n",
rs->max_freq, rs->rsd_nsecs);
} else if (rsd > 3) {
rsd = 3;
pr_warn_once("rockchip-spi: %u Hz are too fast to express %u ns delay, clamping at %u ns\n",
rs->max_freq, rs->rsd_nsecs,
rsd * 1000000000U / rs->max_freq);
}
cr0 |= rsd << CR0_RSD_OFFSET;
writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
writel_relaxed(rs->len - 1, rs->regs + ROCKCHIP_SPI_CTRLR1);
writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_TXFTLR);
writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
writel_relaxed(0, rs->regs + ROCKCHIP_SPI_DMATDLR);
writel_relaxed(0, rs->regs + ROCKCHIP_SPI_DMARDLR);
writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);
spi_set_clk(rs, div);
dev_dbg(rs->dev, "cr0 0x%x, div %d\n", cr0, div);
}
static size_t rockchip_spi_max_transfer_size(struct spi_device *spi)
{
return ROCKCHIP_SPI_MAX_TRANLEN;
}
static int rockchip_spi_transfer_one(
struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
int ret = 0;
struct rockchip_spi *rs = spi_master_get_devdata(master);
WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) &&
(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY));
if (!xfer->tx_buf && !xfer->rx_buf) {
dev_err(rs->dev, "No buffer for transfer\n");
return -EINVAL;
}
if (xfer->len > ROCKCHIP_SPI_MAX_TRANLEN) {
dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len);
return -EINVAL;
}
rs->speed = xfer->speed_hz;
rs->bpw = xfer->bits_per_word;
rs->n_bytes = rs->bpw >> 3;
rs->tx = xfer->tx_buf;
rs->tx_end = rs->tx + xfer->len;
rs->rx = xfer->rx_buf;
rs->rx_end = rs->rx + xfer->len;
rs->len = xfer->len;
rs->tx_sg = xfer->tx_sg;
rs->rx_sg = xfer->rx_sg;
if (rs->tx && rs->rx)
rs->tmode = CR0_XFM_TR;
else if (rs->tx)
rs->tmode = CR0_XFM_TO;
else if (rs->rx)
rs->tmode = CR0_XFM_RO;
/* we need prepare dma before spi was enabled */
if (master->can_dma && master->can_dma(master, spi, xfer))
rs->use_dma = 1;
else
rs->use_dma = 0;
rockchip_spi_config(rs);
if (rs->use_dma) {
if (rs->tmode == CR0_XFM_RO) {
/* rx: dma must be prepared first */
ret = rockchip_spi_prepare_dma(rs);
spi_enable_chip(rs, 1);
} else {
/* tx or tr: spi must be enabled first */
spi_enable_chip(rs, 1);
ret = rockchip_spi_prepare_dma(rs);
}
/* successful DMA prepare means the transfer is in progress */
ret = ret ? ret : 1;
} else {
spi_enable_chip(rs, 1);
ret = rockchip_spi_pio_transfer(rs);
}
return ret;
}
static bool rockchip_spi_can_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct rockchip_spi *rs = spi_master_get_devdata(master);
return (xfer->len > rs->fifo_len);
}
static int rockchip_spi_probe(struct platform_device *pdev)
{
int ret = 0;
struct rockchip_spi *rs;
struct spi_master *master;
struct resource *mem;
u32 rsd_nsecs;
master = spi_alloc_master(&pdev->dev, sizeof(struct rockchip_spi));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
rs = spi_master_get_devdata(master);
/* Get basic io resource and map it */
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
rs->regs = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(rs->regs)) {
ret = PTR_ERR(rs->regs);
goto err_ioremap_resource;
}
rs->apb_pclk = devm_clk_get(&pdev->dev, "apb_pclk");
if (IS_ERR(rs->apb_pclk)) {
dev_err(&pdev->dev, "Failed to get apb_pclk\n");
ret = PTR_ERR(rs->apb_pclk);
goto err_ioremap_resource;
}
rs->spiclk = devm_clk_get(&pdev->dev, "spiclk");
if (IS_ERR(rs->spiclk)) {
dev_err(&pdev->dev, "Failed to get spi_pclk\n");
ret = PTR_ERR(rs->spiclk);
goto err_ioremap_resource;
}
ret = clk_prepare_enable(rs->apb_pclk);
if (ret) {
dev_err(&pdev->dev, "Failed to enable apb_pclk\n");
goto err_ioremap_resource;
}
ret = clk_prepare_enable(rs->spiclk);
if (ret) {
dev_err(&pdev->dev, "Failed to enable spi_clk\n");
goto err_spiclk_enable;
}
spi_enable_chip(rs, 0);
rs->type = SSI_MOTO_SPI;
rs->master = master;
rs->dev = &pdev->dev;
rs->max_freq = clk_get_rate(rs->spiclk);
if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns",
&rsd_nsecs))
rs->rsd_nsecs = rsd_nsecs;
rs->fifo_len = get_fifo_len(rs);
if (!rs->fifo_len) {
dev_err(&pdev->dev, "Failed to get fifo length\n");
ret = -EINVAL;
goto err_get_fifo_len;
}
spin_lock_init(&rs->lock);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
master->auto_runtime_pm = true;
master->bus_num = pdev->id;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
master->num_chipselect = 2;
master->dev.of_node = pdev->dev.of_node;
master->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
master->set_cs = rockchip_spi_set_cs;
master->prepare_message = rockchip_spi_prepare_message;
master->unprepare_message = rockchip_spi_unprepare_message;
master->transfer_one = rockchip_spi_transfer_one;
master->max_transfer_size = rockchip_spi_max_transfer_size;
master->handle_err = rockchip_spi_handle_err;
rs->dma_tx.ch = dma_request_chan(rs->dev, "tx");
if (IS_ERR(rs->dma_tx.ch)) {
/* Check tx to see if we need defer probing driver */
if (PTR_ERR(rs->dma_tx.ch) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto err_get_fifo_len;
}
dev_warn(rs->dev, "Failed to request TX DMA channel\n");
rs->dma_tx.ch = NULL;
}
rs->dma_rx.ch = dma_request_chan(rs->dev, "rx");
if (IS_ERR(rs->dma_rx.ch)) {
if (PTR_ERR(rs->dma_rx.ch) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto err_free_dma_tx;
}
dev_warn(rs->dev, "Failed to request RX DMA channel\n");
rs->dma_rx.ch = NULL;
}
if (rs->dma_tx.ch && rs->dma_rx.ch) {
dma_get_slave_caps(rs->dma_rx.ch, &(rs->dma_caps));
rs->dma_tx.addr = (dma_addr_t)(mem->start + ROCKCHIP_SPI_TXDR);
rs->dma_rx.addr = (dma_addr_t)(mem->start + ROCKCHIP_SPI_RXDR);
rs->dma_tx.direction = DMA_MEM_TO_DEV;
rs->dma_rx.direction = DMA_DEV_TO_MEM;
master->can_dma = rockchip_spi_can_dma;
master->dma_tx = rs->dma_tx.ch;
master->dma_rx = rs->dma_rx.ch;
}
ret = devm_spi_register_master(&pdev->dev, master);
if (ret) {
dev_err(&pdev->dev, "Failed to register master\n");
goto err_register_master;
}
return 0;
err_register_master:
pm_runtime_disable(&pdev->dev);
if (rs->dma_rx.ch)
dma_release_channel(rs->dma_rx.ch);
err_free_dma_tx:
if (rs->dma_tx.ch)
dma_release_channel(rs->dma_tx.ch);
err_get_fifo_len:
clk_disable_unprepare(rs->spiclk);
err_spiclk_enable:
clk_disable_unprepare(rs->apb_pclk);
err_ioremap_resource:
spi_master_put(master);
return ret;
}
static int rockchip_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
struct rockchip_spi *rs = spi_master_get_devdata(master);
pm_runtime_disable(&pdev->dev);
clk_disable_unprepare(rs->spiclk);
clk_disable_unprepare(rs->apb_pclk);
if (rs->dma_tx.ch)
dma_release_channel(rs->dma_tx.ch);
if (rs->dma_rx.ch)
dma_release_channel(rs->dma_rx.ch);
spi_master_put(master);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int rockchip_spi_suspend(struct device *dev)
{
int ret = 0;
struct spi_master *master = dev_get_drvdata(dev);
struct rockchip_spi *rs = spi_master_get_devdata(master);
ret = spi_master_suspend(rs->master);
if (ret)
return ret;
if (!pm_runtime_suspended(dev)) {
clk_disable_unprepare(rs->spiclk);
clk_disable_unprepare(rs->apb_pclk);
}
return ret;
}
static int rockchip_spi_resume(struct device *dev)
{
int ret = 0;
struct spi_master *master = dev_get_drvdata(dev);
struct rockchip_spi *rs = spi_master_get_devdata(master);
if (!pm_runtime_suspended(dev)) {
ret = clk_prepare_enable(rs->apb_pclk);
if (ret < 0)
return ret;
ret = clk_prepare_enable(rs->spiclk);
if (ret < 0) {
clk_disable_unprepare(rs->apb_pclk);
return ret;
}
}
ret = spi_master_resume(rs->master);
if (ret < 0) {
clk_disable_unprepare(rs->spiclk);
clk_disable_unprepare(rs->apb_pclk);
}
return ret;
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_PM
static int rockchip_spi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct rockchip_spi *rs = spi_master_get_devdata(master);
clk_disable_unprepare(rs->spiclk);
clk_disable_unprepare(rs->apb_pclk);
return 0;
}
static int rockchip_spi_runtime_resume(struct device *dev)
{
int ret;
struct spi_master *master = dev_get_drvdata(dev);
struct rockchip_spi *rs = spi_master_get_devdata(master);
ret = clk_prepare_enable(rs->apb_pclk);
if (ret)
return ret;
ret = clk_prepare_enable(rs->spiclk);
if (ret)
clk_disable_unprepare(rs->apb_pclk);
return ret;
}
#endif /* CONFIG_PM */
static const struct dev_pm_ops rockchip_spi_pm = {
SET_SYSTEM_SLEEP_PM_OPS(rockchip_spi_suspend, rockchip_spi_resume)
SET_RUNTIME_PM_OPS(rockchip_spi_runtime_suspend,
rockchip_spi_runtime_resume, NULL)
};
static const struct of_device_id rockchip_spi_dt_match[] = {
{ .compatible = "rockchip,rk3036-spi", },
{ .compatible = "rockchip,rk3066-spi", },
{ .compatible = "rockchip,rk3188-spi", },
{ .compatible = "rockchip,rk3228-spi", },
{ .compatible = "rockchip,rk3288-spi", },
{ .compatible = "rockchip,rk3368-spi", },
{ .compatible = "rockchip,rk3399-spi", },
{ },
};
MODULE_DEVICE_TABLE(of, rockchip_spi_dt_match);
static struct platform_driver rockchip_spi_driver = {
.driver = {
.name = DRIVER_NAME,
.pm = &rockchip_spi_pm,
.of_match_table = of_match_ptr(rockchip_spi_dt_match),
},
.probe = rockchip_spi_probe,
.remove = rockchip_spi_remove,
};
module_platform_driver(rockchip_spi_driver);
MODULE_AUTHOR("Addy Ke <addy.ke@rock-chips.com>");
MODULE_DESCRIPTION("ROCKCHIP SPI Controller Driver");
MODULE_LICENSE("GPL v2");