blob: d8faf79a0a1da22b57d4f39ee58abc1ca9b908d7 [file] [log] [blame]
/*
* Xen SMP support
*
* This file implements the Xen versions of smp_ops. SMP under Xen is
* very straightforward. Bringing a CPU up is simply a matter of
* loading its initial context and setting it running.
*
* IPIs are handled through the Xen event mechanism.
*
* Because virtual CPUs can be scheduled onto any real CPU, there's no
* useful topology information for the kernel to make use of. As a
* result, all CPUs are treated as if they're single-core and
* single-threaded.
*
* This does not handle HOTPLUG_CPU yet.
*/
#include <linux/sched.h>
#include <linux/kernel_stat.h>
#include <linux/err.h>
#include <linux/smp.h>
#include <asm/paravirt.h>
#include <asm/desc.h>
#include <asm/pgtable.h>
#include <asm/cpu.h>
#include <xen/interface/xen.h>
#include <xen/interface/vcpu.h>
#include <asm/xen/interface.h>
#include <asm/xen/hypercall.h>
#include <xen/page.h>
#include <xen/events.h>
#include "xen-ops.h"
#include "mmu.h"
static void __cpuinit xen_init_lock_cpu(int cpu);
cpumask_t xen_cpu_initialized_map;
static DEFINE_PER_CPU(int, resched_irq);
static DEFINE_PER_CPU(int, callfunc_irq);
static DEFINE_PER_CPU(int, callfuncsingle_irq);
static DEFINE_PER_CPU(int, debug_irq) = -1;
static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
/*
* Reschedule call back. Nothing to do,
* all the work is done automatically when
* we return from the interrupt.
*/
static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
{
#ifdef CONFIG_X86_32
__get_cpu_var(irq_stat).irq_resched_count++;
#else
add_pda(irq_resched_count, 1);
#endif
return IRQ_HANDLED;
}
static __cpuinit void cpu_bringup_and_idle(void)
{
int cpu = smp_processor_id();
cpu_init();
preempt_disable();
xen_enable_sysenter();
xen_enable_syscall();
cpu = smp_processor_id();
smp_store_cpu_info(cpu);
cpu_data(cpu).x86_max_cores = 1;
set_cpu_sibling_map(cpu);
xen_setup_cpu_clockevents();
cpu_set(cpu, cpu_online_map);
x86_write_percpu(cpu_state, CPU_ONLINE);
wmb();
/* We can take interrupts now: we're officially "up". */
local_irq_enable();
wmb(); /* make sure everything is out */
cpu_idle();
}
static int xen_smp_intr_init(unsigned int cpu)
{
int rc;
const char *resched_name, *callfunc_name, *debug_name;
resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
cpu,
xen_reschedule_interrupt,
IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
resched_name,
NULL);
if (rc < 0)
goto fail;
per_cpu(resched_irq, cpu) = rc;
callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
cpu,
xen_call_function_interrupt,
IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
callfunc_name,
NULL);
if (rc < 0)
goto fail;
per_cpu(callfunc_irq, cpu) = rc;
debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING,
debug_name, NULL);
if (rc < 0)
goto fail;
per_cpu(debug_irq, cpu) = rc;
callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
cpu,
xen_call_function_single_interrupt,
IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
callfunc_name,
NULL);
if (rc < 0)
goto fail;
per_cpu(callfuncsingle_irq, cpu) = rc;
return 0;
fail:
if (per_cpu(resched_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(resched_irq, cpu), NULL);
if (per_cpu(callfunc_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(callfunc_irq, cpu), NULL);
if (per_cpu(debug_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(debug_irq, cpu), NULL);
if (per_cpu(callfuncsingle_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(callfuncsingle_irq, cpu), NULL);
return rc;
}
static void __init xen_fill_possible_map(void)
{
int i, rc;
for (i = 0; i < NR_CPUS; i++) {
rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
if (rc >= 0) {
num_processors++;
cpu_set(i, cpu_possible_map);
}
}
}
static void __init xen_smp_prepare_boot_cpu(void)
{
BUG_ON(smp_processor_id() != 0);
native_smp_prepare_boot_cpu();
/* We've switched to the "real" per-cpu gdt, so make sure the
old memory can be recycled */
make_lowmem_page_readwrite(&per_cpu_var(gdt_page));
xen_setup_vcpu_info_placement();
}
static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
{
unsigned cpu;
xen_init_lock_cpu(0);
smp_store_cpu_info(0);
cpu_data(0).x86_max_cores = 1;
set_cpu_sibling_map(0);
if (xen_smp_intr_init(0))
BUG();
xen_cpu_initialized_map = cpumask_of_cpu(0);
/* Restrict the possible_map according to max_cpus. */
while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
for (cpu = NR_CPUS - 1; !cpu_possible(cpu); cpu--)
continue;
cpu_clear(cpu, cpu_possible_map);
}
for_each_possible_cpu (cpu) {
struct task_struct *idle;
if (cpu == 0)
continue;
idle = fork_idle(cpu);
if (IS_ERR(idle))
panic("failed fork for CPU %d", cpu);
cpu_set(cpu, cpu_present_map);
}
//init_xenbus_allowed_cpumask();
}
static __cpuinit int
cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
{
struct vcpu_guest_context *ctxt;
struct desc_struct *gdt;
if (cpu_test_and_set(cpu, xen_cpu_initialized_map))
return 0;
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (ctxt == NULL)
return -ENOMEM;
gdt = get_cpu_gdt_table(cpu);
ctxt->flags = VGCF_IN_KERNEL;
ctxt->user_regs.ds = __USER_DS;
ctxt->user_regs.es = __USER_DS;
ctxt->user_regs.ss = __KERNEL_DS;
#ifdef CONFIG_X86_32
ctxt->user_regs.fs = __KERNEL_PERCPU;
#endif
ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
xen_copy_trap_info(ctxt->trap_ctxt);
ctxt->ldt_ents = 0;
BUG_ON((unsigned long)gdt & ~PAGE_MASK);
make_lowmem_page_readonly(gdt);
ctxt->gdt_frames[0] = virt_to_mfn(gdt);
ctxt->gdt_ents = GDT_ENTRIES;
ctxt->user_regs.cs = __KERNEL_CS;
ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
ctxt->kernel_ss = __KERNEL_DS;
ctxt->kernel_sp = idle->thread.sp0;
#ifdef CONFIG_X86_32
ctxt->event_callback_cs = __KERNEL_CS;
ctxt->failsafe_callback_cs = __KERNEL_CS;
#endif
ctxt->event_callback_eip = (unsigned long)xen_hypervisor_callback;
ctxt->failsafe_callback_eip = (unsigned long)xen_failsafe_callback;
per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
BUG();
kfree(ctxt);
return 0;
}
static int __cpuinit xen_cpu_up(unsigned int cpu)
{
struct task_struct *idle = idle_task(cpu);
int rc;
#if 0
rc = cpu_up_check(cpu);
if (rc)
return rc;
#endif
#ifdef CONFIG_X86_64
/* Allocate node local memory for AP pdas */
WARN_ON(cpu == 0);
if (cpu > 0) {
rc = get_local_pda(cpu);
if (rc)
return rc;
}
#endif
#ifdef CONFIG_X86_32
init_gdt(cpu);
per_cpu(current_task, cpu) = idle;
irq_ctx_init(cpu);
#else
cpu_pda(cpu)->pcurrent = idle;
clear_tsk_thread_flag(idle, TIF_FORK);
#endif
xen_setup_timer(cpu);
xen_init_lock_cpu(cpu);
per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
/* make sure interrupts start blocked */
per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
rc = cpu_initialize_context(cpu, idle);
if (rc)
return rc;
if (num_online_cpus() == 1)
alternatives_smp_switch(1);
rc = xen_smp_intr_init(cpu);
if (rc)
return rc;
rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
BUG_ON(rc);
while(per_cpu(cpu_state, cpu) != CPU_ONLINE) {
HYPERVISOR_sched_op(SCHEDOP_yield, 0);
barrier();
}
return 0;
}
static void xen_smp_cpus_done(unsigned int max_cpus)
{
}
static void stop_self(void *v)
{
int cpu = smp_processor_id();
/* make sure we're not pinning something down */
load_cr3(swapper_pg_dir);
/* should set up a minimal gdt */
HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
BUG();
}
static void xen_smp_send_stop(void)
{
smp_call_function(stop_self, NULL, 0);
}
static void xen_smp_send_reschedule(int cpu)
{
xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
}
static void xen_send_IPI_mask(cpumask_t mask, enum ipi_vector vector)
{
unsigned cpu;
cpus_and(mask, mask, cpu_online_map);
for_each_cpu_mask_nr(cpu, mask)
xen_send_IPI_one(cpu, vector);
}
static void xen_smp_send_call_function_ipi(cpumask_t mask)
{
int cpu;
xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
/* Make sure other vcpus get a chance to run if they need to. */
for_each_cpu_mask_nr(cpu, mask) {
if (xen_vcpu_stolen(cpu)) {
HYPERVISOR_sched_op(SCHEDOP_yield, 0);
break;
}
}
}
static void xen_smp_send_call_function_single_ipi(int cpu)
{
xen_send_IPI_mask(cpumask_of_cpu(cpu), XEN_CALL_FUNCTION_SINGLE_VECTOR);
}
static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
{
irq_enter();
generic_smp_call_function_interrupt();
#ifdef CONFIG_X86_32
__get_cpu_var(irq_stat).irq_call_count++;
#else
add_pda(irq_call_count, 1);
#endif
irq_exit();
return IRQ_HANDLED;
}
static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
{
irq_enter();
generic_smp_call_function_single_interrupt();
#ifdef CONFIG_X86_32
__get_cpu_var(irq_stat).irq_call_count++;
#else
add_pda(irq_call_count, 1);
#endif
irq_exit();
return IRQ_HANDLED;
}
struct xen_spinlock {
unsigned char lock; /* 0 -> free; 1 -> locked */
unsigned short spinners; /* count of waiting cpus */
};
static int xen_spin_is_locked(struct raw_spinlock *lock)
{
struct xen_spinlock *xl = (struct xen_spinlock *)lock;
return xl->lock != 0;
}
static int xen_spin_is_contended(struct raw_spinlock *lock)
{
struct xen_spinlock *xl = (struct xen_spinlock *)lock;
/* Not strictly true; this is only the count of contended
lock-takers entering the slow path. */
return xl->spinners != 0;
}
static int xen_spin_trylock(struct raw_spinlock *lock)
{
struct xen_spinlock *xl = (struct xen_spinlock *)lock;
u8 old = 1;
asm("xchgb %b0,%1"
: "+q" (old), "+m" (xl->lock) : : "memory");
return old == 0;
}
static DEFINE_PER_CPU(int, lock_kicker_irq) = -1;
static DEFINE_PER_CPU(struct xen_spinlock *, lock_spinners);
static inline void spinning_lock(struct xen_spinlock *xl)
{
__get_cpu_var(lock_spinners) = xl;
wmb(); /* set lock of interest before count */
asm(LOCK_PREFIX " incw %0"
: "+m" (xl->spinners) : : "memory");
}
static inline void unspinning_lock(struct xen_spinlock *xl)
{
asm(LOCK_PREFIX " decw %0"
: "+m" (xl->spinners) : : "memory");
wmb(); /* decrement count before clearing lock */
__get_cpu_var(lock_spinners) = NULL;
}
static noinline int xen_spin_lock_slow(struct raw_spinlock *lock)
{
struct xen_spinlock *xl = (struct xen_spinlock *)lock;
int irq = __get_cpu_var(lock_kicker_irq);
int ret;
/* If kicker interrupts not initialized yet, just spin */
if (irq == -1)
return 0;
/* announce we're spinning */
spinning_lock(xl);
/* clear pending */
xen_clear_irq_pending(irq);
/* check again make sure it didn't become free while
we weren't looking */
ret = xen_spin_trylock(lock);
if (ret)
goto out;
/* block until irq becomes pending */
xen_poll_irq(irq);
kstat_this_cpu.irqs[irq]++;
out:
unspinning_lock(xl);
return ret;
}
static void xen_spin_lock(struct raw_spinlock *lock)
{
struct xen_spinlock *xl = (struct xen_spinlock *)lock;
int timeout;
u8 oldval;
do {
timeout = 1 << 10;
asm("1: xchgb %1,%0\n"
" testb %1,%1\n"
" jz 3f\n"
"2: rep;nop\n"
" cmpb $0,%0\n"
" je 1b\n"
" dec %2\n"
" jnz 2b\n"
"3:\n"
: "+m" (xl->lock), "=q" (oldval), "+r" (timeout)
: "1" (1)
: "memory");
} while (unlikely(oldval != 0 && !xen_spin_lock_slow(lock)));
}
static noinline void xen_spin_unlock_slow(struct xen_spinlock *xl)
{
int cpu;
for_each_online_cpu(cpu) {
/* XXX should mix up next cpu selection */
if (per_cpu(lock_spinners, cpu) == xl) {
xen_send_IPI_one(cpu, XEN_SPIN_UNLOCK_VECTOR);
break;
}
}
}
static void xen_spin_unlock(struct raw_spinlock *lock)
{
struct xen_spinlock *xl = (struct xen_spinlock *)lock;
smp_wmb(); /* make sure no writes get moved after unlock */
xl->lock = 0; /* release lock */
/* make sure unlock happens before kick */
barrier();
if (unlikely(xl->spinners))
xen_spin_unlock_slow(xl);
}
static __cpuinit void xen_init_lock_cpu(int cpu)
{
int irq;
const char *name;
name = kasprintf(GFP_KERNEL, "spinlock%d", cpu);
irq = bind_ipi_to_irqhandler(XEN_SPIN_UNLOCK_VECTOR,
cpu,
xen_reschedule_interrupt,
IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
name,
NULL);
if (irq >= 0) {
disable_irq(irq); /* make sure it's never delivered */
per_cpu(lock_kicker_irq, cpu) = irq;
}
printk("cpu %d spinlock event irq %d\n", cpu, irq);
}
static void __init xen_init_spinlocks(void)
{
pv_lock_ops.spin_is_locked = xen_spin_is_locked;
pv_lock_ops.spin_is_contended = xen_spin_is_contended;
pv_lock_ops.spin_lock = xen_spin_lock;
pv_lock_ops.spin_trylock = xen_spin_trylock;
pv_lock_ops.spin_unlock = xen_spin_unlock;
}
static const struct smp_ops xen_smp_ops __initdata = {
.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
.smp_prepare_cpus = xen_smp_prepare_cpus,
.cpu_up = xen_cpu_up,
.smp_cpus_done = xen_smp_cpus_done,
.smp_send_stop = xen_smp_send_stop,
.smp_send_reschedule = xen_smp_send_reschedule,
.send_call_func_ipi = xen_smp_send_call_function_ipi,
.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
};
void __init xen_smp_init(void)
{
smp_ops = xen_smp_ops;
xen_fill_possible_map();
xen_init_spinlocks();
}