| /* |
| * Core driver for the High Speed UART DMA |
| * |
| * Copyright (C) 2015 Intel Corporation |
| * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com> |
| * |
| * Partially based on the bits found in drivers/tty/serial/mfd.c. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| /* |
| * DMA channel allocation: |
| * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA |
| * Write (UART RX). |
| * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to |
| * port 3, and so on. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| |
| #include "hsu.h" |
| |
| #define HSU_DMA_BUSWIDTHS \ |
| BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_16_BYTES) |
| |
| static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc) |
| { |
| hsu_chan_writel(hsuc, HSU_CH_CR, 0); |
| } |
| |
| static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc) |
| { |
| u32 cr = HSU_CH_CR_CHA; |
| |
| if (hsuc->direction == DMA_MEM_TO_DEV) |
| cr &= ~HSU_CH_CR_CHD; |
| else if (hsuc->direction == DMA_DEV_TO_MEM) |
| cr |= HSU_CH_CR_CHD; |
| |
| hsu_chan_writel(hsuc, HSU_CH_CR, cr); |
| } |
| |
| static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc) |
| { |
| struct dma_slave_config *config = &hsuc->config; |
| struct hsu_dma_desc *desc = hsuc->desc; |
| u32 bsr = 0, mtsr = 0; /* to shut the compiler up */ |
| u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI; |
| unsigned int i, count; |
| |
| if (hsuc->direction == DMA_MEM_TO_DEV) { |
| bsr = config->dst_maxburst; |
| mtsr = config->src_addr_width; |
| } else if (hsuc->direction == DMA_DEV_TO_MEM) { |
| bsr = config->src_maxburst; |
| mtsr = config->dst_addr_width; |
| } |
| |
| hsu_chan_disable(hsuc); |
| |
| hsu_chan_writel(hsuc, HSU_CH_DCR, 0); |
| hsu_chan_writel(hsuc, HSU_CH_BSR, bsr); |
| hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr); |
| |
| /* Set descriptors */ |
| count = desc->nents - desc->active; |
| for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) { |
| hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr); |
| hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len); |
| |
| /* Prepare value for DCR */ |
| dcr |= HSU_CH_DCR_DESCA(i); |
| dcr |= HSU_CH_DCR_CHTOI(i); /* timeout bit, see HSU Errata 1 */ |
| |
| desc->active++; |
| } |
| /* Only for the last descriptor in the chain */ |
| dcr |= HSU_CH_DCR_CHSOD(count - 1); |
| dcr |= HSU_CH_DCR_CHDI(count - 1); |
| |
| hsu_chan_writel(hsuc, HSU_CH_DCR, dcr); |
| |
| hsu_chan_enable(hsuc); |
| } |
| |
| static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc) |
| { |
| hsu_chan_disable(hsuc); |
| hsu_chan_writel(hsuc, HSU_CH_DCR, 0); |
| } |
| |
| static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc) |
| { |
| hsu_dma_chan_start(hsuc); |
| } |
| |
| static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc) |
| { |
| struct virt_dma_desc *vdesc; |
| |
| /* Get the next descriptor */ |
| vdesc = vchan_next_desc(&hsuc->vchan); |
| if (!vdesc) { |
| hsuc->desc = NULL; |
| return; |
| } |
| |
| list_del(&vdesc->node); |
| hsuc->desc = to_hsu_dma_desc(vdesc); |
| |
| /* Start the channel with a new descriptor */ |
| hsu_dma_start_channel(hsuc); |
| } |
| |
| /* |
| * hsu_dma_get_status() - get DMA channel status |
| * @chip: HSUART DMA chip |
| * @nr: DMA channel number |
| * @status: pointer for DMA Channel Status Register value |
| * |
| * Description: |
| * The function reads and clears the DMA Channel Status Register, checks |
| * if it was a timeout interrupt and returns a corresponding value. |
| * |
| * Caller should provide a valid pointer for the DMA Channel Status |
| * Register value that will be returned in @status. |
| * |
| * Return: |
| * 1 for DMA timeout status, 0 for other DMA status, or error code for |
| * invalid parameters or no interrupt pending. |
| */ |
| int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr, |
| u32 *status) |
| { |
| struct hsu_dma_chan *hsuc; |
| unsigned long flags; |
| u32 sr; |
| |
| /* Sanity check */ |
| if (nr >= chip->hsu->nr_channels) |
| return -EINVAL; |
| |
| hsuc = &chip->hsu->chan[nr]; |
| |
| /* |
| * No matter what situation, need read clear the IRQ status |
| * There is a bug, see Errata 5, HSD 2900918 |
| */ |
| spin_lock_irqsave(&hsuc->vchan.lock, flags); |
| sr = hsu_chan_readl(hsuc, HSU_CH_SR); |
| spin_unlock_irqrestore(&hsuc->vchan.lock, flags); |
| |
| /* Check if any interrupt is pending */ |
| sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY); |
| if (!sr) |
| return -EIO; |
| |
| /* Timeout IRQ, need wait some time, see Errata 2 */ |
| if (sr & HSU_CH_SR_DESCTO_ANY) |
| udelay(2); |
| |
| /* |
| * At this point, at least one of Descriptor Time Out, Channel Error |
| * or Descriptor Done bits must be set. Clear the Descriptor Time Out |
| * bits and if sr is still non-zero, it must be channel error or |
| * descriptor done which are higher priority than timeout and handled |
| * in hsu_dma_do_irq(). Else, it must be a timeout. |
| */ |
| sr &= ~HSU_CH_SR_DESCTO_ANY; |
| |
| *status = sr; |
| |
| return sr ? 0 : 1; |
| } |
| EXPORT_SYMBOL_GPL(hsu_dma_get_status); |
| |
| /* |
| * hsu_dma_do_irq() - DMA interrupt handler |
| * @chip: HSUART DMA chip |
| * @nr: DMA channel number |
| * @status: Channel Status Register value |
| * |
| * Description: |
| * This function handles Channel Error and Descriptor Done interrupts. |
| * This function should be called after determining that the DMA interrupt |
| * is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0. |
| * |
| * Return: |
| * IRQ_NONE for invalid channel number, IRQ_HANDLED otherwise. |
| */ |
| irqreturn_t hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr, |
| u32 status) |
| { |
| struct hsu_dma_chan *hsuc; |
| struct hsu_dma_desc *desc; |
| unsigned long flags; |
| |
| /* Sanity check */ |
| if (nr >= chip->hsu->nr_channels) |
| return IRQ_NONE; |
| |
| hsuc = &chip->hsu->chan[nr]; |
| |
| spin_lock_irqsave(&hsuc->vchan.lock, flags); |
| desc = hsuc->desc; |
| if (desc) { |
| if (status & HSU_CH_SR_CHE) { |
| desc->status = DMA_ERROR; |
| } else if (desc->active < desc->nents) { |
| hsu_dma_start_channel(hsuc); |
| } else { |
| vchan_cookie_complete(&desc->vdesc); |
| desc->status = DMA_COMPLETE; |
| hsu_dma_start_transfer(hsuc); |
| } |
| } |
| spin_unlock_irqrestore(&hsuc->vchan.lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| EXPORT_SYMBOL_GPL(hsu_dma_do_irq); |
| |
| static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents) |
| { |
| struct hsu_dma_desc *desc; |
| |
| desc = kzalloc(sizeof(*desc), GFP_NOWAIT); |
| if (!desc) |
| return NULL; |
| |
| desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT); |
| if (!desc->sg) { |
| kfree(desc); |
| return NULL; |
| } |
| |
| return desc; |
| } |
| |
| static void hsu_dma_desc_free(struct virt_dma_desc *vdesc) |
| { |
| struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc); |
| |
| kfree(desc->sg); |
| kfree(desc); |
| } |
| |
| static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); |
| struct hsu_dma_desc *desc; |
| struct scatterlist *sg; |
| unsigned int i; |
| |
| desc = hsu_dma_alloc_desc(sg_len); |
| if (!desc) |
| return NULL; |
| |
| for_each_sg(sgl, sg, sg_len, i) { |
| desc->sg[i].addr = sg_dma_address(sg); |
| desc->sg[i].len = sg_dma_len(sg); |
| |
| desc->length += sg_dma_len(sg); |
| } |
| |
| desc->nents = sg_len; |
| desc->direction = direction; |
| /* desc->active = 0 by kzalloc */ |
| desc->status = DMA_IN_PROGRESS; |
| |
| return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags); |
| } |
| |
| static void hsu_dma_issue_pending(struct dma_chan *chan) |
| { |
| struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&hsuc->vchan.lock, flags); |
| if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc) |
| hsu_dma_start_transfer(hsuc); |
| spin_unlock_irqrestore(&hsuc->vchan.lock, flags); |
| } |
| |
| static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc) |
| { |
| struct hsu_dma_desc *desc = hsuc->desc; |
| size_t bytes = 0; |
| int i; |
| |
| for (i = desc->active; i < desc->nents; i++) |
| bytes += desc->sg[i].len; |
| |
| i = HSU_DMA_CHAN_NR_DESC - 1; |
| do { |
| bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i)); |
| } while (--i >= 0); |
| |
| return bytes; |
| } |
| |
| static enum dma_status hsu_dma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, struct dma_tx_state *state) |
| { |
| struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); |
| struct virt_dma_desc *vdesc; |
| enum dma_status status; |
| size_t bytes; |
| unsigned long flags; |
| |
| status = dma_cookie_status(chan, cookie, state); |
| if (status == DMA_COMPLETE) |
| return status; |
| |
| spin_lock_irqsave(&hsuc->vchan.lock, flags); |
| vdesc = vchan_find_desc(&hsuc->vchan, cookie); |
| if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) { |
| bytes = hsu_dma_active_desc_size(hsuc); |
| dma_set_residue(state, bytes); |
| status = hsuc->desc->status; |
| } else if (vdesc) { |
| bytes = to_hsu_dma_desc(vdesc)->length; |
| dma_set_residue(state, bytes); |
| } |
| spin_unlock_irqrestore(&hsuc->vchan.lock, flags); |
| |
| return status; |
| } |
| |
| static int hsu_dma_slave_config(struct dma_chan *chan, |
| struct dma_slave_config *config) |
| { |
| struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); |
| |
| /* Check if chan will be configured for slave transfers */ |
| if (!is_slave_direction(config->direction)) |
| return -EINVAL; |
| |
| memcpy(&hsuc->config, config, sizeof(hsuc->config)); |
| |
| return 0; |
| } |
| |
| static int hsu_dma_pause(struct dma_chan *chan) |
| { |
| struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&hsuc->vchan.lock, flags); |
| if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) { |
| hsu_chan_disable(hsuc); |
| hsuc->desc->status = DMA_PAUSED; |
| } |
| spin_unlock_irqrestore(&hsuc->vchan.lock, flags); |
| |
| return 0; |
| } |
| |
| static int hsu_dma_resume(struct dma_chan *chan) |
| { |
| struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&hsuc->vchan.lock, flags); |
| if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) { |
| hsuc->desc->status = DMA_IN_PROGRESS; |
| hsu_chan_enable(hsuc); |
| } |
| spin_unlock_irqrestore(&hsuc->vchan.lock, flags); |
| |
| return 0; |
| } |
| |
| static int hsu_dma_terminate_all(struct dma_chan *chan) |
| { |
| struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&hsuc->vchan.lock, flags); |
| |
| hsu_dma_stop_channel(hsuc); |
| if (hsuc->desc) { |
| hsu_dma_desc_free(&hsuc->desc->vdesc); |
| hsuc->desc = NULL; |
| } |
| |
| vchan_get_all_descriptors(&hsuc->vchan, &head); |
| spin_unlock_irqrestore(&hsuc->vchan.lock, flags); |
| vchan_dma_desc_free_list(&hsuc->vchan, &head); |
| |
| return 0; |
| } |
| |
| static void hsu_dma_free_chan_resources(struct dma_chan *chan) |
| { |
| vchan_free_chan_resources(to_virt_chan(chan)); |
| } |
| |
| int hsu_dma_probe(struct hsu_dma_chip *chip) |
| { |
| struct hsu_dma *hsu; |
| void __iomem *addr = chip->regs + chip->offset; |
| unsigned short i; |
| int ret; |
| |
| hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL); |
| if (!hsu) |
| return -ENOMEM; |
| |
| chip->hsu = hsu; |
| |
| /* Calculate nr_channels from the IO space length */ |
| hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH; |
| |
| hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels, |
| sizeof(*hsu->chan), GFP_KERNEL); |
| if (!hsu->chan) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&hsu->dma.channels); |
| for (i = 0; i < hsu->nr_channels; i++) { |
| struct hsu_dma_chan *hsuc = &hsu->chan[i]; |
| |
| hsuc->vchan.desc_free = hsu_dma_desc_free; |
| vchan_init(&hsuc->vchan, &hsu->dma); |
| |
| hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; |
| hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH; |
| } |
| |
| dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask); |
| dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask); |
| |
| hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources; |
| |
| hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg; |
| |
| hsu->dma.device_issue_pending = hsu_dma_issue_pending; |
| hsu->dma.device_tx_status = hsu_dma_tx_status; |
| |
| hsu->dma.device_config = hsu_dma_slave_config; |
| hsu->dma.device_pause = hsu_dma_pause; |
| hsu->dma.device_resume = hsu_dma_resume; |
| hsu->dma.device_terminate_all = hsu_dma_terminate_all; |
| |
| hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS; |
| hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS; |
| hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); |
| hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| |
| hsu->dma.dev = chip->dev; |
| |
| dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK); |
| |
| ret = dma_async_device_register(&hsu->dma); |
| if (ret) |
| return ret; |
| |
| dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hsu_dma_probe); |
| |
| int hsu_dma_remove(struct hsu_dma_chip *chip) |
| { |
| struct hsu_dma *hsu = chip->hsu; |
| unsigned short i; |
| |
| dma_async_device_unregister(&hsu->dma); |
| |
| for (i = 0; i < hsu->nr_channels; i++) { |
| struct hsu_dma_chan *hsuc = &hsu->chan[i]; |
| |
| tasklet_kill(&hsuc->vchan.task); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hsu_dma_remove); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("High Speed UART DMA core driver"); |
| MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>"); |