| /* -*- linux-c -*- |
| * INET 802.1Q VLAN |
| * Ethernet-type device handling. |
| * |
| * Authors: Ben Greear <greearb@candelatech.com> |
| * Please send support related email to: vlan@scry.wanfear.com |
| * VLAN Home Page: http://www.candelatech.com/~greear/vlan.html |
| * |
| * Fixes: Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com> |
| * - reset skb->pkt_type on incoming packets when MAC was changed |
| * - see that changed MAC is saddr for outgoing packets |
| * Oct 20, 2001: Ard van Breeman: |
| * - Fix MC-list, finally. |
| * - Flush MC-list on VLAN destroy. |
| * |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/in.h> |
| #include <linux/init.h> |
| #include <asm/uaccess.h> /* for copy_from_user */ |
| #include <linux/skbuff.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <net/datalink.h> |
| #include <net/p8022.h> |
| #include <net/arp.h> |
| |
| #include "vlan.h" |
| #include "vlanproc.h" |
| #include <linux/if_vlan.h> |
| #include <net/ip.h> |
| |
| /* |
| * Rebuild the Ethernet MAC header. This is called after an ARP |
| * (or in future other address resolution) has completed on this |
| * sk_buff. We now let ARP fill in the other fields. |
| * |
| * This routine CANNOT use cached dst->neigh! |
| * Really, it is used only when dst->neigh is wrong. |
| * |
| * TODO: This needs a checkup, I'm ignorant here. --BLG |
| */ |
| int vlan_dev_rebuild_header(struct sk_buff *skb) |
| { |
| struct net_device *dev = skb->dev; |
| struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); |
| |
| switch (veth->h_vlan_encapsulated_proto) { |
| #ifdef CONFIG_INET |
| case __constant_htons(ETH_P_IP): |
| |
| /* TODO: Confirm this will work with VLAN headers... */ |
| return arp_find(veth->h_dest, skb); |
| #endif |
| default: |
| printk(VLAN_DBG |
| "%s: unable to resolve type %X addresses.\n", |
| dev->name, ntohs(veth->h_vlan_encapsulated_proto)); |
| |
| memcpy(veth->h_source, dev->dev_addr, ETH_ALEN); |
| break; |
| }; |
| |
| return 0; |
| } |
| |
| static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb) |
| { |
| if (VLAN_DEV_INFO(skb->dev)->flags & 1) { |
| if (skb_shared(skb) || skb_cloned(skb)) { |
| struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); |
| kfree_skb(skb); |
| skb = nskb; |
| } |
| if (skb) { |
| /* Lifted from Gleb's VLAN code... */ |
| memmove(skb->data - ETH_HLEN, |
| skb->data - VLAN_ETH_HLEN, 12); |
| skb->mac.raw += VLAN_HLEN; |
| } |
| } |
| |
| return skb; |
| } |
| |
| /* |
| * Determine the packet's protocol ID. The rule here is that we |
| * assume 802.3 if the type field is short enough to be a length. |
| * This is normal practice and works for any 'now in use' protocol. |
| * |
| * Also, at this point we assume that we ARE dealing exclusively with |
| * VLAN packets, or packets that should be made into VLAN packets based |
| * on a default VLAN ID. |
| * |
| * NOTE: Should be similar to ethernet/eth.c. |
| * |
| * SANITY NOTE: This method is called when a packet is moving up the stack |
| * towards userland. To get here, it would have already passed |
| * through the ethernet/eth.c eth_type_trans() method. |
| * SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be |
| * stored UNALIGNED in the memory. RISC systems don't like |
| * such cases very much... |
| * SANITY NOTE 2a: According to Dave Miller & Alexey, it will always be aligned, |
| * so there doesn't need to be any of the unaligned stuff. It has |
| * been commented out now... --Ben |
| * |
| */ |
| int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev, |
| struct packet_type* ptype, struct net_device *orig_dev) |
| { |
| unsigned char *rawp = NULL; |
| struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data); |
| unsigned short vid; |
| struct net_device_stats *stats; |
| unsigned short vlan_TCI; |
| __be16 proto; |
| |
| /* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */ |
| vlan_TCI = ntohs(vhdr->h_vlan_TCI); |
| |
| vid = (vlan_TCI & VLAN_VID_MASK); |
| |
| #ifdef VLAN_DEBUG |
| printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n", |
| __FUNCTION__, skb, vid); |
| #endif |
| |
| /* Ok, we will find the correct VLAN device, strip the header, |
| * and then go on as usual. |
| */ |
| |
| /* We have 12 bits of vlan ID. |
| * |
| * We must not drop allow preempt until we hold a |
| * reference to the device (netif_rx does that) or we |
| * fail. |
| */ |
| |
| rcu_read_lock(); |
| skb->dev = __find_vlan_dev(dev, vid); |
| if (!skb->dev) { |
| rcu_read_unlock(); |
| |
| #ifdef VLAN_DEBUG |
| printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n", |
| __FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex); |
| #endif |
| kfree_skb(skb); |
| return -1; |
| } |
| |
| skb->dev->last_rx = jiffies; |
| |
| /* Bump the rx counters for the VLAN device. */ |
| stats = vlan_dev_get_stats(skb->dev); |
| stats->rx_packets++; |
| stats->rx_bytes += skb->len; |
| |
| /* Take off the VLAN header (4 bytes currently) */ |
| skb_pull_rcsum(skb, VLAN_HLEN); |
| |
| /* Ok, lets check to make sure the device (dev) we |
| * came in on is what this VLAN is attached to. |
| */ |
| |
| if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) { |
| rcu_read_unlock(); |
| |
| #ifdef VLAN_DEBUG |
| printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s real_dev: %s, skb_dev: %s\n", |
| __FUNCTION__, skb, dev->name, |
| VLAN_DEV_INFO(skb->dev)->real_dev->name, |
| skb->dev->name); |
| #endif |
| kfree_skb(skb); |
| stats->rx_errors++; |
| return -1; |
| } |
| |
| /* |
| * Deal with ingress priority mapping. |
| */ |
| skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI)); |
| |
| #ifdef VLAN_DEBUG |
| printk(VLAN_DBG "%s: priority: %lu for TCI: %hu (hbo)\n", |
| __FUNCTION__, (unsigned long)(skb->priority), |
| ntohs(vhdr->h_vlan_TCI)); |
| #endif |
| |
| /* The ethernet driver already did the pkt_type calculations |
| * for us... |
| */ |
| switch (skb->pkt_type) { |
| case PACKET_BROADCAST: /* Yeah, stats collect these together.. */ |
| // stats->broadcast ++; // no such counter :-( |
| break; |
| |
| case PACKET_MULTICAST: |
| stats->multicast++; |
| break; |
| |
| case PACKET_OTHERHOST: |
| /* Our lower layer thinks this is not local, let's make sure. |
| * This allows the VLAN to have a different MAC than the underlying |
| * device, and still route correctly. |
| */ |
| if (!compare_ether_addr(eth_hdr(skb)->h_dest, skb->dev->dev_addr)) { |
| /* It is for our (changed) MAC-address! */ |
| skb->pkt_type = PACKET_HOST; |
| } |
| break; |
| default: |
| break; |
| }; |
| |
| /* Was a VLAN packet, grab the encapsulated protocol, which the layer |
| * three protocols care about. |
| */ |
| /* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */ |
| proto = vhdr->h_vlan_encapsulated_proto; |
| |
| skb->protocol = proto; |
| if (ntohs(proto) >= 1536) { |
| /* place it back on the queue to be handled by |
| * true layer 3 protocols. |
| */ |
| |
| /* See if we are configured to re-write the VLAN header |
| * to make it look like ethernet... |
| */ |
| skb = vlan_check_reorder_header(skb); |
| |
| /* Can be null if skb-clone fails when re-ordering */ |
| if (skb) { |
| netif_rx(skb); |
| } else { |
| /* TODO: Add a more specific counter here. */ |
| stats->rx_errors++; |
| } |
| rcu_read_unlock(); |
| return 0; |
| } |
| |
| rawp = skb->data; |
| |
| /* |
| * This is a magic hack to spot IPX packets. Older Novell breaks |
| * the protocol design and runs IPX over 802.3 without an 802.2 LLC |
| * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This |
| * won't work for fault tolerant netware but does for the rest. |
| */ |
| if (*(unsigned short *)rawp == 0xFFFF) { |
| skb->protocol = htons(ETH_P_802_3); |
| /* place it back on the queue to be handled by true layer 3 protocols. |
| */ |
| |
| /* See if we are configured to re-write the VLAN header |
| * to make it look like ethernet... |
| */ |
| skb = vlan_check_reorder_header(skb); |
| |
| /* Can be null if skb-clone fails when re-ordering */ |
| if (skb) { |
| netif_rx(skb); |
| } else { |
| /* TODO: Add a more specific counter here. */ |
| stats->rx_errors++; |
| } |
| rcu_read_unlock(); |
| return 0; |
| } |
| |
| /* |
| * Real 802.2 LLC |
| */ |
| skb->protocol = htons(ETH_P_802_2); |
| /* place it back on the queue to be handled by upper layer protocols. |
| */ |
| |
| /* See if we are configured to re-write the VLAN header |
| * to make it look like ethernet... |
| */ |
| skb = vlan_check_reorder_header(skb); |
| |
| /* Can be null if skb-clone fails when re-ordering */ |
| if (skb) { |
| netif_rx(skb); |
| } else { |
| /* TODO: Add a more specific counter here. */ |
| stats->rx_errors++; |
| } |
| rcu_read_unlock(); |
| return 0; |
| } |
| |
| static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev, |
| struct sk_buff* skb) |
| { |
| struct vlan_priority_tci_mapping *mp = |
| VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)]; |
| |
| while (mp) { |
| if (mp->priority == skb->priority) { |
| return mp->vlan_qos; /* This should already be shifted to mask |
| * correctly with the VLAN's TCI |
| */ |
| } |
| mp = mp->next; |
| } |
| return 0; |
| } |
| |
| /* |
| * Create the VLAN header for an arbitrary protocol layer |
| * |
| * saddr=NULL means use device source address |
| * daddr=NULL means leave destination address (eg unresolved arp) |
| * |
| * This is called when the SKB is moving down the stack towards the |
| * physical devices. |
| */ |
| int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev, |
| unsigned short type, void *daddr, void *saddr, |
| unsigned len) |
| { |
| struct vlan_hdr *vhdr; |
| unsigned short veth_TCI = 0; |
| int rc = 0; |
| int build_vlan_header = 0; |
| struct net_device *vdev = dev; /* save this for the bottom of the method */ |
| |
| #ifdef VLAN_DEBUG |
| printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n", |
| __FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr); |
| #endif |
| |
| /* build vlan header only if re_order_header flag is NOT set. This |
| * fixes some programs that get confused when they see a VLAN device |
| * sending a frame that is VLAN encoded (the consensus is that the VLAN |
| * device should look completely like an Ethernet device when the |
| * REORDER_HEADER flag is set) The drawback to this is some extra |
| * header shuffling in the hard_start_xmit. Users can turn off this |
| * REORDER behaviour with the vconfig tool. |
| */ |
| build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0); |
| |
| if (build_vlan_header) { |
| vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN); |
| |
| /* build the four bytes that make this a VLAN header. */ |
| |
| /* Now, construct the second two bytes. This field looks something |
| * like: |
| * usr_priority: 3 bits (high bits) |
| * CFI 1 bit |
| * VLAN ID 12 bits (low bits) |
| * |
| */ |
| veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; |
| veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); |
| |
| vhdr->h_vlan_TCI = htons(veth_TCI); |
| |
| /* |
| * Set the protocol type. |
| * For a packet of type ETH_P_802_3 we put the length in here instead. |
| * It is up to the 802.2 layer to carry protocol information. |
| */ |
| |
| if (type != ETH_P_802_3) { |
| vhdr->h_vlan_encapsulated_proto = htons(type); |
| } else { |
| vhdr->h_vlan_encapsulated_proto = htons(len); |
| } |
| |
| skb->protocol = htons(ETH_P_8021Q); |
| skb->nh.raw = skb->data; |
| } |
| |
| /* Before delegating work to the lower layer, enter our MAC-address */ |
| if (saddr == NULL) |
| saddr = dev->dev_addr; |
| |
| dev = VLAN_DEV_INFO(dev)->real_dev; |
| |
| /* MPLS can send us skbuffs w/out enough space. This check will grow the |
| * skb if it doesn't have enough headroom. Not a beautiful solution, so |
| * I'll tick a counter so that users can know it's happening... If they |
| * care... |
| */ |
| |
| /* NOTE: This may still break if the underlying device is not the final |
| * device (and thus there are more headers to add...) It should work for |
| * good-ole-ethernet though. |
| */ |
| if (skb_headroom(skb) < dev->hard_header_len) { |
| struct sk_buff *sk_tmp = skb; |
| skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len); |
| kfree_skb(sk_tmp); |
| if (skb == NULL) { |
| struct net_device_stats *stats = vlan_dev_get_stats(vdev); |
| stats->tx_dropped++; |
| return -ENOMEM; |
| } |
| VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++; |
| #ifdef VLAN_DEBUG |
| printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name); |
| #endif |
| } |
| |
| if (build_vlan_header) { |
| /* Now make the underlying real hard header */ |
| rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN); |
| |
| if (rc > 0) { |
| rc += VLAN_HLEN; |
| } else if (rc < 0) { |
| rc -= VLAN_HLEN; |
| } |
| } else { |
| /* If here, then we'll just make a normal looking ethernet frame, |
| * but, the hard_start_xmit method will insert the tag (it has to |
| * be able to do this for bridged and other skbs that don't come |
| * down the protocol stack in an orderly manner. |
| */ |
| rc = dev->hard_header(skb, dev, type, daddr, saddr, len); |
| } |
| |
| return rc; |
| } |
| |
| int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct net_device_stats *stats = vlan_dev_get_stats(dev); |
| struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); |
| |
| /* Handle non-VLAN frames if they are sent to us, for example by DHCP. |
| * |
| * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING |
| * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs... |
| */ |
| |
| if (veth->h_vlan_proto != htons(ETH_P_8021Q)) { |
| int orig_headroom = skb_headroom(skb); |
| unsigned short veth_TCI; |
| |
| /* This is not a VLAN frame...but we can fix that! */ |
| VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++; |
| |
| #ifdef VLAN_DEBUG |
| printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n", |
| __FUNCTION__, htons(veth->h_vlan_proto)); |
| #endif |
| /* Construct the second two bytes. This field looks something |
| * like: |
| * usr_priority: 3 bits (high bits) |
| * CFI 1 bit |
| * VLAN ID 12 bits (low bits) |
| */ |
| veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; |
| veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); |
| |
| skb = __vlan_put_tag(skb, veth_TCI); |
| if (!skb) { |
| stats->tx_dropped++; |
| return 0; |
| } |
| |
| if (orig_headroom < VLAN_HLEN) { |
| VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++; |
| } |
| } |
| |
| #ifdef VLAN_DEBUG |
| printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n", |
| __FUNCTION__, skb, skb->dev->name); |
| printk(VLAN_DBG " %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n", |
| veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5], |
| veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5], |
| veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto); |
| #endif |
| |
| stats->tx_packets++; /* for statics only */ |
| stats->tx_bytes += skb->len; |
| |
| skb->dev = VLAN_DEV_INFO(dev)->real_dev; |
| dev_queue_xmit(skb); |
| |
| return 0; |
| } |
| |
| int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct net_device_stats *stats = vlan_dev_get_stats(dev); |
| unsigned short veth_TCI; |
| |
| /* Construct the second two bytes. This field looks something |
| * like: |
| * usr_priority: 3 bits (high bits) |
| * CFI 1 bit |
| * VLAN ID 12 bits (low bits) |
| */ |
| veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; |
| veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); |
| skb = __vlan_hwaccel_put_tag(skb, veth_TCI); |
| |
| stats->tx_packets++; |
| stats->tx_bytes += skb->len; |
| |
| skb->dev = VLAN_DEV_INFO(dev)->real_dev; |
| dev_queue_xmit(skb); |
| |
| return 0; |
| } |
| |
| int vlan_dev_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| /* TODO: gotta make sure the underlying layer can handle it, |
| * maybe an IFF_VLAN_CAPABLE flag for devices? |
| */ |
| if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu) |
| return -ERANGE; |
| |
| dev->mtu = new_mtu; |
| |
| return 0; |
| } |
| |
| int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) |
| { |
| struct net_device *dev = dev_get_by_name(dev_name); |
| |
| if (dev) { |
| if (dev->priv_flags & IFF_802_1Q_VLAN) { |
| /* see if a priority mapping exists.. */ |
| VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio; |
| dev_put(dev); |
| return 0; |
| } |
| |
| dev_put(dev); |
| } |
| return -EINVAL; |
| } |
| |
| int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) |
| { |
| struct net_device *dev = dev_get_by_name(dev_name); |
| struct vlan_priority_tci_mapping *mp = NULL; |
| struct vlan_priority_tci_mapping *np; |
| |
| if (dev) { |
| if (dev->priv_flags & IFF_802_1Q_VLAN) { |
| /* See if a priority mapping exists.. */ |
| mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; |
| while (mp) { |
| if (mp->priority == skb_prio) { |
| mp->vlan_qos = ((vlan_prio << 13) & 0xE000); |
| dev_put(dev); |
| return 0; |
| } |
| mp = mp->next; |
| } |
| |
| /* Create a new mapping then. */ |
| mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; |
| np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL); |
| if (np) { |
| np->next = mp; |
| np->priority = skb_prio; |
| np->vlan_qos = ((vlan_prio << 13) & 0xE000); |
| VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np; |
| dev_put(dev); |
| return 0; |
| } else { |
| dev_put(dev); |
| return -ENOBUFS; |
| } |
| } |
| dev_put(dev); |
| } |
| return -EINVAL; |
| } |
| |
| /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */ |
| int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val) |
| { |
| struct net_device *dev = dev_get_by_name(dev_name); |
| |
| if (dev) { |
| if (dev->priv_flags & IFF_802_1Q_VLAN) { |
| /* verify flag is supported */ |
| if (flag == 1) { |
| if (flag_val) { |
| VLAN_DEV_INFO(dev)->flags |= 1; |
| } else { |
| VLAN_DEV_INFO(dev)->flags &= ~1; |
| } |
| dev_put(dev); |
| return 0; |
| } else { |
| printk(KERN_ERR "%s: flag %i is not valid.\n", |
| __FUNCTION__, (int)(flag)); |
| dev_put(dev); |
| return -EINVAL; |
| } |
| } else { |
| printk(KERN_ERR |
| "%s: %s is not a vlan device, priv_flags: %hX.\n", |
| __FUNCTION__, dev->name, dev->priv_flags); |
| dev_put(dev); |
| } |
| } else { |
| printk(KERN_ERR "%s: Could not find device: %s\n", |
| __FUNCTION__, dev_name); |
| } |
| |
| return -EINVAL; |
| } |
| |
| |
| int vlan_dev_get_realdev_name(const char *dev_name, char* result) |
| { |
| struct net_device *dev = dev_get_by_name(dev_name); |
| int rv = 0; |
| if (dev) { |
| if (dev->priv_flags & IFF_802_1Q_VLAN) { |
| strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23); |
| rv = 0; |
| } else { |
| rv = -EINVAL; |
| } |
| dev_put(dev); |
| } else { |
| rv = -ENODEV; |
| } |
| return rv; |
| } |
| |
| int vlan_dev_get_vid(const char *dev_name, unsigned short* result) |
| { |
| struct net_device *dev = dev_get_by_name(dev_name); |
| int rv = 0; |
| if (dev) { |
| if (dev->priv_flags & IFF_802_1Q_VLAN) { |
| *result = VLAN_DEV_INFO(dev)->vlan_id; |
| rv = 0; |
| } else { |
| rv = -EINVAL; |
| } |
| dev_put(dev); |
| } else { |
| rv = -ENODEV; |
| } |
| return rv; |
| } |
| |
| |
| int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p) |
| { |
| struct sockaddr *addr = (struct sockaddr *)(addr_struct_p); |
| int i; |
| |
| if (netif_running(dev)) |
| return -EBUSY; |
| |
| memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| |
| printk("%s: Setting MAC address to ", dev->name); |
| for (i = 0; i < 6; i++) |
| printk(" %2.2x", dev->dev_addr[i]); |
| printk(".\n"); |
| |
| if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr, |
| dev->dev_addr, |
| dev->addr_len) != 0) { |
| if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) { |
| int flgs = VLAN_DEV_INFO(dev)->real_dev->flags; |
| |
| /* Increment our in-use promiscuity counter */ |
| dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1); |
| |
| /* Make PROMISC visible to the user. */ |
| flgs |= IFF_PROMISC; |
| printk("VLAN (%s): Setting underlying device (%s) to promiscious mode.\n", |
| dev->name, VLAN_DEV_INFO(dev)->real_dev->name); |
| dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs); |
| } |
| } else { |
| printk("VLAN (%s): Underlying device (%s) has same MAC, not checking promiscious mode.\n", |
| dev->name, VLAN_DEV_INFO(dev)->real_dev->name); |
| } |
| |
| return 0; |
| } |
| |
| static inline int vlan_dmi_equals(struct dev_mc_list *dmi1, |
| struct dev_mc_list *dmi2) |
| { |
| return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) && |
| (memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0)); |
| } |
| |
| /** dmi is a single entry into a dev_mc_list, a single node. mc_list is |
| * an entire list, and we'll iterate through it. |
| */ |
| static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) |
| { |
| struct dev_mc_list *idmi; |
| |
| for (idmi = mc_list; idmi != NULL; ) { |
| if (vlan_dmi_equals(dmi, idmi)) { |
| if (dmi->dmi_users > idmi->dmi_users) |
| return 1; |
| else |
| return 0; |
| } else { |
| idmi = idmi->next; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list) |
| { |
| struct dev_mc_list *dmi = mc_list; |
| struct dev_mc_list *next; |
| |
| while(dmi) { |
| next = dmi->next; |
| kfree(dmi); |
| dmi = next; |
| } |
| } |
| |
| static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info) |
| { |
| struct dev_mc_list *dmi, *new_dmi; |
| |
| vlan_destroy_mc_list(vlan_info->old_mc_list); |
| vlan_info->old_mc_list = NULL; |
| |
| for (dmi = mc_list; dmi != NULL; dmi = dmi->next) { |
| new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC); |
| if (new_dmi == NULL) { |
| printk(KERN_ERR "vlan: cannot allocate memory. " |
| "Multicast may not work properly from now.\n"); |
| return; |
| } |
| |
| /* Copy whole structure, then make new 'next' pointer */ |
| *new_dmi = *dmi; |
| new_dmi->next = vlan_info->old_mc_list; |
| vlan_info->old_mc_list = new_dmi; |
| } |
| } |
| |
| static void vlan_flush_mc_list(struct net_device *dev) |
| { |
| struct dev_mc_list *dmi = dev->mc_list; |
| |
| while (dmi) { |
| printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n", |
| dev->name, |
| dmi->dmi_addr[0], |
| dmi->dmi_addr[1], |
| dmi->dmi_addr[2], |
| dmi->dmi_addr[3], |
| dmi->dmi_addr[4], |
| dmi->dmi_addr[5]); |
| dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); |
| dmi = dev->mc_list; |
| } |
| |
| /* dev->mc_list is NULL by the time we get here. */ |
| vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list); |
| VLAN_DEV_INFO(dev)->old_mc_list = NULL; |
| } |
| |
| int vlan_dev_open(struct net_device *dev) |
| { |
| if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP)) |
| return -ENETDOWN; |
| |
| return 0; |
| } |
| |
| int vlan_dev_stop(struct net_device *dev) |
| { |
| vlan_flush_mc_list(dev); |
| return 0; |
| } |
| |
| int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev; |
| struct ifreq ifrr; |
| int err = -EOPNOTSUPP; |
| |
| strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ); |
| ifrr.ifr_ifru = ifr->ifr_ifru; |
| |
| switch(cmd) { |
| case SIOCGMIIPHY: |
| case SIOCGMIIREG: |
| case SIOCSMIIREG: |
| if (real_dev->do_ioctl && netif_device_present(real_dev)) |
| err = real_dev->do_ioctl(real_dev, &ifrr, cmd); |
| break; |
| |
| case SIOCETHTOOL: |
| err = dev_ethtool(&ifrr); |
| } |
| |
| if (!err) |
| ifr->ifr_ifru = ifrr.ifr_ifru; |
| |
| return err; |
| } |
| |
| /** Taken from Gleb + Lennert's VLAN code, and modified... */ |
| void vlan_dev_set_multicast_list(struct net_device *vlan_dev) |
| { |
| struct dev_mc_list *dmi; |
| struct net_device *real_dev; |
| int inc; |
| |
| if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) { |
| /* Then it's a real vlan device, as far as we can tell.. */ |
| real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev; |
| |
| /* compare the current promiscuity to the last promisc we had.. */ |
| inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity; |
| if (inc) { |
| printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n", |
| vlan_dev->name, inc); |
| dev_set_promiscuity(real_dev, inc); /* found in dev.c */ |
| VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity; |
| } |
| |
| inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti; |
| if (inc) { |
| printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n", |
| vlan_dev->name, inc); |
| dev_set_allmulti(real_dev, inc); /* dev.c */ |
| VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti; |
| } |
| |
| /* looking for addresses to add to master's list */ |
| for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) { |
| if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) { |
| dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); |
| printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n", |
| vlan_dev->name, |
| dmi->dmi_addr[0], |
| dmi->dmi_addr[1], |
| dmi->dmi_addr[2], |
| dmi->dmi_addr[3], |
| dmi->dmi_addr[4], |
| dmi->dmi_addr[5]); |
| } |
| } |
| |
| /* looking for addresses to delete from master's list */ |
| for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) { |
| if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) { |
| /* if we think we should add it to the new list, then we should really |
| * delete it from the real list on the underlying device. |
| */ |
| dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); |
| printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n", |
| vlan_dev->name, |
| dmi->dmi_addr[0], |
| dmi->dmi_addr[1], |
| dmi->dmi_addr[2], |
| dmi->dmi_addr[3], |
| dmi->dmi_addr[4], |
| dmi->dmi_addr[5]); |
| } |
| } |
| |
| /* save multicast list */ |
| vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev)); |
| } |
| } |