blob: 6bcce90a2e1f73d3a8b879a323727406ea893506 [file] [log] [blame]
/*
* drivers/staging/android/ion/ion_system_heap.c
*
* Copyright (C) 2011 Google, Inc.
* Copyright (c) 2011-2016, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <asm/page.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/msm_ion.h>
#include <linux/scatterlist.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "ion.h"
#include "ion_priv.h"
#include <linux/dma-mapping.h>
#include <trace/events/kmem.h>
#include <soc/qcom/secure_buffer.h>
static gfp_t high_order_gfp_flags = (GFP_HIGHUSER | __GFP_NOWARN |
__GFP_NORETRY) & ~__GFP_RECLAIM;
static gfp_t low_order_gfp_flags = (GFP_HIGHUSER | __GFP_NOWARN);
#ifndef CONFIG_ALLOC_BUFFERS_IN_4K_CHUNKS
static const unsigned int orders[] = {9, 8, 4, 0};
#else
static const unsigned int orders[] = {0};
#endif
static const int num_orders = ARRAY_SIZE(orders);
static int order_to_index(unsigned int order)
{
int i;
for (i = 0; i < num_orders; i++)
if (order == orders[i])
return i;
BUG();
return -1;
}
static unsigned int order_to_size(int order)
{
return PAGE_SIZE << order;
}
struct ion_system_heap {
struct ion_heap heap;
struct ion_page_pool **uncached_pools;
struct ion_page_pool **cached_pools;
struct ion_page_pool **secure_pools[VMID_LAST];
/* Prevents unnecessary page splitting */
struct mutex split_page_mutex;
};
struct page_info {
struct page *page;
bool from_pool;
unsigned int order;
struct list_head list;
};
/*
* Used by ion_system_secure_heap only
* Since no lock is held, results are approximate.
*/
size_t ion_system_heap_secure_page_pool_total(struct ion_heap *heap,
int vmid_flags)
{
struct ion_system_heap *sys_heap;
struct ion_page_pool *pool;
size_t total = 0;
int vmid, i;
sys_heap = container_of(heap, struct ion_system_heap, heap);
vmid = get_secure_vmid(vmid_flags);
if (!is_secure_vmid_valid(vmid))
return 0;
for (i = 0; i < num_orders; i++) {
pool = sys_heap->secure_pools[vmid][i];
total += ion_page_pool_total(pool, true);
}
return total << PAGE_SHIFT;
}
static struct page *alloc_buffer_page(struct ion_system_heap *heap,
struct ion_buffer *buffer,
unsigned long order,
bool *from_pool)
{
bool cached = ion_buffer_cached(buffer);
struct page *page;
struct ion_page_pool *pool;
int vmid = get_secure_vmid(buffer->flags);
struct device *dev = heap->heap.priv;
if (*from_pool) {
if (vmid > 0)
pool = heap->secure_pools[vmid][order_to_index(order)];
else if (!cached)
pool = heap->uncached_pools[order_to_index(order)];
else
pool = heap->cached_pools[order_to_index(order)];
page = ion_page_pool_alloc(pool, from_pool);
} else {
gfp_t gfp_mask = low_order_gfp_flags;
if (order)
gfp_mask = high_order_gfp_flags;
page = alloc_pages(gfp_mask, order);
ion_pages_sync_for_device(dev, page, PAGE_SIZE << order,
DMA_BIDIRECTIONAL);
}
if (!page)
return 0;
return page;
}
/*
* For secure pages that need to be freed and not added back to the pool; the
* hyp_unassign should be called before calling this function
*/
static void free_buffer_page(struct ion_system_heap *heap,
struct ion_buffer *buffer, struct page *page,
unsigned int order)
{
bool cached = ion_buffer_cached(buffer);
int vmid = get_secure_vmid(buffer->flags);
if (!(buffer->flags & ION_FLAG_POOL_FORCE_ALLOC)) {
struct ion_page_pool *pool;
if (vmid > 0)
pool = heap->secure_pools[vmid][order_to_index(order)];
else if (cached)
pool = heap->cached_pools[order_to_index(order)];
else
pool = heap->uncached_pools[order_to_index(order)];
if (buffer->private_flags & ION_PRIV_FLAG_SHRINKER_FREE)
ion_page_pool_free_immediate(pool, page);
else
ion_page_pool_free(pool, page);
} else {
__free_pages(page, order);
}
}
static struct page *alloc_from_secure_pool_order(struct ion_system_heap *heap,
struct ion_buffer *buffer,
unsigned long order)
{
int vmid = get_secure_vmid(buffer->flags);
struct ion_page_pool *pool;
if (!is_secure_vmid_valid(vmid))
return NULL;
pool = heap->secure_pools[vmid][order_to_index(order)];
return ion_page_pool_alloc_pool_only(pool);
}
static struct page *split_page_from_secure_pool(struct ion_system_heap *heap,
struct ion_buffer *buffer)
{
int i, j;
struct page *page;
unsigned int order;
mutex_lock(&heap->split_page_mutex);
/*
* Someone may have just split a page and returned the unused portion
* back to the pool, so try allocating from the pool one more time
* before splitting. We want to maintain large pages sizes when
* possible.
*/
page = alloc_from_secure_pool_order(heap, buffer, 0);
if (page)
goto got_page;
for (i = num_orders - 2; i >= 0; i--) {
order = orders[i];
page = alloc_from_secure_pool_order(heap, buffer, order);
if (!page)
continue;
split_page(page, order);
break;
}
/* Return the remaining order-0 pages to the pool */
if (page)
for (j = 1; j < (1 << order); j++)
free_buffer_page(heap, buffer, page + j, 0);
got_page:
mutex_unlock(&heap->split_page_mutex);
return page;
}
static struct page_info *alloc_largest_available(struct ion_system_heap *heap,
struct ion_buffer *buffer,
unsigned long size,
unsigned int max_order)
{
struct page *page;
struct page_info *info;
int i;
bool from_pool;
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return NULL;
for (i = 0; i < num_orders; i++) {
if (size < order_to_size(orders[i]))
continue;
if (max_order < orders[i])
continue;
from_pool = !(buffer->flags & ION_FLAG_POOL_FORCE_ALLOC);
page = alloc_buffer_page(heap, buffer, orders[i], &from_pool);
if (!page)
continue;
info->page = page;
info->order = orders[i];
info->from_pool = from_pool;
INIT_LIST_HEAD(&info->list);
return info;
}
kfree(info);
return NULL;
}
static struct page_info *alloc_from_pool_preferred(
struct ion_system_heap *heap, struct ion_buffer *buffer,
unsigned long size, unsigned int max_order)
{
struct page *page;
struct page_info *info;
int i;
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return NULL;
for (i = 0; i < num_orders; i++) {
if (size < order_to_size(orders[i]))
continue;
if (max_order < orders[i])
continue;
page = alloc_from_secure_pool_order(heap, buffer, orders[i]);
if (!page)
continue;
info->page = page;
info->order = orders[i];
info->from_pool = true;
INIT_LIST_HEAD(&info->list);
return info;
}
page = split_page_from_secure_pool(heap, buffer);
if (page) {
info->page = page;
info->order = 0;
info->from_pool = true;
INIT_LIST_HEAD(&info->list);
return info;
}
kfree(info);
return alloc_largest_available(heap, buffer, size, max_order);
}
static unsigned int process_info(struct page_info *info,
struct scatterlist *sg,
struct scatterlist *sg_sync,
struct pages_mem *data, unsigned int i)
{
struct page *page = info->page;
unsigned int j;
if (sg_sync) {
sg_set_page(sg_sync, page, (1 << info->order) * PAGE_SIZE, 0);
sg_dma_address(sg_sync) = page_to_phys(page);
}
sg_set_page(sg, page, (1 << info->order) * PAGE_SIZE, 0);
/*
* This is not correct - sg_dma_address needs a dma_addr_t
* that is valid for the the targeted device, but this works
* on the currently targeted hardware.
*/
sg_dma_address(sg) = page_to_phys(page);
if (data) {
for (j = 0; j < (1 << info->order); ++j)
data->pages[i++] = nth_page(page, j);
}
list_del(&info->list);
kfree(info);
return i;
}
static int ion_system_heap_allocate(struct ion_heap *heap,
struct ion_buffer *buffer,
unsigned long size, unsigned long align,
unsigned long flags)
{
struct ion_system_heap *sys_heap = container_of(heap,
struct ion_system_heap,
heap);
struct sg_table *table;
struct sg_table table_sync = {0};
struct scatterlist *sg;
struct scatterlist *sg_sync;
int ret;
struct list_head pages;
struct list_head pages_from_pool;
struct page_info *info, *tmp_info;
int i = 0;
unsigned int nents_sync = 0;
unsigned long size_remaining = PAGE_ALIGN(size);
unsigned int max_order = orders[0];
struct pages_mem data;
unsigned int sz;
int vmid = get_secure_vmid(buffer->flags);
struct device *dev = heap->priv;
if (align > PAGE_SIZE)
return -EINVAL;
if (size / PAGE_SIZE > totalram_pages / 2)
return -ENOMEM;
data.size = 0;
INIT_LIST_HEAD(&pages);
INIT_LIST_HEAD(&pages_from_pool);
while (size_remaining > 0) {
if (is_secure_vmid_valid(vmid))
info = alloc_from_pool_preferred(
sys_heap, buffer, size_remaining,
max_order);
else
info = alloc_largest_available(
sys_heap, buffer, size_remaining,
max_order);
if (!info)
goto err;
sz = (1 << info->order) * PAGE_SIZE;
if (info->from_pool) {
list_add_tail(&info->list, &pages_from_pool);
} else {
list_add_tail(&info->list, &pages);
data.size += sz;
++nents_sync;
}
size_remaining -= sz;
max_order = info->order;
i++;
}
ret = msm_ion_heap_alloc_pages_mem(&data);
if (ret)
goto err;
table = kzalloc(sizeof(*table), GFP_KERNEL);
if (!table)
goto err_free_data_pages;
ret = sg_alloc_table(table, i, GFP_KERNEL);
if (ret)
goto err1;
if (nents_sync) {
ret = sg_alloc_table(&table_sync, nents_sync, GFP_KERNEL);
if (ret)
goto err_free_sg;
}
i = 0;
sg = table->sgl;
sg_sync = table_sync.sgl;
/*
* We now have two separate lists. One list contains pages from the
* pool and the other pages from buddy. We want to merge these
* together while preserving the ordering of the pages (higher order
* first).
*/
do {
info = list_first_entry_or_null(&pages, struct page_info, list);
tmp_info = list_first_entry_or_null(&pages_from_pool,
struct page_info, list);
if (info && tmp_info) {
if (info->order >= tmp_info->order) {
i = process_info(info, sg, sg_sync, &data, i);
sg_sync = sg_next(sg_sync);
} else {
i = process_info(tmp_info, sg, 0, 0, i);
}
} else if (info) {
i = process_info(info, sg, sg_sync, &data, i);
sg_sync = sg_next(sg_sync);
} else if (tmp_info) {
i = process_info(tmp_info, sg, 0, 0, i);
}
sg = sg_next(sg);
} while (sg);
ret = msm_ion_heap_pages_zero(data.pages, data.size >> PAGE_SHIFT);
if (ret) {
pr_err("Unable to zero pages\n");
goto err_free_sg2;
}
if (nents_sync) {
dma_sync_sg_for_device(dev, table_sync.sgl, table_sync.nents,
DMA_BIDIRECTIONAL);
if (vmid > 0) {
ret = ion_system_secure_heap_assign_sg(&table_sync,
vmid);
if (ret)
goto err_free_sg2;
}
}
buffer->priv_virt = table;
if (nents_sync)
sg_free_table(&table_sync);
msm_ion_heap_free_pages_mem(&data);
return 0;
err_free_sg2:
/* We failed to zero buffers. Bypass pool */
buffer->flags |= ION_PRIV_FLAG_SHRINKER_FREE;
if (vmid > 0)
ion_system_secure_heap_unassign_sg(table, vmid);
for_each_sg(table->sgl, sg, table->nents, i)
free_buffer_page(sys_heap, buffer, sg_page(sg),
get_order(sg->length));
if (nents_sync)
sg_free_table(&table_sync);
err_free_sg:
sg_free_table(table);
err1:
kfree(table);
err_free_data_pages:
msm_ion_heap_free_pages_mem(&data);
err:
list_for_each_entry_safe(info, tmp_info, &pages, list) {
free_buffer_page(sys_heap, buffer, info->page, info->order);
kfree(info);
}
list_for_each_entry_safe(info, tmp_info, &pages_from_pool, list) {
free_buffer_page(sys_heap, buffer, info->page, info->order);
kfree(info);
}
return -ENOMEM;
}
void ion_system_heap_free(struct ion_buffer *buffer)
{
struct ion_heap *heap = buffer->heap;
struct ion_system_heap *sys_heap = container_of(heap,
struct ion_system_heap,
heap);
struct sg_table *table = buffer->priv_virt;
struct scatterlist *sg;
LIST_HEAD(pages);
int i;
int vmid = get_secure_vmid(buffer->flags);
struct device *dev = heap->priv;
if (!(buffer->private_flags & ION_PRIV_FLAG_SHRINKER_FREE) &&
!(buffer->flags & ION_FLAG_POOL_FORCE_ALLOC)) {
if (vmid < 0)
msm_ion_heap_sg_table_zero(dev, table, buffer->size);
} else if (vmid > 0) {
if (ion_system_secure_heap_unassign_sg(table, vmid))
return;
}
for_each_sg(table->sgl, sg, table->nents, i)
free_buffer_page(sys_heap, buffer, sg_page(sg),
get_order(sg->length));
sg_free_table(table);
kfree(table);
}
struct sg_table *ion_system_heap_map_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return buffer->priv_virt;
}
void ion_system_heap_unmap_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
}
static int ion_secure_page_pool_shrink(
struct ion_system_heap *sys_heap,
int vmid, int order_idx, int nr_to_scan)
{
int ret, freed = 0;
int order = orders[order_idx];
struct page *page, *tmp;
struct sg_table sgt;
struct scatterlist *sg;
struct ion_page_pool *pool = sys_heap->secure_pools[vmid][order_idx];
LIST_HEAD(pages);
if (nr_to_scan == 0)
return ion_page_pool_total(pool, true);
while (freed < nr_to_scan) {
page = ion_page_pool_alloc_pool_only(pool);
if (!page)
break;
list_add(&page->lru, &pages);
freed += (1 << order);
}
if (!freed)
return freed;
ret = sg_alloc_table(&sgt, (freed >> order), GFP_KERNEL);
if (ret)
goto out1;
sg = sgt.sgl;
list_for_each_entry(page, &pages, lru) {
sg_set_page(sg, page, (1 << order) * PAGE_SIZE, 0);
sg_dma_address(sg) = page_to_phys(page);
sg = sg_next(sg);
}
if (ion_system_secure_heap_unassign_sg(&sgt, vmid))
goto out2;
list_for_each_entry_safe(page, tmp, &pages, lru) {
list_del(&page->lru);
ion_page_pool_free_immediate(pool, page);
}
sg_free_table(&sgt);
return freed;
out1:
/* Restore pages to secure pool */
list_for_each_entry_safe(page, tmp, &pages, lru) {
list_del(&page->lru);
ion_page_pool_free(pool, page);
}
return 0;
out2:
/*
* The security state of the pages is unknown after a failure;
* They can neither be added back to the secure pool nor buddy system.
*/
sg_free_table(&sgt);
return 0;
}
static int ion_system_heap_shrink(struct ion_heap *heap, gfp_t gfp_mask,
int nr_to_scan)
{
struct ion_system_heap *sys_heap;
int nr_total = 0;
int i, j, nr_freed = 0;
int only_scan = 0;
struct ion_page_pool *pool;
sys_heap = container_of(heap, struct ion_system_heap, heap);
if (!nr_to_scan)
only_scan = 1;
for (i = 0; i < num_orders; i++) {
nr_freed = 0;
for (j = 0; j < VMID_LAST; j++) {
if (is_secure_vmid_valid(j))
nr_freed += ion_secure_page_pool_shrink(
sys_heap, j, i, nr_to_scan);
}
pool = sys_heap->uncached_pools[i];
nr_freed += ion_page_pool_shrink(pool, gfp_mask, nr_to_scan);
pool = sys_heap->cached_pools[i];
nr_freed += ion_page_pool_shrink(pool, gfp_mask, nr_to_scan);
nr_total += nr_freed;
if (!only_scan) {
nr_to_scan -= nr_freed;
/* shrink completed */
if (nr_to_scan <= 0)
break;
}
}
return nr_total;
}
static struct ion_heap_ops system_heap_ops = {
.allocate = ion_system_heap_allocate,
.free = ion_system_heap_free,
.map_dma = ion_system_heap_map_dma,
.unmap_dma = ion_system_heap_unmap_dma,
.map_kernel = ion_heap_map_kernel,
.unmap_kernel = ion_heap_unmap_kernel,
.map_user = ion_heap_map_user,
.shrink = ion_system_heap_shrink,
};
static int ion_system_heap_debug_show(struct ion_heap *heap, struct seq_file *s,
void *unused)
{
struct ion_system_heap *sys_heap = container_of(
heap, struct ion_system_heap, heap);
bool use_seq = s;
unsigned long uncached_total = 0;
unsigned long cached_total = 0;
unsigned long secure_total = 0;
struct ion_page_pool *pool;
int i, j;
for (i = 0; i < num_orders; i++) {
pool = sys_heap->uncached_pools[i];
if (use_seq) {
seq_printf(s,
"%d order %u highmem pages in uncached pool = %lu total\n",
pool->high_count, pool->order,
(1 << pool->order) * PAGE_SIZE *
pool->high_count);
seq_printf(s,
"%d order %u lowmem pages in uncached pool = %lu total\n",
pool->low_count, pool->order,
(1 << pool->order) * PAGE_SIZE *
pool->low_count);
}
uncached_total += (1 << pool->order) * PAGE_SIZE *
pool->high_count;
uncached_total += (1 << pool->order) * PAGE_SIZE *
pool->low_count;
}
for (i = 0; i < num_orders; i++) {
pool = sys_heap->cached_pools[i];
if (use_seq) {
seq_printf(s,
"%d order %u highmem pages in cached pool = %lu total\n",
pool->high_count, pool->order,
(1 << pool->order) * PAGE_SIZE *
pool->high_count);
seq_printf(s,
"%d order %u lowmem pages in cached pool = %lu total\n",
pool->low_count, pool->order,
(1 << pool->order) * PAGE_SIZE *
pool->low_count);
}
cached_total += (1 << pool->order) * PAGE_SIZE *
pool->high_count;
cached_total += (1 << pool->order) * PAGE_SIZE *
pool->low_count;
}
for (i = 0; i < num_orders; i++) {
for (j = 0; j < VMID_LAST; j++) {
if (!is_secure_vmid_valid(j))
continue;
pool = sys_heap->secure_pools[j][i];
if (use_seq) {
seq_printf(s,
"VMID %d: %d order %u highmem pages in secure pool = %lu total\n",
j, pool->high_count, pool->order,
(1 << pool->order) * PAGE_SIZE *
pool->high_count);
seq_printf(s,
"VMID %d: %d order %u lowmem pages in secure pool = %lu total\n",
j, pool->low_count, pool->order,
(1 << pool->order) * PAGE_SIZE *
pool->low_count);
}
secure_total += (1 << pool->order) * PAGE_SIZE *
pool->high_count;
secure_total += (1 << pool->order) * PAGE_SIZE *
pool->low_count;
}
}
if (use_seq) {
seq_puts(s, "--------------------------------------------\n");
seq_printf(s, "uncached pool = %lu cached pool = %lu secure pool = %lu\n",
uncached_total, cached_total, secure_total);
seq_printf(s, "pool total (uncached + cached + secure) = %lu\n",
uncached_total + cached_total + secure_total);
seq_puts(s, "--------------------------------------------\n");
} else {
pr_info("-------------------------------------------------\n");
pr_info("uncached pool = %lu cached pool = %lu secure pool = %lu\n",
uncached_total, cached_total, secure_total);
pr_info("pool total (uncached + cached + secure) = %lu\n",
uncached_total + cached_total + secure_total);
pr_info("-------------------------------------------------\n");
}
return 0;
}
static void ion_system_heap_destroy_pools(struct ion_page_pool **pools)
{
int i;
for (i = 0; i < num_orders; i++)
if (pools[i])
ion_page_pool_destroy(pools[i]);
}
/**
* ion_system_heap_create_pools - Creates pools for all orders
*
* If this fails you don't need to destroy any pools. It's all or
* nothing. If it succeeds you'll eventually need to use
* ion_system_heap_destroy_pools to destroy the pools.
*/
static int ion_system_heap_create_pools(struct device *dev,
struct ion_page_pool **pools)
{
int i;
for (i = 0; i < num_orders; i++) {
struct ion_page_pool *pool;
gfp_t gfp_flags = low_order_gfp_flags;
if (orders[i])
gfp_flags = high_order_gfp_flags;
pool = ion_page_pool_create(dev, gfp_flags, orders[i]);
if (!pool)
goto err_create_pool;
pools[i] = pool;
}
return 0;
err_create_pool:
ion_system_heap_destroy_pools(pools);
return 1;
}
struct ion_heap *ion_system_heap_create(struct ion_platform_heap *data)
{
struct ion_system_heap *heap;
int i;
int pools_size = sizeof(struct ion_page_pool *) * num_orders;
struct device *dev = data->priv;
heap = kzalloc(sizeof(*heap), GFP_KERNEL);
if (!heap)
return ERR_PTR(-ENOMEM);
heap->heap.ops = &system_heap_ops;
heap->heap.type = ION_HEAP_TYPE_SYSTEM;
heap->heap.flags = ION_HEAP_FLAG_DEFER_FREE;
heap->uncached_pools = kzalloc(pools_size, GFP_KERNEL);
if (!heap->uncached_pools)
goto err_alloc_uncached_pools;
heap->cached_pools = kzalloc(pools_size, GFP_KERNEL);
if (!heap->cached_pools)
goto err_alloc_cached_pools;
for (i = 0; i < VMID_LAST; i++) {
if (is_secure_vmid_valid(i)) {
heap->secure_pools[i] = kzalloc(pools_size, GFP_KERNEL);
if (!heap->secure_pools[i])
goto err_create_secure_pools;
if (ion_system_heap_create_pools(
dev, heap->secure_pools[i]))
goto err_create_secure_pools;
}
}
if (ion_system_heap_create_pools(dev, heap->uncached_pools))
goto err_create_uncached_pools;
if (ion_system_heap_create_pools(dev, heap->cached_pools))
goto err_create_cached_pools;
mutex_init(&heap->split_page_mutex);
heap->heap.debug_show = ion_system_heap_debug_show;
return &heap->heap;
err_create_cached_pools:
ion_system_heap_destroy_pools(heap->uncached_pools);
err_create_uncached_pools:
kfree(heap->cached_pools);
err_create_secure_pools:
for (i = 0; i < VMID_LAST; i++) {
if (heap->secure_pools[i]) {
ion_system_heap_destroy_pools(heap->secure_pools[i]);
kfree(heap->secure_pools[i]);
}
}
err_alloc_cached_pools:
kfree(heap->uncached_pools);
err_alloc_uncached_pools:
kfree(heap);
return ERR_PTR(-ENOMEM);
}
void ion_system_heap_destroy(struct ion_heap *heap)
{
struct ion_system_heap *sys_heap = container_of(heap,
struct ion_system_heap,
heap);
int i, j;
for (i = 0; i < VMID_LAST; i++) {
if (!is_secure_vmid_valid(i))
continue;
for (j = 0; j < num_orders; j++)
ion_secure_page_pool_shrink(sys_heap, i, j, UINT_MAX);
ion_system_heap_destroy_pools(sys_heap->secure_pools[i]);
}
ion_system_heap_destroy_pools(sys_heap->uncached_pools);
ion_system_heap_destroy_pools(sys_heap->cached_pools);
kfree(sys_heap->uncached_pools);
kfree(sys_heap->cached_pools);
kfree(sys_heap);
}
static int ion_system_contig_heap_allocate(struct ion_heap *heap,
struct ion_buffer *buffer,
unsigned long len,
unsigned long align,
unsigned long flags)
{
int order = get_order(len);
struct page *page;
struct sg_table *table;
unsigned long i;
int ret;
struct device *dev = heap->priv;
if (align > (PAGE_SIZE << order))
return -EINVAL;
page = alloc_pages(low_order_gfp_flags | __GFP_ZERO, order);
if (!page)
return -ENOMEM;
split_page(page, order);
len = PAGE_ALIGN(len);
for (i = len >> PAGE_SHIFT; i < (1 << order); i++)
__free_page(page + i);
table = kzalloc(sizeof(*table), GFP_KERNEL);
if (!table) {
ret = -ENOMEM;
goto out;
}
ret = sg_alloc_table(table, 1, GFP_KERNEL);
if (ret)
goto out;
sg_set_page(table->sgl, page, len, 0);
buffer->priv_virt = table;
ion_pages_sync_for_device(dev, page, len, DMA_BIDIRECTIONAL);
return 0;
out:
for (i = 0; i < len >> PAGE_SHIFT; i++)
__free_page(page + i);
kfree(table);
return ret;
}
void ion_system_contig_heap_free(struct ion_buffer *buffer)
{
struct sg_table *table = buffer->priv_virt;
struct page *page = sg_page(table->sgl);
unsigned long pages = PAGE_ALIGN(buffer->size) >> PAGE_SHIFT;
unsigned long i;
for (i = 0; i < pages; i++)
__free_page(page + i);
sg_free_table(table);
kfree(table);
}
static int ion_system_contig_heap_phys(struct ion_heap *heap,
struct ion_buffer *buffer,
ion_phys_addr_t *addr, size_t *len)
{
struct sg_table *table = buffer->priv_virt;
struct page *page = sg_page(table->sgl);
*addr = page_to_phys(page);
*len = buffer->size;
return 0;
}
struct sg_table *ion_system_contig_heap_map_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return buffer->priv_virt;
}
void ion_system_contig_heap_unmap_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
}
static struct ion_heap_ops kmalloc_ops = {
.allocate = ion_system_contig_heap_allocate,
.free = ion_system_contig_heap_free,
.phys = ion_system_contig_heap_phys,
.map_dma = ion_system_contig_heap_map_dma,
.unmap_dma = ion_system_contig_heap_unmap_dma,
.map_kernel = ion_heap_map_kernel,
.unmap_kernel = ion_heap_unmap_kernel,
.map_user = ion_heap_map_user,
};
struct ion_heap *ion_system_contig_heap_create(struct ion_platform_heap *unused)
{
struct ion_heap *heap;
heap = kzalloc(sizeof(struct ion_heap), GFP_KERNEL);
if (!heap)
return ERR_PTR(-ENOMEM);
heap->ops = &kmalloc_ops;
heap->type = ION_HEAP_TYPE_SYSTEM_CONTIG;
return heap;
}
void ion_system_contig_heap_destroy(struct ion_heap *heap)
{
kfree(heap);
}