blob: 767f53c218e579b68a437c5bd582943f2573761c [file] [log] [blame]
/* drivers/usb/gadget/f_diag.c
* Diag Function Device - Route ARM9 and ARM11 DIAG messages
* between HOST and DEVICE.
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2008-2016, The Linux Foundation. All rights reserved.
* Author: Brian Swetland <swetland@google.com>
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kref.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/ratelimit.h>
#include <linux/usb/usbdiag.h>
#include <linux/usb/composite.h>
#include <linux/usb/gadget.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>
#include <linux/kmemleak.h>
#define MAX_INST_NAME_LEN 40
/* dload specific suppot */
#define PID_MAGIC_ID 0x71432909
#define SERIAL_NUM_MAGIC_ID 0x61945374
#define SERIAL_NUMBER_LENGTH 128
struct magic_num_struct {
uint32_t pid;
uint32_t serial_num;
};
struct dload_struct {
uint32_t pid;
char serial_number[SERIAL_NUMBER_LENGTH];
struct magic_num_struct magic_struct;
};
/* for configfs support */
struct diag_opts {
struct usb_function_instance func_inst;
char *name;
};
static inline struct diag_opts *to_diag_opts(struct config_item *item)
{
return container_of(to_config_group(item), struct diag_opts,
func_inst.group);
}
static DEFINE_SPINLOCK(ch_lock);
static LIST_HEAD(usb_diag_ch_list);
static struct dload_struct __iomem *diag_dload;
static struct usb_interface_descriptor intf_desc = {
.bLength = sizeof(intf_desc),
.bDescriptorType = USB_DT_INTERFACE,
.bNumEndpoints = 2,
.bInterfaceClass = 0xFF,
.bInterfaceSubClass = 0xFF,
.bInterfaceProtocol = 0xFF,
};
static struct usb_endpoint_descriptor hs_bulk_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
.bInterval = 0,
};
static struct usb_endpoint_descriptor fs_bulk_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(64),
.bInterval = 0,
};
static struct usb_endpoint_descriptor hs_bulk_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
.bInterval = 0,
};
static struct usb_endpoint_descriptor fs_bulk_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(64),
.bInterval = 0,
};
static struct usb_endpoint_descriptor ss_bulk_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(1024),
};
static struct usb_ss_ep_comp_descriptor ss_bulk_in_comp_desc = {
.bLength = sizeof(ss_bulk_in_comp_desc),
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
/* the following 2 values can be tweaked if necessary */
/* .bMaxBurst = 0, */
/* .bmAttributes = 0, */
};
static struct usb_endpoint_descriptor ss_bulk_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(1024),
};
static struct usb_ss_ep_comp_descriptor ss_bulk_out_comp_desc = {
.bLength = sizeof(ss_bulk_out_comp_desc),
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
/* the following 2 values can be tweaked if necessary */
/* .bMaxBurst = 0, */
/* .bmAttributes = 0, */
};
static struct usb_descriptor_header *fs_diag_desc[] = {
(struct usb_descriptor_header *) &intf_desc,
(struct usb_descriptor_header *) &fs_bulk_in_desc,
(struct usb_descriptor_header *) &fs_bulk_out_desc,
NULL,
};
static struct usb_descriptor_header *hs_diag_desc[] = {
(struct usb_descriptor_header *) &intf_desc,
(struct usb_descriptor_header *) &hs_bulk_in_desc,
(struct usb_descriptor_header *) &hs_bulk_out_desc,
NULL,
};
static struct usb_descriptor_header *ss_diag_desc[] = {
(struct usb_descriptor_header *) &intf_desc,
(struct usb_descriptor_header *) &ss_bulk_in_desc,
(struct usb_descriptor_header *) &ss_bulk_in_comp_desc,
(struct usb_descriptor_header *) &ss_bulk_out_desc,
(struct usb_descriptor_header *) &ss_bulk_out_comp_desc,
NULL,
};
/**
* struct diag_context - USB diag function driver private structure
* @function: function structure for USB interface
* @out: USB OUT endpoint struct
* @in: USB IN endpoint struct
* @in_desc: USB IN endpoint descriptor struct
* @out_desc: USB OUT endpoint descriptor struct
* @read_pool: List of requests used for Rx (OUT ep)
* @write_pool: List of requests used for Tx (IN ep)
* @lock: Spinlock to proctect read_pool, write_pool lists
* @cdev: USB composite device struct
* @ch: USB diag channel
*
*/
struct diag_context {
struct usb_function function;
struct usb_ep *out;
struct usb_ep *in;
struct list_head read_pool;
struct list_head write_pool;
spinlock_t lock;
unsigned int configured;
struct usb_composite_dev *cdev;
struct usb_diag_ch *ch;
struct kref kref;
/* pkt counters */
unsigned long dpkts_tolaptop;
unsigned long dpkts_tomodem;
unsigned int dpkts_tolaptop_pending;
/* A list node inside the diag_dev_list */
struct list_head list_item;
};
static struct list_head diag_dev_list;
static inline struct diag_context *func_to_diag(struct usb_function *f)
{
return container_of(f, struct diag_context, function);
}
/**
* kref_put_spinlock_irqsave - decrement refcount for object.
* @kref: object.
* @release: pointer to the function that will clean up the object when the
* last reference to the object is released.
* This pointer is required, and it is not acceptable to pass kfree
* in as this function.
* @lock: lock to take in release case
*
* Behaves identical to kref_put with one exception. If the reference count
* drops to zero, the lock will be taken atomically wrt dropping the reference
* count. The release function has to call spin_unlock() without _irqrestore.
*/
static inline int kref_put_spinlock_irqsave(struct kref *kref,
void (*release)(struct kref *kref),
spinlock_t *lock)
{
unsigned long flags;
WARN_ON(release == NULL);
if (atomic_add_unless(&kref->refcount, -1, 1))
return 0;
spin_lock_irqsave(lock, flags);
if (atomic_dec_and_test(&kref->refcount)) {
release(kref);
local_irq_restore(flags);
return 1;
}
spin_unlock_irqrestore(lock, flags);
return 0;
}
/* Called with ctxt->lock held; i.e. only use with kref_put_spinlock_irqsave */
static void diag_context_release(struct kref *kref)
{
struct diag_context *ctxt =
container_of(kref, struct diag_context, kref);
spin_unlock(&ctxt->lock);
kfree(ctxt);
}
static void diag_update_pid_and_serial_num(struct diag_context *ctxt)
{
struct usb_composite_dev *cdev = ctxt->cdev;
struct usb_gadget_strings **table;
struct usb_string *s;
struct usb_gadget_string_container *uc;
struct dload_struct local_diag_dload = { 0 };
/*
* update pid and serial number to dload only if diag
* interface is zeroth interface.
*/
if (intf_desc.bInterfaceNumber)
return;
if (!diag_dload) {
pr_debug("%s: unable to update PID and serial_no\n", __func__);
return;
}
/* update pid */
local_diag_dload.magic_struct.pid = PID_MAGIC_ID;
local_diag_dload.pid = cdev->desc.idProduct;
local_diag_dload.magic_struct.serial_num = SERIAL_NUM_MAGIC_ID;
list_for_each_entry(uc, &cdev->gstrings, list) {
table = (struct usb_gadget_strings **)uc->stash;
if (!table) {
pr_err("%s: can't update dload cookie\n", __func__);
break;
}
for (s = (*table)->strings; s && s->s; s++) {
if (s->id == cdev->desc.iSerialNumber) {
strlcpy(local_diag_dload.serial_number, s->s,
SERIAL_NUMBER_LENGTH);
goto update_dload;
}
}
}
update_dload:
pr_debug("%s: dload:%p pid:%x serial_num:%s\n",
__func__, diag_dload, local_diag_dload.pid,
local_diag_dload.serial_number);
memcpy_toio(diag_dload, &local_diag_dload, sizeof(local_diag_dload));
}
static void diag_write_complete(struct usb_ep *ep,
struct usb_request *req)
{
struct diag_context *ctxt = ep->driver_data;
struct diag_request *d_req = req->context;
unsigned long flags;
ctxt->dpkts_tolaptop_pending--;
if (!req->status) {
if ((req->length >= ep->maxpacket) &&
((req->length % ep->maxpacket) == 0)) {
ctxt->dpkts_tolaptop_pending++;
req->length = 0;
d_req->actual = req->actual;
d_req->status = req->status;
/* Queue zero length packet */
if (!usb_ep_queue(ctxt->in, req, GFP_ATOMIC))
return;
ctxt->dpkts_tolaptop_pending--;
} else {
ctxt->dpkts_tolaptop++;
}
}
spin_lock_irqsave(&ctxt->lock, flags);
list_add_tail(&req->list, &ctxt->write_pool);
if (req->length != 0) {
d_req->actual = req->actual;
d_req->status = req->status;
}
spin_unlock_irqrestore(&ctxt->lock, flags);
if (ctxt->ch && ctxt->ch->notify)
ctxt->ch->notify(ctxt->ch->priv, USB_DIAG_WRITE_DONE, d_req);
kref_put_spinlock_irqsave(&ctxt->kref, diag_context_release,
&ctxt->lock);
}
static void diag_read_complete(struct usb_ep *ep,
struct usb_request *req)
{
struct diag_context *ctxt = ep->driver_data;
struct diag_request *d_req = req->context;
unsigned long flags;
d_req->actual = req->actual;
d_req->status = req->status;
spin_lock_irqsave(&ctxt->lock, flags);
list_add_tail(&req->list, &ctxt->read_pool);
spin_unlock_irqrestore(&ctxt->lock, flags);
ctxt->dpkts_tomodem++;
if (ctxt->ch && ctxt->ch->notify)
ctxt->ch->notify(ctxt->ch->priv, USB_DIAG_READ_DONE, d_req);
kref_put_spinlock_irqsave(&ctxt->kref, diag_context_release,
&ctxt->lock);
}
/**
* usb_diag_open() - Open a diag channel over USB
* @name: Name of the channel
* @priv: Private structure pointer which will be passed in notify()
* @notify: Callback function to receive notifications
*
* This function iterates overs the available channels and returns
* the channel handler if the name matches. The notify callback is called
* for CONNECT, DISCONNECT, READ_DONE and WRITE_DONE events.
*
*/
struct usb_diag_ch *usb_diag_open(const char *name, void *priv,
void (*notify)(void *, unsigned int, struct diag_request *))
{
struct usb_diag_ch *ch;
unsigned long flags;
int found = 0;
spin_lock_irqsave(&ch_lock, flags);
/* Check if we already have a channel with this name */
list_for_each_entry(ch, &usb_diag_ch_list, list) {
if (!strcmp(name, ch->name)) {
found = 1;
break;
}
}
spin_unlock_irqrestore(&ch_lock, flags);
if (!found) {
ch = kzalloc(sizeof(*ch), GFP_KERNEL);
if (!ch)
return ERR_PTR(-ENOMEM);
}
ch->name = name;
ch->priv = priv;
ch->notify = notify;
spin_lock_irqsave(&ch_lock, flags);
list_add_tail(&ch->list, &usb_diag_ch_list);
spin_unlock_irqrestore(&ch_lock, flags);
return ch;
}
EXPORT_SYMBOL(usb_diag_open);
/**
* usb_diag_close() - Close a diag channel over USB
* @ch: Channel handler
*
* This function closes the diag channel.
*
*/
void usb_diag_close(struct usb_diag_ch *ch)
{
struct diag_context *dev = NULL;
unsigned long flags;
spin_lock_irqsave(&ch_lock, flags);
ch->priv = NULL;
ch->notify = NULL;
/* Free-up the resources if channel is no more active */
list_del(&ch->list);
list_for_each_entry(dev, &diag_dev_list, list_item)
if (dev->ch == ch)
dev->ch = NULL;
kfree(ch);
spin_unlock_irqrestore(&ch_lock, flags);
}
EXPORT_SYMBOL(usb_diag_close);
static void free_reqs(struct diag_context *ctxt)
{
struct list_head *act, *tmp;
struct usb_request *req;
list_for_each_safe(act, tmp, &ctxt->write_pool) {
req = list_entry(act, struct usb_request, list);
list_del(&req->list);
usb_ep_free_request(ctxt->in, req);
}
list_for_each_safe(act, tmp, &ctxt->read_pool) {
req = list_entry(act, struct usb_request, list);
list_del(&req->list);
usb_ep_free_request(ctxt->out, req);
}
}
/**
* usb_diag_alloc_req() - Allocate USB requests
* @ch: Channel handler
* @n_write: Number of requests for Tx
* @n_read: Number of requests for Rx
*
* This function allocate read and write USB requests for the interface
* associated with this channel. The actual buffer is not allocated.
* The buffer is passed by diag char driver.
*
*/
int usb_diag_alloc_req(struct usb_diag_ch *ch, int n_write, int n_read)
{
struct diag_context *ctxt = ch->priv_usb;
struct usb_request *req;
int i;
unsigned long flags;
if (!ctxt)
return -ENODEV;
spin_lock_irqsave(&ctxt->lock, flags);
/* Free previous session's stale requests */
free_reqs(ctxt);
for (i = 0; i < n_write; i++) {
req = usb_ep_alloc_request(ctxt->in, GFP_ATOMIC);
if (!req)
goto fail;
kmemleak_not_leak(req);
req->complete = diag_write_complete;
list_add_tail(&req->list, &ctxt->write_pool);
}
for (i = 0; i < n_read; i++) {
req = usb_ep_alloc_request(ctxt->out, GFP_ATOMIC);
if (!req)
goto fail;
kmemleak_not_leak(req);
req->complete = diag_read_complete;
list_add_tail(&req->list, &ctxt->read_pool);
}
spin_unlock_irqrestore(&ctxt->lock, flags);
return 0;
fail:
free_reqs(ctxt);
spin_unlock_irqrestore(&ctxt->lock, flags);
return -ENOMEM;
}
EXPORT_SYMBOL(usb_diag_alloc_req);
#define DWC3_MAX_REQUEST_SIZE (16 * 1024 * 1024)
/**
* usb_diag_request_size - Max request size for controller
* @ch: Channel handler
*
* Infom max request size so that diag driver can split packets
* in chunks of max size which controller can handle.
*/
int usb_diag_request_size(struct usb_diag_ch *ch)
{
return DWC3_MAX_REQUEST_SIZE;
}
EXPORT_SYMBOL(usb_diag_request_size);
/**
* usb_diag_read() - Read data from USB diag channel
* @ch: Channel handler
* @d_req: Diag request struct
*
* Enqueue a request on OUT endpoint of the interface corresponding to this
* channel. This function returns proper error code when interface is not
* in configured state, no Rx requests available and ep queue is failed.
*
* This function operates asynchronously. READ_DONE event is notified after
* completion of OUT request.
*
*/
int usb_diag_read(struct usb_diag_ch *ch, struct diag_request *d_req)
{
struct diag_context *ctxt = ch->priv_usb;
unsigned long flags;
struct usb_request *req;
struct usb_ep *out;
static DEFINE_RATELIMIT_STATE(rl, 10*HZ, 1);
if (!ctxt)
return -ENODEV;
spin_lock_irqsave(&ctxt->lock, flags);
if (!ctxt->configured || !ctxt->out) {
spin_unlock_irqrestore(&ctxt->lock, flags);
return -EIO;
}
out = ctxt->out;
if (list_empty(&ctxt->read_pool)) {
spin_unlock_irqrestore(&ctxt->lock, flags);
ERROR(ctxt->cdev, "%s: no requests available\n", __func__);
return -EAGAIN;
}
req = list_first_entry(&ctxt->read_pool, struct usb_request, list);
list_del(&req->list);
kref_get(&ctxt->kref); /* put called in complete callback */
spin_unlock_irqrestore(&ctxt->lock, flags);
req->buf = d_req->buf;
req->length = d_req->length;
req->context = d_req;
/* make sure context is still valid after releasing lock */
if (ctxt != ch->priv_usb) {
usb_ep_free_request(out, req);
kref_put_spinlock_irqsave(&ctxt->kref, diag_context_release,
&ctxt->lock);
return -EIO;
}
if (usb_ep_queue(out, req, GFP_ATOMIC)) {
/* If error add the link to linked list again*/
spin_lock_irqsave(&ctxt->lock, flags);
list_add_tail(&req->list, &ctxt->read_pool);
/* 1 error message for every 10 sec */
if (__ratelimit(&rl))
ERROR(ctxt->cdev, "%s: cannot queue read request\n",
__func__);
if (kref_put(&ctxt->kref, diag_context_release))
/* diag_context_release called spin_unlock already */
local_irq_restore(flags);
else
spin_unlock_irqrestore(&ctxt->lock, flags);
return -EIO;
}
return 0;
}
EXPORT_SYMBOL(usb_diag_read);
/**
* usb_diag_write() - Write data from USB diag channel
* @ch: Channel handler
* @d_req: Diag request struct
*
* Enqueue a request on IN endpoint of the interface corresponding to this
* channel. This function returns proper error code when interface is not
* in configured state, no Tx requests available and ep queue is failed.
*
* This function operates asynchronously. WRITE_DONE event is notified after
* completion of IN request.
*
*/
int usb_diag_write(struct usb_diag_ch *ch, struct diag_request *d_req)
{
struct diag_context *ctxt = ch->priv_usb;
unsigned long flags;
struct usb_request *req = NULL;
struct usb_ep *in;
static DEFINE_RATELIMIT_STATE(rl, 10*HZ, 1);
if (!ctxt)
return -ENODEV;
spin_lock_irqsave(&ctxt->lock, flags);
if (!ctxt->configured || !ctxt->in) {
spin_unlock_irqrestore(&ctxt->lock, flags);
return -EIO;
}
in = ctxt->in;
if (list_empty(&ctxt->write_pool)) {
spin_unlock_irqrestore(&ctxt->lock, flags);
ERROR(ctxt->cdev, "%s: no requests available\n", __func__);
return -EAGAIN;
}
req = list_first_entry(&ctxt->write_pool, struct usb_request, list);
list_del(&req->list);
kref_get(&ctxt->kref); /* put called in complete callback */
spin_unlock_irqrestore(&ctxt->lock, flags);
req->buf = d_req->buf;
req->length = d_req->length;
req->context = d_req;
/* make sure context is still valid after releasing lock */
if (ctxt != ch->priv_usb) {
usb_ep_free_request(in, req);
kref_put_spinlock_irqsave(&ctxt->kref, diag_context_release,
&ctxt->lock);
return -EIO;
}
ctxt->dpkts_tolaptop_pending++;
if (usb_ep_queue(in, req, GFP_ATOMIC)) {
/* If error add the link to linked list again*/
spin_lock_irqsave(&ctxt->lock, flags);
list_add_tail(&req->list, &ctxt->write_pool);
ctxt->dpkts_tolaptop_pending--;
/* 1 error message for every 10 sec */
if (__ratelimit(&rl))
ERROR(ctxt->cdev, "%s: cannot queue read request\n",
__func__);
if (kref_put(&ctxt->kref, diag_context_release))
/* diag_context_release called spin_unlock already */
local_irq_restore(flags);
else
spin_unlock_irqrestore(&ctxt->lock, flags);
return -EIO;
}
/*
* It's possible that both write completion AND unbind could have been
* completed asynchronously by this point. Since they both release the
* kref, ctxt is _NOT_ guaranteed to be valid here.
*/
return 0;
}
EXPORT_SYMBOL(usb_diag_write);
static void diag_function_disable(struct usb_function *f)
{
struct diag_context *dev = func_to_diag(f);
unsigned long flags;
DBG(dev->cdev, "diag_function_disable\n");
spin_lock_irqsave(&dev->lock, flags);
dev->configured = 0;
spin_unlock_irqrestore(&dev->lock, flags);
if (dev->ch && dev->ch->notify)
dev->ch->notify(dev->ch->priv, USB_DIAG_DISCONNECT, NULL);
usb_ep_disable(dev->in);
dev->in->driver_data = NULL;
usb_ep_disable(dev->out);
dev->out->driver_data = NULL;
if (dev->ch)
dev->ch->priv_usb = NULL;
}
static void diag_free_func(struct usb_function *f)
{
struct diag_context *ctxt = func_to_diag(f);
unsigned long flags;
spin_lock_irqsave(&ctxt->lock, flags);
list_del(&ctxt->list_item);
if (kref_put(&ctxt->kref, diag_context_release))
/* diag_context_release called spin_unlock already */
local_irq_restore(flags);
else
spin_unlock_irqrestore(&ctxt->lock, flags);
}
static int diag_function_set_alt(struct usb_function *f,
unsigned int intf, unsigned int alt)
{
struct diag_context *dev = func_to_diag(f);
struct usb_composite_dev *cdev = f->config->cdev;
unsigned long flags;
int rc = 0;
if (config_ep_by_speed(cdev->gadget, f, dev->in) ||
config_ep_by_speed(cdev->gadget, f, dev->out)) {
dev->in->desc = NULL;
dev->out->desc = NULL;
return -EINVAL;
}
if (!dev->ch)
return -ENODEV;
/*
* Indicate to the diag channel that the active diag device is dev.
* Since a few diag devices can point to the same channel.
*/
dev->ch->priv_usb = dev;
dev->in->driver_data = dev;
rc = usb_ep_enable(dev->in);
if (rc) {
ERROR(dev->cdev, "can't enable %s, result %d\n",
dev->in->name, rc);
return rc;
}
dev->out->driver_data = dev;
rc = usb_ep_enable(dev->out);
if (rc) {
ERROR(dev->cdev, "can't enable %s, result %d\n",
dev->out->name, rc);
usb_ep_disable(dev->in);
return rc;
}
dev->dpkts_tolaptop = 0;
dev->dpkts_tomodem = 0;
dev->dpkts_tolaptop_pending = 0;
spin_lock_irqsave(&dev->lock, flags);
dev->configured = 1;
spin_unlock_irqrestore(&dev->lock, flags);
if (dev->ch->notify)
dev->ch->notify(dev->ch->priv, USB_DIAG_CONNECT, NULL);
return rc;
}
static void diag_function_unbind(struct usb_configuration *c,
struct usb_function *f)
{
struct diag_context *ctxt = func_to_diag(f);
unsigned long flags;
if (gadget_is_superspeed(c->cdev->gadget))
usb_free_descriptors(f->ss_descriptors);
if (gadget_is_dualspeed(c->cdev->gadget))
usb_free_descriptors(f->hs_descriptors);
usb_free_descriptors(f->fs_descriptors);
/*
* Channel priv_usb may point to other diag function.
* Clear the priv_usb only if the channel is used by the
* diag dev we unbind here.
*/
if (ctxt->ch && ctxt->ch->priv_usb == ctxt)
ctxt->ch->priv_usb = NULL;
spin_lock_irqsave(&ctxt->lock, flags);
/* Free any pending USB requests from last session */
free_reqs(ctxt);
spin_unlock_irqrestore(&ctxt->lock, flags);
}
static int diag_function_bind(struct usb_configuration *c,
struct usb_function *f)
{
struct usb_composite_dev *cdev = c->cdev;
struct diag_context *ctxt = func_to_diag(f);
struct usb_ep *ep;
int status = -ENODEV;
ctxt->cdev = c->cdev;
intf_desc.bInterfaceNumber = usb_interface_id(c, f);
ep = usb_ep_autoconfig(cdev->gadget, &fs_bulk_in_desc);
if (!ep)
goto fail;
ctxt->in = ep;
ep->driver_data = ctxt;
ep = usb_ep_autoconfig(cdev->gadget, &fs_bulk_out_desc);
if (!ep)
goto fail;
ctxt->out = ep;
ep->driver_data = ctxt;
status = -ENOMEM;
/* copy descriptors, and track endpoint copies */
f->fs_descriptors = usb_copy_descriptors(fs_diag_desc);
if (!f->fs_descriptors)
goto fail;
if (gadget_is_dualspeed(c->cdev->gadget)) {
hs_bulk_in_desc.bEndpointAddress =
fs_bulk_in_desc.bEndpointAddress;
hs_bulk_out_desc.bEndpointAddress =
fs_bulk_out_desc.bEndpointAddress;
/* copy descriptors, and track endpoint copies */
f->hs_descriptors = usb_copy_descriptors(hs_diag_desc);
if (!f->hs_descriptors)
goto fail;
}
if (gadget_is_superspeed(c->cdev->gadget)) {
ss_bulk_in_desc.bEndpointAddress =
fs_bulk_in_desc.bEndpointAddress;
ss_bulk_out_desc.bEndpointAddress =
fs_bulk_out_desc.bEndpointAddress;
/* copy descriptors, and track endpoint copies */
f->ss_descriptors = usb_copy_descriptors(ss_diag_desc);
if (!f->ss_descriptors)
goto fail;
}
/* Allow only first diag channel to update pid and serial no */
if (ctxt == list_first_entry(&diag_dev_list,
struct diag_context, list_item))
diag_update_pid_and_serial_num(ctxt);
return 0;
fail:
if (f->ss_descriptors)
usb_free_descriptors(f->ss_descriptors);
if (f->hs_descriptors)
usb_free_descriptors(f->hs_descriptors);
if (f->fs_descriptors)
usb_free_descriptors(f->fs_descriptors);
if (ctxt->out)
ctxt->out->driver_data = NULL;
if (ctxt->in)
ctxt->in->driver_data = NULL;
return status;
}
static struct diag_context *diag_context_init(const char *name)
{
struct diag_context *dev;
struct usb_diag_ch *_ch;
int found = 0;
pr_debug("%s\n", __func__);
list_for_each_entry(_ch, &usb_diag_ch_list, list) {
if (!strcmp(name, _ch->name)) {
found = 1;
break;
}
}
if (!found) {
pr_err("%s: unable to get diag usb channel\n", __func__);
return ERR_PTR(-ENODEV);
}
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return ERR_PTR(-ENOMEM);
list_add_tail(&dev->list_item, &diag_dev_list);
/*
* A few diag devices can point to the same channel, in case that
* the diag devices belong to different configurations, however
* only the active diag device will claim the channel by setting
* the ch->priv_usb (see diag_function_set_alt).
*/
dev->ch = _ch;
dev->function.name = _ch->name;
dev->function.fs_descriptors = fs_diag_desc;
dev->function.hs_descriptors = hs_diag_desc;
dev->function.bind = diag_function_bind;
dev->function.unbind = diag_function_unbind;
dev->function.set_alt = diag_function_set_alt;
dev->function.disable = diag_function_disable;
dev->function.free_func = diag_free_func;
kref_init(&dev->kref);
spin_lock_init(&dev->lock);
INIT_LIST_HEAD(&dev->read_pool);
INIT_LIST_HEAD(&dev->write_pool);
return dev;
}
#if defined(CONFIG_DEBUG_FS)
static char debug_buffer[PAGE_SIZE];
static ssize_t debug_read_stats(struct file *file, char __user *ubuf,
size_t count, loff_t *ppos)
{
char *buf = debug_buffer;
int temp = 0;
struct usb_diag_ch *ch;
list_for_each_entry(ch, &usb_diag_ch_list, list) {
struct diag_context *ctxt = ch->priv_usb;
unsigned long flags;
if (ctxt) {
spin_lock_irqsave(&ctxt->lock, flags);
temp += scnprintf(buf + temp, PAGE_SIZE - temp,
"---Name: %s---\n"
"endpoints: %s, %s\n"
"dpkts_tolaptop: %lu\n"
"dpkts_tomodem: %lu\n"
"pkts_tolaptop_pending: %u\n",
ch->name,
ctxt->in->name, ctxt->out->name,
ctxt->dpkts_tolaptop,
ctxt->dpkts_tomodem,
ctxt->dpkts_tolaptop_pending);
spin_unlock_irqrestore(&ctxt->lock, flags);
}
}
return simple_read_from_buffer(ubuf, count, ppos, buf, temp);
}
static ssize_t debug_reset_stats(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct usb_diag_ch *ch;
list_for_each_entry(ch, &usb_diag_ch_list, list) {
struct diag_context *ctxt = ch->priv_usb;
unsigned long flags;
if (ctxt) {
spin_lock_irqsave(&ctxt->lock, flags);
ctxt->dpkts_tolaptop = 0;
ctxt->dpkts_tomodem = 0;
ctxt->dpkts_tolaptop_pending = 0;
spin_unlock_irqrestore(&ctxt->lock, flags);
}
}
return count;
}
static int debug_open(struct inode *inode, struct file *file)
{
return 0;
}
static const struct file_operations debug_fdiag_ops = {
.open = debug_open,
.read = debug_read_stats,
.write = debug_reset_stats,
};
struct dentry *dent_diag;
static void fdiag_debugfs_init(void)
{
struct dentry *dent_diag_status;
dent_diag = debugfs_create_dir("usb_diag", 0);
if (!dent_diag || IS_ERR(dent_diag))
return;
dent_diag_status = debugfs_create_file("status", 0444, dent_diag, 0,
&debug_fdiag_ops);
if (!dent_diag_status || IS_ERR(dent_diag_status)) {
debugfs_remove(dent_diag);
dent_diag = NULL;
return;
}
}
static void fdiag_debugfs_remove(void)
{
debugfs_remove_recursive(dent_diag);
}
#else
static inline void fdiag_debugfs_init(void) {}
static inline void fdiag_debugfs_remove(void) {}
#endif
static void diag_opts_release(struct config_item *item)
{
struct diag_opts *opts = to_diag_opts(item);
usb_put_function_instance(&opts->func_inst);
}
static struct configfs_item_operations diag_item_ops = {
.release = diag_opts_release,
};
static struct config_item_type diag_func_type = {
.ct_item_ops = &diag_item_ops,
.ct_owner = THIS_MODULE,
};
static int diag_set_inst_name(struct usb_function_instance *fi,
const char *name)
{
struct diag_opts *opts = container_of(fi, struct diag_opts, func_inst);
char *ptr;
int name_len;
name_len = strlen(name) + 1;
if (name_len > MAX_INST_NAME_LEN)
return -ENAMETOOLONG;
ptr = kstrndup(name, name_len, GFP_KERNEL);
if (!ptr)
return -ENOMEM;
opts->name = ptr;
return 0;
}
static void diag_free_inst(struct usb_function_instance *f)
{
struct diag_opts *opts;
opts = container_of(f, struct diag_opts, func_inst);
kfree(opts->name);
kfree(opts);
}
static struct usb_function_instance *diag_alloc_inst(void)
{
struct diag_opts *opts;
opts = kzalloc(sizeof(*opts), GFP_KERNEL);
if (!opts)
return ERR_PTR(-ENOMEM);
opts->func_inst.set_inst_name = diag_set_inst_name;
opts->func_inst.free_func_inst = diag_free_inst;
config_group_init_type_name(&opts->func_inst.group, "",
&diag_func_type);
return &opts->func_inst;
}
static struct usb_function *diag_alloc(struct usb_function_instance *fi)
{
struct diag_opts *opts;
struct diag_context *dev;
opts = container_of(fi, struct diag_opts, func_inst);
dev = diag_context_init(opts->name);
if (IS_ERR(dev))
return ERR_CAST(dev);
return &dev->function;
}
DECLARE_USB_FUNCTION(diag, diag_alloc_inst, diag_alloc);
static int __init diag_init(void)
{
struct device_node *np;
int ret;
INIT_LIST_HEAD(&diag_dev_list);
fdiag_debugfs_init();
ret = usb_function_register(&diagusb_func);
if (ret) {
pr_err("%s: failed to register diag %d\n", __func__, ret);
return ret;
}
np = of_find_compatible_node(NULL, NULL, "qcom,msm-imem-diag-dload");
if (!np)
np = of_find_compatible_node(NULL, NULL, "qcom,android-usb");
if (!np)
pr_warn("diag: failed to find diag_dload imem node\n");
diag_dload = np ? of_iomap(np, 0) : NULL;
return ret;
}
static void __exit diag_exit(void)
{
struct list_head *act, *tmp;
struct usb_diag_ch *_ch;
unsigned long flags;
if (diag_dload)
iounmap(diag_dload);
usb_function_unregister(&diagusb_func);
fdiag_debugfs_remove();
list_for_each_safe(act, tmp, &usb_diag_ch_list) {
_ch = list_entry(act, struct usb_diag_ch, list);
spin_lock_irqsave(&ch_lock, flags);
/* Free if diagchar is not using the channel anymore */
if (!_ch->priv) {
list_del(&_ch->list);
kfree(_ch);
}
spin_unlock_irqrestore(&ch_lock, flags);
}
}
module_init(diag_init);
module_exit(diag_exit);
MODULE_DESCRIPTION("Diag function driver");
MODULE_LICENSE("GPL v2");