blob: d3c62074016ded5c99c7dfd045469b3519227485 [file] [log] [blame]
/*
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __MSM_DRM_H__
#define __MSM_DRM_H__
#include <stddef.h>
#include <drm/drm.h>
/* Please note that modifications to all structs defined here are
* subject to backwards-compatibility constraints:
* 1) Do not use pointers, use uint64_t instead for 32 bit / 64 bit
* user/kernel compatibility
* 2) Keep fields aligned to their size
* 3) Because of how drm_ioctl() works, we can add new fields at
* the end of an ioctl if some care is taken: drm_ioctl() will
* zero out the new fields at the tail of the ioctl, so a zero
* value should have a backwards compatible meaning. And for
* output params, userspace won't see the newly added output
* fields.. so that has to be somehow ok.
*/
#define MSM_PIPE_NONE 0x00
#define MSM_PIPE_2D0 0x01
#define MSM_PIPE_2D1 0x02
#define MSM_PIPE_3D0 0x10
/* timeouts are specified in clock-monotonic absolute times (to simplify
* restarting interrupted ioctls). The following struct is logically the
* same as 'struct timespec' but 32/64b ABI safe.
*/
struct drm_msm_timespec {
int64_t tv_sec; /* seconds */
int64_t tv_nsec; /* nanoseconds */
};
#define MSM_PARAM_GPU_ID 0x01
#define MSM_PARAM_GMEM_SIZE 0x02
struct drm_msm_param {
uint32_t pipe; /* in, MSM_PIPE_x */
uint32_t param; /* in, MSM_PARAM_x */
uint64_t value; /* out (get_param) or in (set_param) */
};
/*
* GEM buffers:
*/
#define MSM_BO_SCANOUT 0x00000001 /* scanout capable */
#define MSM_BO_GPU_READONLY 0x00000002
#define MSM_BO_CACHE_MASK 0x000f0000
/* cache modes */
#define MSM_BO_CACHED 0x00010000
#define MSM_BO_WC 0x00020000
#define MSM_BO_UNCACHED 0x00040000
struct drm_msm_gem_new {
uint64_t size; /* in */
uint32_t flags; /* in, mask of MSM_BO_x */
uint32_t handle; /* out */
};
struct drm_msm_gem_info {
uint32_t handle; /* in */
uint32_t pad;
uint64_t offset; /* out, offset to pass to mmap() */
};
#define MSM_PREP_READ 0x01
#define MSM_PREP_WRITE 0x02
#define MSM_PREP_NOSYNC 0x04
struct drm_msm_gem_cpu_prep {
uint32_t handle; /* in */
uint32_t op; /* in, mask of MSM_PREP_x */
struct drm_msm_timespec timeout; /* in */
};
struct drm_msm_gem_cpu_fini {
uint32_t handle; /* in */
};
/*
* Cmdstream Submission:
*/
/* The value written into the cmdstream is logically:
*
* ((relocbuf->gpuaddr + reloc_offset) << shift) | or
*
* When we have GPU's w/ >32bit ptrs, it should be possible to deal
* with this by emit'ing two reloc entries with appropriate shift
* values. Or a new MSM_SUBMIT_CMD_x type would also be an option.
*
* NOTE that reloc's must be sorted by order of increasing submit_offset,
* otherwise EINVAL.
*/
struct drm_msm_gem_submit_reloc {
uint32_t submit_offset; /* in, offset from submit_bo */
uint32_t or; /* in, value OR'd with result */
int32_t shift; /* in, amount of left shift (can be negative) */
uint32_t reloc_idx; /* in, index of reloc_bo buffer */
uint64_t reloc_offset; /* in, offset from start of reloc_bo */
};
/* submit-types:
* BUF - this cmd buffer is executed normally.
* IB_TARGET_BUF - this cmd buffer is an IB target. Reloc's are
* processed normally, but the kernel does not setup an IB to
* this buffer in the first-level ringbuffer
* CTX_RESTORE_BUF - only executed if there has been a GPU context
* switch since the last SUBMIT ioctl
*/
#define MSM_SUBMIT_CMD_BUF 0x0001
#define MSM_SUBMIT_CMD_IB_TARGET_BUF 0x0002
#define MSM_SUBMIT_CMD_CTX_RESTORE_BUF 0x0003
struct drm_msm_gem_submit_cmd {
uint32_t type; /* in, one of MSM_SUBMIT_CMD_x */
uint32_t submit_idx; /* in, index of submit_bo cmdstream buffer */
uint32_t submit_offset; /* in, offset into submit_bo */
uint32_t size; /* in, cmdstream size */
uint32_t pad;
uint32_t nr_relocs; /* in, number of submit_reloc's */
uint64_t __user relocs; /* in, ptr to array of submit_reloc's */
};
/* Each buffer referenced elsewhere in the cmdstream submit (ie. the
* cmdstream buffer(s) themselves or reloc entries) has one (and only
* one) entry in the submit->bos[] table.
*
* As a optimization, the current buffer (gpu virtual address) can be
* passed back through the 'presumed' field. If on a subsequent reloc,
* userspace passes back a 'presumed' address that is still valid,
* then patching the cmdstream for this entry is skipped. This can
* avoid kernel needing to map/access the cmdstream bo in the common
* case.
*/
#define MSM_SUBMIT_BO_READ 0x0001
#define MSM_SUBMIT_BO_WRITE 0x0002
struct drm_msm_gem_submit_bo {
uint32_t flags; /* in, mask of MSM_SUBMIT_BO_x */
uint32_t handle; /* in, GEM handle */
uint64_t presumed; /* in/out, presumed buffer address */
};
/* Each cmdstream submit consists of a table of buffers involved, and
* one or more cmdstream buffers. This allows for conditional execution
* (context-restore), and IB buffers needed for per tile/bin draw cmds.
*/
struct drm_msm_gem_submit {
uint32_t pipe; /* in, MSM_PIPE_x */
uint32_t fence; /* out */
uint32_t nr_bos; /* in, number of submit_bo's */
uint32_t nr_cmds; /* in, number of submit_cmd's */
uint64_t __user bos; /* in, ptr to array of submit_bo's */
uint64_t __user cmds; /* in, ptr to array of submit_cmd's */
};
/* The normal way to synchronize with the GPU is just to CPU_PREP on
* a buffer if you need to access it from the CPU (other cmdstream
* submission from same or other contexts, PAGE_FLIP ioctl, etc, all
* handle the required synchronization under the hood). This ioctl
* mainly just exists as a way to implement the gallium pipe_fence
* APIs without requiring a dummy bo to synchronize on.
*/
struct drm_msm_wait_fence {
uint32_t fence; /* in */
uint32_t pad;
struct drm_msm_timespec timeout; /* in */
};
#define DRM_MSM_GET_PARAM 0x00
/* placeholder:
#define DRM_MSM_SET_PARAM 0x01
*/
#define DRM_MSM_GEM_NEW 0x02
#define DRM_MSM_GEM_INFO 0x03
#define DRM_MSM_GEM_CPU_PREP 0x04
#define DRM_MSM_GEM_CPU_FINI 0x05
#define DRM_MSM_GEM_SUBMIT 0x06
#define DRM_MSM_WAIT_FENCE 0x07
#define DRM_MSM_NUM_IOCTLS 0x08
#define DRM_IOCTL_MSM_GET_PARAM DRM_IOWR(DRM_COMMAND_BASE + DRM_MSM_GET_PARAM, struct drm_msm_param)
#define DRM_IOCTL_MSM_GEM_NEW DRM_IOWR(DRM_COMMAND_BASE + DRM_MSM_GEM_NEW, struct drm_msm_gem_new)
#define DRM_IOCTL_MSM_GEM_INFO DRM_IOWR(DRM_COMMAND_BASE + DRM_MSM_GEM_INFO, struct drm_msm_gem_info)
#define DRM_IOCTL_MSM_GEM_CPU_PREP DRM_IOW (DRM_COMMAND_BASE + DRM_MSM_GEM_CPU_PREP, struct drm_msm_gem_cpu_prep)
#define DRM_IOCTL_MSM_GEM_CPU_FINI DRM_IOW (DRM_COMMAND_BASE + DRM_MSM_GEM_CPU_FINI, struct drm_msm_gem_cpu_fini)
#define DRM_IOCTL_MSM_GEM_SUBMIT DRM_IOWR(DRM_COMMAND_BASE + DRM_MSM_GEM_SUBMIT, struct drm_msm_gem_submit)
#define DRM_IOCTL_MSM_WAIT_FENCE DRM_IOW (DRM_COMMAND_BASE + DRM_MSM_WAIT_FENCE, struct drm_msm_wait_fence)
#endif /* __MSM_DRM_H__ */