blob: 5546ca225ffe19ee3e53d75ee4e18936fa47cc83 [file] [log] [blame]
/*
* linux/fs/ext3/super.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/parser.h>
#include <linux/exportfs.h>
#include <linux/statfs.h>
#include <linux/random.h>
#include <linux/mount.h>
#include <linux/quotaops.h>
#include <linux/seq_file.h>
#include <linux/log2.h>
#include <linux/cleancache.h>
#include <asm/uaccess.h>
#define CREATE_TRACE_POINTS
#include "ext3.h"
#include "xattr.h"
#include "acl.h"
#include "namei.h"
#ifdef CONFIG_EXT3_DEFAULTS_TO_ORDERED
#define EXT3_MOUNT_DEFAULT_DATA_MODE EXT3_MOUNT_ORDERED_DATA
#else
#define EXT3_MOUNT_DEFAULT_DATA_MODE EXT3_MOUNT_WRITEBACK_DATA
#endif
static int ext3_load_journal(struct super_block *, struct ext3_super_block *,
unsigned long journal_devnum);
static int ext3_create_journal(struct super_block *, struct ext3_super_block *,
unsigned int);
static int ext3_commit_super(struct super_block *sb,
struct ext3_super_block *es,
int sync);
static void ext3_mark_recovery_complete(struct super_block * sb,
struct ext3_super_block * es);
static void ext3_clear_journal_err(struct super_block * sb,
struct ext3_super_block * es);
static int ext3_sync_fs(struct super_block *sb, int wait);
static const char *ext3_decode_error(struct super_block * sb, int errno,
char nbuf[16]);
static int ext3_remount (struct super_block * sb, int * flags, char * data);
static int ext3_statfs (struct dentry * dentry, struct kstatfs * buf);
static int ext3_unfreeze(struct super_block *sb);
static int ext3_freeze(struct super_block *sb);
/*
* Wrappers for journal_start/end.
*/
handle_t *ext3_journal_start_sb(struct super_block *sb, int nblocks)
{
journal_t *journal;
if (sb->s_flags & MS_RDONLY)
return ERR_PTR(-EROFS);
/* Special case here: if the journal has aborted behind our
* backs (eg. EIO in the commit thread), then we still need to
* take the FS itself readonly cleanly. */
journal = EXT3_SB(sb)->s_journal;
if (is_journal_aborted(journal)) {
ext3_abort(sb, __func__,
"Detected aborted journal");
return ERR_PTR(-EROFS);
}
return journal_start(journal, nblocks);
}
int __ext3_journal_stop(const char *where, handle_t *handle)
{
struct super_block *sb;
int err;
int rc;
sb = handle->h_transaction->t_journal->j_private;
err = handle->h_err;
rc = journal_stop(handle);
if (!err)
err = rc;
if (err)
__ext3_std_error(sb, where, err);
return err;
}
void ext3_journal_abort_handle(const char *caller, const char *err_fn,
struct buffer_head *bh, handle_t *handle, int err)
{
char nbuf[16];
const char *errstr = ext3_decode_error(NULL, err, nbuf);
if (bh)
BUFFER_TRACE(bh, "abort");
if (!handle->h_err)
handle->h_err = err;
if (is_handle_aborted(handle))
return;
printk(KERN_ERR "EXT3-fs: %s: aborting transaction: %s in %s\n",
caller, errstr, err_fn);
journal_abort_handle(handle);
}
void ext3_msg(struct super_block *sb, const char *prefix,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk("%sEXT3-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
va_end(args);
}
/* Deal with the reporting of failure conditions on a filesystem such as
* inconsistencies detected or read IO failures.
*
* On ext2, we can store the error state of the filesystem in the
* superblock. That is not possible on ext3, because we may have other
* write ordering constraints on the superblock which prevent us from
* writing it out straight away; and given that the journal is about to
* be aborted, we can't rely on the current, or future, transactions to
* write out the superblock safely.
*
* We'll just use the journal_abort() error code to record an error in
* the journal instead. On recovery, the journal will complain about
* that error until we've noted it down and cleared it.
*/
static void ext3_handle_error(struct super_block *sb)
{
struct ext3_super_block *es = EXT3_SB(sb)->s_es;
EXT3_SB(sb)->s_mount_state |= EXT3_ERROR_FS;
es->s_state |= cpu_to_le16(EXT3_ERROR_FS);
if (sb->s_flags & MS_RDONLY)
return;
if (!test_opt (sb, ERRORS_CONT)) {
journal_t *journal = EXT3_SB(sb)->s_journal;
set_opt(EXT3_SB(sb)->s_mount_opt, ABORT);
if (journal)
journal_abort(journal, -EIO);
}
if (test_opt (sb, ERRORS_RO)) {
ext3_msg(sb, KERN_CRIT,
"error: remounting filesystem read-only");
sb->s_flags |= MS_RDONLY;
}
ext3_commit_super(sb, es, 1);
if (test_opt(sb, ERRORS_PANIC))
panic("EXT3-fs (%s): panic forced after error\n",
sb->s_id);
}
void ext3_error(struct super_block *sb, const char *function,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_CRIT "EXT3-fs error (device %s): %s: %pV\n",
sb->s_id, function, &vaf);
va_end(args);
ext3_handle_error(sb);
}
static const char *ext3_decode_error(struct super_block * sb, int errno,
char nbuf[16])
{
char *errstr = NULL;
switch (errno) {
case -EIO:
errstr = "IO failure";
break;
case -ENOMEM:
errstr = "Out of memory";
break;
case -EROFS:
if (!sb || EXT3_SB(sb)->s_journal->j_flags & JFS_ABORT)
errstr = "Journal has aborted";
else
errstr = "Readonly filesystem";
break;
default:
/* If the caller passed in an extra buffer for unknown
* errors, textualise them now. Else we just return
* NULL. */
if (nbuf) {
/* Check for truncated error codes... */
if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
errstr = nbuf;
}
break;
}
return errstr;
}
/* __ext3_std_error decodes expected errors from journaling functions
* automatically and invokes the appropriate error response. */
void __ext3_std_error (struct super_block * sb, const char * function,
int errno)
{
char nbuf[16];
const char *errstr;
/* Special case: if the error is EROFS, and we're not already
* inside a transaction, then there's really no point in logging
* an error. */
if (errno == -EROFS && journal_current_handle() == NULL &&
(sb->s_flags & MS_RDONLY))
return;
errstr = ext3_decode_error(sb, errno, nbuf);
ext3_msg(sb, KERN_CRIT, "error in %s: %s", function, errstr);
ext3_handle_error(sb);
}
/*
* ext3_abort is a much stronger failure handler than ext3_error. The
* abort function may be used to deal with unrecoverable failures such
* as journal IO errors or ENOMEM at a critical moment in log management.
*
* We unconditionally force the filesystem into an ABORT|READONLY state,
* unless the error response on the fs has been set to panic in which
* case we take the easy way out and panic immediately.
*/
void ext3_abort(struct super_block *sb, const char *function,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_CRIT "EXT3-fs (%s): error: %s: %pV\n",
sb->s_id, function, &vaf);
va_end(args);
if (test_opt(sb, ERRORS_PANIC))
panic("EXT3-fs: panic from previous error\n");
if (sb->s_flags & MS_RDONLY)
return;
ext3_msg(sb, KERN_CRIT,
"error: remounting filesystem read-only");
EXT3_SB(sb)->s_mount_state |= EXT3_ERROR_FS;
sb->s_flags |= MS_RDONLY;
set_opt(EXT3_SB(sb)->s_mount_opt, ABORT);
if (EXT3_SB(sb)->s_journal)
journal_abort(EXT3_SB(sb)->s_journal, -EIO);
}
void ext3_warning(struct super_block *sb, const char *function,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_WARNING "EXT3-fs (%s): warning: %s: %pV\n",
sb->s_id, function, &vaf);
va_end(args);
}
void ext3_update_dynamic_rev(struct super_block *sb)
{
struct ext3_super_block *es = EXT3_SB(sb)->s_es;
if (le32_to_cpu(es->s_rev_level) > EXT3_GOOD_OLD_REV)
return;
ext3_msg(sb, KERN_WARNING,
"warning: updating to rev %d because of "
"new feature flag, running e2fsck is recommended",
EXT3_DYNAMIC_REV);
es->s_first_ino = cpu_to_le32(EXT3_GOOD_OLD_FIRST_INO);
es->s_inode_size = cpu_to_le16(EXT3_GOOD_OLD_INODE_SIZE);
es->s_rev_level = cpu_to_le32(EXT3_DYNAMIC_REV);
/* leave es->s_feature_*compat flags alone */
/* es->s_uuid will be set by e2fsck if empty */
/*
* The rest of the superblock fields should be zero, and if not it
* means they are likely already in use, so leave them alone. We
* can leave it up to e2fsck to clean up any inconsistencies there.
*/
}
/*
* Open the external journal device
*/
static struct block_device *ext3_blkdev_get(dev_t dev, struct super_block *sb)
{
struct block_device *bdev;
char b[BDEVNAME_SIZE];
bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
if (IS_ERR(bdev))
goto fail;
return bdev;
fail:
ext3_msg(sb, "error: failed to open journal device %s: %ld",
__bdevname(dev, b), PTR_ERR(bdev));
return NULL;
}
/*
* Release the journal device
*/
static int ext3_blkdev_put(struct block_device *bdev)
{
return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
}
static int ext3_blkdev_remove(struct ext3_sb_info *sbi)
{
struct block_device *bdev;
int ret = -ENODEV;
bdev = sbi->journal_bdev;
if (bdev) {
ret = ext3_blkdev_put(bdev);
sbi->journal_bdev = NULL;
}
return ret;
}
static inline struct inode *orphan_list_entry(struct list_head *l)
{
return &list_entry(l, struct ext3_inode_info, i_orphan)->vfs_inode;
}
static void dump_orphan_list(struct super_block *sb, struct ext3_sb_info *sbi)
{
struct list_head *l;
ext3_msg(sb, KERN_ERR, "error: sb orphan head is %d",
le32_to_cpu(sbi->s_es->s_last_orphan));
ext3_msg(sb, KERN_ERR, "sb_info orphan list:");
list_for_each(l, &sbi->s_orphan) {
struct inode *inode = orphan_list_entry(l);
ext3_msg(sb, KERN_ERR, " "
"inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
inode->i_sb->s_id, inode->i_ino, inode,
inode->i_mode, inode->i_nlink,
NEXT_ORPHAN(inode));
}
}
static void ext3_put_super (struct super_block * sb)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
struct ext3_super_block *es = sbi->s_es;
int i, err;
dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
ext3_xattr_put_super(sb);
err = journal_destroy(sbi->s_journal);
sbi->s_journal = NULL;
if (err < 0)
ext3_abort(sb, __func__, "Couldn't clean up the journal");
if (!(sb->s_flags & MS_RDONLY)) {
EXT3_CLEAR_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER);
es->s_state = cpu_to_le16(sbi->s_mount_state);
BUFFER_TRACE(sbi->s_sbh, "marking dirty");
mark_buffer_dirty(sbi->s_sbh);
ext3_commit_super(sb, es, 1);
}
for (i = 0; i < sbi->s_gdb_count; i++)
brelse(sbi->s_group_desc[i]);
kfree(sbi->s_group_desc);
percpu_counter_destroy(&sbi->s_freeblocks_counter);
percpu_counter_destroy(&sbi->s_freeinodes_counter);
percpu_counter_destroy(&sbi->s_dirs_counter);
brelse(sbi->s_sbh);
#ifdef CONFIG_QUOTA
for (i = 0; i < MAXQUOTAS; i++)
kfree(sbi->s_qf_names[i]);
#endif
/* Debugging code just in case the in-memory inode orphan list
* isn't empty. The on-disk one can be non-empty if we've
* detected an error and taken the fs readonly, but the
* in-memory list had better be clean by this point. */
if (!list_empty(&sbi->s_orphan))
dump_orphan_list(sb, sbi);
J_ASSERT(list_empty(&sbi->s_orphan));
invalidate_bdev(sb->s_bdev);
if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
/*
* Invalidate the journal device's buffers. We don't want them
* floating about in memory - the physical journal device may
* hotswapped, and it breaks the `ro-after' testing code.
*/
sync_blockdev(sbi->journal_bdev);
invalidate_bdev(sbi->journal_bdev);
ext3_blkdev_remove(sbi);
}
sb->s_fs_info = NULL;
kfree(sbi->s_blockgroup_lock);
kfree(sbi);
}
static struct kmem_cache *ext3_inode_cachep;
/*
* Called inside transaction, so use GFP_NOFS
*/
static struct inode *ext3_alloc_inode(struct super_block *sb)
{
struct ext3_inode_info *ei;
ei = kmem_cache_alloc(ext3_inode_cachep, GFP_NOFS);
if (!ei)
return NULL;
ei->i_block_alloc_info = NULL;
ei->vfs_inode.i_version = 1;
atomic_set(&ei->i_datasync_tid, 0);
atomic_set(&ei->i_sync_tid, 0);
return &ei->vfs_inode;
}
static int ext3_drop_inode(struct inode *inode)
{
int drop = generic_drop_inode(inode);
trace_ext3_drop_inode(inode, drop);
return drop;
}
static void ext3_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
kmem_cache_free(ext3_inode_cachep, EXT3_I(inode));
}
static void ext3_destroy_inode(struct inode *inode)
{
if (!list_empty(&(EXT3_I(inode)->i_orphan))) {
printk("EXT3 Inode %p: orphan list check failed!\n",
EXT3_I(inode));
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
EXT3_I(inode), sizeof(struct ext3_inode_info),
false);
dump_stack();
}
call_rcu(&inode->i_rcu, ext3_i_callback);
}
static void init_once(void *foo)
{
struct ext3_inode_info *ei = (struct ext3_inode_info *) foo;
INIT_LIST_HEAD(&ei->i_orphan);
#ifdef CONFIG_EXT3_FS_XATTR
init_rwsem(&ei->xattr_sem);
#endif
mutex_init(&ei->truncate_mutex);
inode_init_once(&ei->vfs_inode);
}
static int init_inodecache(void)
{
ext3_inode_cachep = kmem_cache_create("ext3_inode_cache",
sizeof(struct ext3_inode_info),
0, (SLAB_RECLAIM_ACCOUNT|
SLAB_MEM_SPREAD),
init_once);
if (ext3_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(ext3_inode_cachep);
}
static inline void ext3_show_quota_options(struct seq_file *seq, struct super_block *sb)
{
#if defined(CONFIG_QUOTA)
struct ext3_sb_info *sbi = EXT3_SB(sb);
if (sbi->s_jquota_fmt) {
char *fmtname = "";
switch (sbi->s_jquota_fmt) {
case QFMT_VFS_OLD:
fmtname = "vfsold";
break;
case QFMT_VFS_V0:
fmtname = "vfsv0";
break;
case QFMT_VFS_V1:
fmtname = "vfsv1";
break;
}
seq_printf(seq, ",jqfmt=%s", fmtname);
}
if (sbi->s_qf_names[USRQUOTA])
seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
if (sbi->s_qf_names[GRPQUOTA])
seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
if (test_opt(sb, USRQUOTA))
seq_puts(seq, ",usrquota");
if (test_opt(sb, GRPQUOTA))
seq_puts(seq, ",grpquota");
#endif
}
static char *data_mode_string(unsigned long mode)
{
switch (mode) {
case EXT3_MOUNT_JOURNAL_DATA:
return "journal";
case EXT3_MOUNT_ORDERED_DATA:
return "ordered";
case EXT3_MOUNT_WRITEBACK_DATA:
return "writeback";
}
return "unknown";
}
/*
* Show an option if
* - it's set to a non-default value OR
* - if the per-sb default is different from the global default
*/
static int ext3_show_options(struct seq_file *seq, struct dentry *root)
{
struct super_block *sb = root->d_sb;
struct ext3_sb_info *sbi = EXT3_SB(sb);
struct ext3_super_block *es = sbi->s_es;
unsigned long def_mount_opts;
def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
if (sbi->s_sb_block != 1)
seq_printf(seq, ",sb=%lu", sbi->s_sb_block);
if (test_opt(sb, MINIX_DF))
seq_puts(seq, ",minixdf");
if (test_opt(sb, GRPID))
seq_puts(seq, ",grpid");
if (!test_opt(sb, GRPID) && (def_mount_opts & EXT3_DEFM_BSDGROUPS))
seq_puts(seq, ",nogrpid");
if (!uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT3_DEF_RESUID)) ||
le16_to_cpu(es->s_def_resuid) != EXT3_DEF_RESUID) {
seq_printf(seq, ",resuid=%u",
from_kuid_munged(&init_user_ns, sbi->s_resuid));
}
if (!gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT3_DEF_RESGID)) ||
le16_to_cpu(es->s_def_resgid) != EXT3_DEF_RESGID) {
seq_printf(seq, ",resgid=%u",
from_kgid_munged(&init_user_ns, sbi->s_resgid));
}
if (test_opt(sb, ERRORS_RO)) {
int def_errors = le16_to_cpu(es->s_errors);
if (def_errors == EXT3_ERRORS_PANIC ||
def_errors == EXT3_ERRORS_CONTINUE) {
seq_puts(seq, ",errors=remount-ro");
}
}
if (test_opt(sb, ERRORS_CONT))
seq_puts(seq, ",errors=continue");
if (test_opt(sb, ERRORS_PANIC))
seq_puts(seq, ",errors=panic");
if (test_opt(sb, NO_UID32))
seq_puts(seq, ",nouid32");
if (test_opt(sb, DEBUG))
seq_puts(seq, ",debug");
#ifdef CONFIG_EXT3_FS_XATTR
if (test_opt(sb, XATTR_USER))
seq_puts(seq, ",user_xattr");
if (!test_opt(sb, XATTR_USER) &&
(def_mount_opts & EXT3_DEFM_XATTR_USER)) {
seq_puts(seq, ",nouser_xattr");
}
#endif
#ifdef CONFIG_EXT3_FS_POSIX_ACL
if (test_opt(sb, POSIX_ACL))
seq_puts(seq, ",acl");
if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT3_DEFM_ACL))
seq_puts(seq, ",noacl");
#endif
if (!test_opt(sb, RESERVATION))
seq_puts(seq, ",noreservation");
if (sbi->s_commit_interval) {
seq_printf(seq, ",commit=%u",
(unsigned) (sbi->s_commit_interval / HZ));
}
/*
* Always display barrier state so it's clear what the status is.
*/
seq_puts(seq, ",barrier=");
seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
seq_printf(seq, ",data=%s", data_mode_string(test_opt(sb, DATA_FLAGS)));
if (test_opt(sb, DATA_ERR_ABORT))
seq_puts(seq, ",data_err=abort");
if (test_opt(sb, NOLOAD))
seq_puts(seq, ",norecovery");
ext3_show_quota_options(seq, sb);
return 0;
}
static struct inode *ext3_nfs_get_inode(struct super_block *sb,
u64 ino, u32 generation)
{
struct inode *inode;
if (ino < EXT3_FIRST_INO(sb) && ino != EXT3_ROOT_INO)
return ERR_PTR(-ESTALE);
if (ino > le32_to_cpu(EXT3_SB(sb)->s_es->s_inodes_count))
return ERR_PTR(-ESTALE);
/* iget isn't really right if the inode is currently unallocated!!
*
* ext3_read_inode will return a bad_inode if the inode had been
* deleted, so we should be safe.
*
* Currently we don't know the generation for parent directory, so
* a generation of 0 means "accept any"
*/
inode = ext3_iget(sb, ino);
if (IS_ERR(inode))
return ERR_CAST(inode);
if (generation && inode->i_generation != generation) {
iput(inode);
return ERR_PTR(-ESTALE);
}
return inode;
}
static struct dentry *ext3_fh_to_dentry(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
ext3_nfs_get_inode);
}
static struct dentry *ext3_fh_to_parent(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
ext3_nfs_get_inode);
}
/*
* Try to release metadata pages (indirect blocks, directories) which are
* mapped via the block device. Since these pages could have journal heads
* which would prevent try_to_free_buffers() from freeing them, we must use
* jbd layer's try_to_free_buffers() function to release them.
*/
static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
gfp_t wait)
{
journal_t *journal = EXT3_SB(sb)->s_journal;
WARN_ON(PageChecked(page));
if (!page_has_buffers(page))
return 0;
if (journal)
return journal_try_to_free_buffers(journal, page,
wait & ~__GFP_WAIT);
return try_to_free_buffers(page);
}
#ifdef CONFIG_QUOTA
#define QTYPE2NAME(t) ((t)==USRQUOTA?"user":"group")
#define QTYPE2MOPT(on, t) ((t)==USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
static int ext3_write_dquot(struct dquot *dquot);
static int ext3_acquire_dquot(struct dquot *dquot);
static int ext3_release_dquot(struct dquot *dquot);
static int ext3_mark_dquot_dirty(struct dquot *dquot);
static int ext3_write_info(struct super_block *sb, int type);
static int ext3_quota_on(struct super_block *sb, int type, int format_id,
struct path *path);
static int ext3_quota_on_mount(struct super_block *sb, int type);
static ssize_t ext3_quota_read(struct super_block *sb, int type, char *data,
size_t len, loff_t off);
static ssize_t ext3_quota_write(struct super_block *sb, int type,
const char *data, size_t len, loff_t off);
static const struct dquot_operations ext3_quota_operations = {
.write_dquot = ext3_write_dquot,
.acquire_dquot = ext3_acquire_dquot,
.release_dquot = ext3_release_dquot,
.mark_dirty = ext3_mark_dquot_dirty,
.write_info = ext3_write_info,
.alloc_dquot = dquot_alloc,
.destroy_dquot = dquot_destroy,
};
static const struct quotactl_ops ext3_qctl_operations = {
.quota_on = ext3_quota_on,
.quota_off = dquot_quota_off,
.quota_sync = dquot_quota_sync,
.get_info = dquot_get_dqinfo,
.set_info = dquot_set_dqinfo,
.get_dqblk = dquot_get_dqblk,
.set_dqblk = dquot_set_dqblk
};
#endif
static const struct super_operations ext3_sops = {
.alloc_inode = ext3_alloc_inode,
.destroy_inode = ext3_destroy_inode,
.write_inode = ext3_write_inode,
.dirty_inode = ext3_dirty_inode,
.drop_inode = ext3_drop_inode,
.evict_inode = ext3_evict_inode,
.put_super = ext3_put_super,
.sync_fs = ext3_sync_fs,
.freeze_fs = ext3_freeze,
.unfreeze_fs = ext3_unfreeze,
.statfs = ext3_statfs,
.remount_fs = ext3_remount,
.show_options = ext3_show_options,
#ifdef CONFIG_QUOTA
.quota_read = ext3_quota_read,
.quota_write = ext3_quota_write,
#endif
.bdev_try_to_free_page = bdev_try_to_free_page,
};
static const struct export_operations ext3_export_ops = {
.fh_to_dentry = ext3_fh_to_dentry,
.fh_to_parent = ext3_fh_to_parent,
.get_parent = ext3_get_parent,
};
enum {
Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
Opt_nouid32, Opt_nocheck, Opt_debug, Opt_oldalloc, Opt_orlov,
Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
Opt_reservation, Opt_noreservation, Opt_noload, Opt_nobh, Opt_bh,
Opt_commit, Opt_journal_update, Opt_journal_inum, Opt_journal_dev,
Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
Opt_data_err_abort, Opt_data_err_ignore,
Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
Opt_resize, Opt_usrquota, Opt_grpquota
};
static const match_table_t tokens = {
{Opt_bsd_df, "bsddf"},
{Opt_minix_df, "minixdf"},
{Opt_grpid, "grpid"},
{Opt_grpid, "bsdgroups"},
{Opt_nogrpid, "nogrpid"},
{Opt_nogrpid, "sysvgroups"},
{Opt_resgid, "resgid=%u"},
{Opt_resuid, "resuid=%u"},
{Opt_sb, "sb=%u"},
{Opt_err_cont, "errors=continue"},
{Opt_err_panic, "errors=panic"},
{Opt_err_ro, "errors=remount-ro"},
{Opt_nouid32, "nouid32"},
{Opt_nocheck, "nocheck"},
{Opt_nocheck, "check=none"},
{Opt_debug, "debug"},
{Opt_oldalloc, "oldalloc"},
{Opt_orlov, "orlov"},
{Opt_user_xattr, "user_xattr"},
{Opt_nouser_xattr, "nouser_xattr"},
{Opt_acl, "acl"},
{Opt_noacl, "noacl"},
{Opt_reservation, "reservation"},
{Opt_noreservation, "noreservation"},
{Opt_noload, "noload"},
{Opt_noload, "norecovery"},
{Opt_nobh, "nobh"},
{Opt_bh, "bh"},
{Opt_commit, "commit=%u"},
{Opt_journal_update, "journal=update"},
{Opt_journal_inum, "journal=%u"},
{Opt_journal_dev, "journal_dev=%u"},
{Opt_abort, "abort"},
{Opt_data_journal, "data=journal"},
{Opt_data_ordered, "data=ordered"},
{Opt_data_writeback, "data=writeback"},
{Opt_data_err_abort, "data_err=abort"},
{Opt_data_err_ignore, "data_err=ignore"},
{Opt_offusrjquota, "usrjquota="},
{Opt_usrjquota, "usrjquota=%s"},
{Opt_offgrpjquota, "grpjquota="},
{Opt_grpjquota, "grpjquota=%s"},
{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
{Opt_grpquota, "grpquota"},
{Opt_noquota, "noquota"},
{Opt_quota, "quota"},
{Opt_usrquota, "usrquota"},
{Opt_barrier, "barrier=%u"},
{Opt_barrier, "barrier"},
{Opt_nobarrier, "nobarrier"},
{Opt_resize, "resize"},
{Opt_err, NULL},
};
static ext3_fsblk_t get_sb_block(void **data, struct super_block *sb)
{
ext3_fsblk_t sb_block;
char *options = (char *) *data;
if (!options || strncmp(options, "sb=", 3) != 0)
return 1; /* Default location */
options += 3;
/*todo: use simple_strtoll with >32bit ext3 */
sb_block = simple_strtoul(options, &options, 0);
if (*options && *options != ',') {
ext3_msg(sb, "error: invalid sb specification: %s",
(char *) *data);
return 1;
}
if (*options == ',')
options++;
*data = (void *) options;
return sb_block;
}
#ifdef CONFIG_QUOTA
static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
char *qname;
if (sb_any_quota_loaded(sb) &&
!sbi->s_qf_names[qtype]) {
ext3_msg(sb, KERN_ERR,
"Cannot change journaled "
"quota options when quota turned on");
return 0;
}
qname = match_strdup(args);
if (!qname) {
ext3_msg(sb, KERN_ERR,
"Not enough memory for storing quotafile name");
return 0;
}
if (sbi->s_qf_names[qtype]) {
int same = !strcmp(sbi->s_qf_names[qtype], qname);
kfree(qname);
if (!same) {
ext3_msg(sb, KERN_ERR,
"%s quota file already specified",
QTYPE2NAME(qtype));
}
return same;
}
if (strchr(qname, '/')) {
ext3_msg(sb, KERN_ERR,
"quotafile must be on filesystem root");
kfree(qname);
return 0;
}
sbi->s_qf_names[qtype] = qname;
set_opt(sbi->s_mount_opt, QUOTA);
return 1;
}
static int clear_qf_name(struct super_block *sb, int qtype) {
struct ext3_sb_info *sbi = EXT3_SB(sb);
if (sb_any_quota_loaded(sb) &&
sbi->s_qf_names[qtype]) {
ext3_msg(sb, KERN_ERR, "Cannot change journaled quota options"
" when quota turned on");
return 0;
}
if (sbi->s_qf_names[qtype]) {
kfree(sbi->s_qf_names[qtype]);
sbi->s_qf_names[qtype] = NULL;
}
return 1;
}
#endif
static int parse_options (char *options, struct super_block *sb,
unsigned int *inum, unsigned long *journal_devnum,
ext3_fsblk_t *n_blocks_count, int is_remount)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
char * p;
substring_t args[MAX_OPT_ARGS];
int data_opt = 0;
int option;
kuid_t uid;
kgid_t gid;
#ifdef CONFIG_QUOTA
int qfmt;
#endif
if (!options)
return 1;
while ((p = strsep (&options, ",")) != NULL) {
int token;
if (!*p)
continue;
/*
* Initialize args struct so we know whether arg was
* found; some options take optional arguments.
*/
args[0].to = args[0].from = NULL;
token = match_token(p, tokens, args);
switch (token) {
case Opt_bsd_df:
clear_opt (sbi->s_mount_opt, MINIX_DF);
break;
case Opt_minix_df:
set_opt (sbi->s_mount_opt, MINIX_DF);
break;
case Opt_grpid:
set_opt (sbi->s_mount_opt, GRPID);
break;
case Opt_nogrpid:
clear_opt (sbi->s_mount_opt, GRPID);
break;
case Opt_resuid:
if (match_int(&args[0], &option))
return 0;
uid = make_kuid(current_user_ns(), option);
if (!uid_valid(uid)) {
ext3_msg(sb, KERN_ERR, "Invalid uid value %d", option);
return 0;
}
sbi->s_resuid = uid;
break;
case Opt_resgid:
if (match_int(&args[0], &option))
return 0;
gid = make_kgid(current_user_ns(), option);
if (!gid_valid(gid)) {
ext3_msg(sb, KERN_ERR, "Invalid gid value %d", option);
return 0;
}
sbi->s_resgid = gid;
break;
case Opt_sb:
/* handled by get_sb_block() instead of here */
/* *sb_block = match_int(&args[0]); */
break;
case Opt_err_panic:
clear_opt (sbi->s_mount_opt, ERRORS_CONT);
clear_opt (sbi->s_mount_opt, ERRORS_RO);
set_opt (sbi->s_mount_opt, ERRORS_PANIC);
break;
case Opt_err_ro:
clear_opt (sbi->s_mount_opt, ERRORS_CONT);
clear_opt (sbi->s_mount_opt, ERRORS_PANIC);
set_opt (sbi->s_mount_opt, ERRORS_RO);
break;
case Opt_err_cont:
clear_opt (sbi->s_mount_opt, ERRORS_RO);
clear_opt (sbi->s_mount_opt, ERRORS_PANIC);
set_opt (sbi->s_mount_opt, ERRORS_CONT);
break;
case Opt_nouid32:
set_opt (sbi->s_mount_opt, NO_UID32);
break;
case Opt_nocheck:
clear_opt (sbi->s_mount_opt, CHECK);
break;
case Opt_debug:
set_opt (sbi->s_mount_opt, DEBUG);
break;
case Opt_oldalloc:
ext3_msg(sb, KERN_WARNING,
"Ignoring deprecated oldalloc option");
break;
case Opt_orlov:
ext3_msg(sb, KERN_WARNING,
"Ignoring deprecated orlov option");
break;
#ifdef CONFIG_EXT3_FS_XATTR
case Opt_user_xattr:
set_opt (sbi->s_mount_opt, XATTR_USER);
break;
case Opt_nouser_xattr:
clear_opt (sbi->s_mount_opt, XATTR_USER);
break;
#else
case Opt_user_xattr:
case Opt_nouser_xattr:
ext3_msg(sb, KERN_INFO,
"(no)user_xattr options not supported");
break;
#endif
#ifdef CONFIG_EXT3_FS_POSIX_ACL
case Opt_acl:
set_opt(sbi->s_mount_opt, POSIX_ACL);
break;
case Opt_noacl:
clear_opt(sbi->s_mount_opt, POSIX_ACL);
break;
#else
case Opt_acl:
case Opt_noacl:
ext3_msg(sb, KERN_INFO,
"(no)acl options not supported");
break;
#endif
case Opt_reservation:
set_opt(sbi->s_mount_opt, RESERVATION);
break;
case Opt_noreservation:
clear_opt(sbi->s_mount_opt, RESERVATION);
break;
case Opt_journal_update:
/* @@@ FIXME */
/* Eventually we will want to be able to create
a journal file here. For now, only allow the
user to specify an existing inode to be the
journal file. */
if (is_remount) {
ext3_msg(sb, KERN_ERR, "error: cannot specify "
"journal on remount");
return 0;
}
set_opt (sbi->s_mount_opt, UPDATE_JOURNAL);
break;
case Opt_journal_inum:
if (is_remount) {
ext3_msg(sb, KERN_ERR, "error: cannot specify "
"journal on remount");
return 0;
}
if (match_int(&args[0], &option))
return 0;
*inum = option;
break;
case Opt_journal_dev:
if (is_remount) {
ext3_msg(sb, KERN_ERR, "error: cannot specify "
"journal on remount");
return 0;
}
if (match_int(&args[0], &option))
return 0;
*journal_devnum = option;
break;
case Opt_noload:
set_opt (sbi->s_mount_opt, NOLOAD);
break;
case Opt_commit:
if (match_int(&args[0], &option))
return 0;
if (option < 0)
return 0;
if (option == 0)
option = JBD_DEFAULT_MAX_COMMIT_AGE;
sbi->s_commit_interval = HZ * option;
break;
case Opt_data_journal:
data_opt = EXT3_MOUNT_JOURNAL_DATA;
goto datacheck;
case Opt_data_ordered:
data_opt = EXT3_MOUNT_ORDERED_DATA;
goto datacheck;
case Opt_data_writeback:
data_opt = EXT3_MOUNT_WRITEBACK_DATA;
datacheck:
if (is_remount) {
if (test_opt(sb, DATA_FLAGS) == data_opt)
break;
ext3_msg(sb, KERN_ERR,
"error: cannot change "
"data mode on remount. The filesystem "
"is mounted in data=%s mode and you "
"try to remount it in data=%s mode.",
data_mode_string(test_opt(sb,
DATA_FLAGS)),
data_mode_string(data_opt));
return 0;
} else {
clear_opt(sbi->s_mount_opt, DATA_FLAGS);
sbi->s_mount_opt |= data_opt;
}
break;
case Opt_data_err_abort:
set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
break;
case Opt_data_err_ignore:
clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
break;
#ifdef CONFIG_QUOTA
case Opt_usrjquota:
if (!set_qf_name(sb, USRQUOTA, &args[0]))
return 0;
break;
case Opt_grpjquota:
if (!set_qf_name(sb, GRPQUOTA, &args[0]))
return 0;
break;
case Opt_offusrjquota:
if (!clear_qf_name(sb, USRQUOTA))
return 0;
break;
case Opt_offgrpjquota:
if (!clear_qf_name(sb, GRPQUOTA))
return 0;
break;
case Opt_jqfmt_vfsold:
qfmt = QFMT_VFS_OLD;
goto set_qf_format;
case Opt_jqfmt_vfsv0:
qfmt = QFMT_VFS_V0;
goto set_qf_format;
case Opt_jqfmt_vfsv1:
qfmt = QFMT_VFS_V1;
set_qf_format:
if (sb_any_quota_loaded(sb) &&
sbi->s_jquota_fmt != qfmt) {
ext3_msg(sb, KERN_ERR, "error: cannot change "
"journaled quota options when "
"quota turned on.");
return 0;
}
sbi->s_jquota_fmt = qfmt;
break;
case Opt_quota:
case Opt_usrquota:
set_opt(sbi->s_mount_opt, QUOTA);
set_opt(sbi->s_mount_opt, USRQUOTA);
break;
case Opt_grpquota:
set_opt(sbi->s_mount_opt, QUOTA);
set_opt(sbi->s_mount_opt, GRPQUOTA);
break;
case Opt_noquota:
if (sb_any_quota_loaded(sb)) {
ext3_msg(sb, KERN_ERR, "error: cannot change "
"quota options when quota turned on.");
return 0;
}
clear_opt(sbi->s_mount_opt, QUOTA);
clear_opt(sbi->s_mount_opt, USRQUOTA);
clear_opt(sbi->s_mount_opt, GRPQUOTA);
break;
#else
case Opt_quota:
case Opt_usrquota:
case Opt_grpquota:
ext3_msg(sb, KERN_ERR,
"error: quota options not supported.");
break;
case Opt_usrjquota:
case Opt_grpjquota:
case Opt_offusrjquota:
case Opt_offgrpjquota:
case Opt_jqfmt_vfsold:
case Opt_jqfmt_vfsv0:
case Opt_jqfmt_vfsv1:
ext3_msg(sb, KERN_ERR,
"error: journaled quota options not "
"supported.");
break;
case Opt_noquota:
break;
#endif
case Opt_abort:
set_opt(sbi->s_mount_opt, ABORT);
break;
case Opt_nobarrier:
clear_opt(sbi->s_mount_opt, BARRIER);
break;
case Opt_barrier:
if (args[0].from) {
if (match_int(&args[0], &option))
return 0;
} else
option = 1; /* No argument, default to 1 */
if (option)
set_opt(sbi->s_mount_opt, BARRIER);
else
clear_opt(sbi->s_mount_opt, BARRIER);
break;
case Opt_ignore:
break;
case Opt_resize:
if (!is_remount) {
ext3_msg(sb, KERN_ERR,
"error: resize option only available "
"for remount");
return 0;
}
if (match_int(&args[0], &option) != 0)
return 0;
*n_blocks_count = option;
break;
case Opt_nobh:
ext3_msg(sb, KERN_WARNING,
"warning: ignoring deprecated nobh option");
break;
case Opt_bh:
ext3_msg(sb, KERN_WARNING,
"warning: ignoring deprecated bh option");
break;
default:
ext3_msg(sb, KERN_ERR,
"error: unrecognized mount option \"%s\" "
"or missing value", p);
return 0;
}
}
#ifdef CONFIG_QUOTA
if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
clear_opt(sbi->s_mount_opt, USRQUOTA);
if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
clear_opt(sbi->s_mount_opt, GRPQUOTA);
if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
ext3_msg(sb, KERN_ERR, "error: old and new quota "
"format mixing.");
return 0;
}
if (!sbi->s_jquota_fmt) {
ext3_msg(sb, KERN_ERR, "error: journaled quota format "
"not specified.");
return 0;
}
} else {
if (sbi->s_jquota_fmt) {
ext3_msg(sb, KERN_ERR, "error: journaled quota format "
"specified with no journaling "
"enabled.");
return 0;
}
}
#endif
return 1;
}
static int ext3_setup_super(struct super_block *sb, struct ext3_super_block *es,
int read_only)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
int res = 0;
if (le32_to_cpu(es->s_rev_level) > EXT3_MAX_SUPP_REV) {
ext3_msg(sb, KERN_ERR,
"error: revision level too high, "
"forcing read-only mode");
res = MS_RDONLY;
}
if (read_only)
return res;
if (!(sbi->s_mount_state & EXT3_VALID_FS))
ext3_msg(sb, KERN_WARNING,
"warning: mounting unchecked fs, "
"running e2fsck is recommended");
else if ((sbi->s_mount_state & EXT3_ERROR_FS))
ext3_msg(sb, KERN_WARNING,
"warning: mounting fs with errors, "
"running e2fsck is recommended");
else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
le16_to_cpu(es->s_mnt_count) >=
le16_to_cpu(es->s_max_mnt_count))
ext3_msg(sb, KERN_WARNING,
"warning: maximal mount count reached, "
"running e2fsck is recommended");
else if (le32_to_cpu(es->s_checkinterval) &&
(le32_to_cpu(es->s_lastcheck) +
le32_to_cpu(es->s_checkinterval) <= get_seconds()))
ext3_msg(sb, KERN_WARNING,
"warning: checktime reached, "
"running e2fsck is recommended");
#if 0
/* @@@ We _will_ want to clear the valid bit if we find
inconsistencies, to force a fsck at reboot. But for
a plain journaled filesystem we can keep it set as
valid forever! :) */
es->s_state &= cpu_to_le16(~EXT3_VALID_FS);
#endif
if (!le16_to_cpu(es->s_max_mnt_count))
es->s_max_mnt_count = cpu_to_le16(EXT3_DFL_MAX_MNT_COUNT);
le16_add_cpu(&es->s_mnt_count, 1);
es->s_mtime = cpu_to_le32(get_seconds());
ext3_update_dynamic_rev(sb);
EXT3_SET_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER);
ext3_commit_super(sb, es, 1);
if (test_opt(sb, DEBUG))
ext3_msg(sb, KERN_INFO, "[bs=%lu, gc=%lu, "
"bpg=%lu, ipg=%lu, mo=%04lx]",
sb->s_blocksize,
sbi->s_groups_count,
EXT3_BLOCKS_PER_GROUP(sb),
EXT3_INODES_PER_GROUP(sb),
sbi->s_mount_opt);
if (EXT3_SB(sb)->s_journal->j_inode == NULL) {
char b[BDEVNAME_SIZE];
ext3_msg(sb, KERN_INFO, "using external journal on %s",
bdevname(EXT3_SB(sb)->s_journal->j_dev, b));
} else {
ext3_msg(sb, KERN_INFO, "using internal journal");
}
cleancache_init_fs(sb);
return res;
}
/* Called at mount-time, super-block is locked */
static int ext3_check_descriptors(struct super_block *sb)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
int i;
ext3_debug ("Checking group descriptors");
for (i = 0; i < sbi->s_groups_count; i++) {
struct ext3_group_desc *gdp = ext3_get_group_desc(sb, i, NULL);
ext3_fsblk_t first_block = ext3_group_first_block_no(sb, i);
ext3_fsblk_t last_block;
if (i == sbi->s_groups_count - 1)
last_block = le32_to_cpu(sbi->s_es->s_blocks_count) - 1;
else
last_block = first_block +
(EXT3_BLOCKS_PER_GROUP(sb) - 1);
if (le32_to_cpu(gdp->bg_block_bitmap) < first_block ||
le32_to_cpu(gdp->bg_block_bitmap) > last_block)
{
ext3_error (sb, "ext3_check_descriptors",
"Block bitmap for group %d"
" not in group (block %lu)!",
i, (unsigned long)
le32_to_cpu(gdp->bg_block_bitmap));
return 0;
}
if (le32_to_cpu(gdp->bg_inode_bitmap) < first_block ||
le32_to_cpu(gdp->bg_inode_bitmap) > last_block)
{
ext3_error (sb, "ext3_check_descriptors",
"Inode bitmap for group %d"
" not in group (block %lu)!",
i, (unsigned long)
le32_to_cpu(gdp->bg_inode_bitmap));
return 0;
}
if (le32_to_cpu(gdp->bg_inode_table) < first_block ||
le32_to_cpu(gdp->bg_inode_table) + sbi->s_itb_per_group - 1 >
last_block)
{
ext3_error (sb, "ext3_check_descriptors",
"Inode table for group %d"
" not in group (block %lu)!",
i, (unsigned long)
le32_to_cpu(gdp->bg_inode_table));
return 0;
}
}
sbi->s_es->s_free_blocks_count=cpu_to_le32(ext3_count_free_blocks(sb));
sbi->s_es->s_free_inodes_count=cpu_to_le32(ext3_count_free_inodes(sb));
return 1;
}
/* ext3_orphan_cleanup() walks a singly-linked list of inodes (starting at
* the superblock) which were deleted from all directories, but held open by
* a process at the time of a crash. We walk the list and try to delete these
* inodes at recovery time (only with a read-write filesystem).
*
* In order to keep the orphan inode chain consistent during traversal (in
* case of crash during recovery), we link each inode into the superblock
* orphan list_head and handle it the same way as an inode deletion during
* normal operation (which journals the operations for us).
*
* We only do an iget() and an iput() on each inode, which is very safe if we
* accidentally point at an in-use or already deleted inode. The worst that
* can happen in this case is that we get a "bit already cleared" message from
* ext3_free_inode(). The only reason we would point at a wrong inode is if
* e2fsck was run on this filesystem, and it must have already done the orphan
* inode cleanup for us, so we can safely abort without any further action.
*/
static void ext3_orphan_cleanup (struct super_block * sb,
struct ext3_super_block * es)
{
unsigned int s_flags = sb->s_flags;
int nr_orphans = 0, nr_truncates = 0;
#ifdef CONFIG_QUOTA
int i;
#endif
if (!es->s_last_orphan) {
jbd_debug(4, "no orphan inodes to clean up\n");
return;
}
if (bdev_read_only(sb->s_bdev)) {
ext3_msg(sb, KERN_ERR, "error: write access "
"unavailable, skipping orphan cleanup.");
return;
}
/* Check if feature set allows readwrite operations */
if (EXT3_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) {
ext3_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
"unknown ROCOMPAT features");
return;
}
if (EXT3_SB(sb)->s_mount_state & EXT3_ERROR_FS) {
/* don't clear list on RO mount w/ errors */
if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
jbd_debug(1, "Errors on filesystem, "
"clearing orphan list.\n");
es->s_last_orphan = 0;
}
jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
return;
}
if (s_flags & MS_RDONLY) {
ext3_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
sb->s_flags &= ~MS_RDONLY;
}
#ifdef CONFIG_QUOTA
/* Needed for iput() to work correctly and not trash data */
sb->s_flags |= MS_ACTIVE;
/* Turn on quotas so that they are updated correctly */
for (i = 0; i < MAXQUOTAS; i++) {
if (EXT3_SB(sb)->s_qf_names[i]) {
int ret = ext3_quota_on_mount(sb, i);
if (ret < 0)
ext3_msg(sb, KERN_ERR,
"error: cannot turn on journaled "
"quota: %d", ret);
}
}
#endif
while (es->s_last_orphan) {
struct inode *inode;
inode = ext3_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
if (IS_ERR(inode)) {
es->s_last_orphan = 0;
break;
}
list_add(&EXT3_I(inode)->i_orphan, &EXT3_SB(sb)->s_orphan);
dquot_initialize(inode);
if (inode->i_nlink) {
printk(KERN_DEBUG
"%s: truncating inode %lu to %Ld bytes\n",
__func__, inode->i_ino, inode->i_size);
jbd_debug(2, "truncating inode %lu to %Ld bytes\n",
inode->i_ino, inode->i_size);
ext3_truncate(inode);
nr_truncates++;
} else {
printk(KERN_DEBUG
"%s: deleting unreferenced inode %lu\n",
__func__, inode->i_ino);
jbd_debug(2, "deleting unreferenced inode %lu\n",
inode->i_ino);
nr_orphans++;
}
iput(inode); /* The delete magic happens here! */
}
#define PLURAL(x) (x), ((x)==1) ? "" : "s"
if (nr_orphans)
ext3_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
PLURAL(nr_orphans));
if (nr_truncates)
ext3_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
PLURAL(nr_truncates));
#ifdef CONFIG_QUOTA
/* Turn quotas off */
for (i = 0; i < MAXQUOTAS; i++) {
if (sb_dqopt(sb)->files[i])
dquot_quota_off(sb, i);
}
#endif
sb->s_flags = s_flags; /* Restore MS_RDONLY status */
}
/*
* Maximal file size. There is a direct, and {,double-,triple-}indirect
* block limit, and also a limit of (2^32 - 1) 512-byte sectors in i_blocks.
* We need to be 1 filesystem block less than the 2^32 sector limit.
*/
static loff_t ext3_max_size(int bits)
{
loff_t res = EXT3_NDIR_BLOCKS;
int meta_blocks;
loff_t upper_limit;
/* This is calculated to be the largest file size for a
* dense, file such that the total number of
* sectors in the file, including data and all indirect blocks,
* does not exceed 2^32 -1
* __u32 i_blocks representing the total number of
* 512 bytes blocks of the file
*/
upper_limit = (1LL << 32) - 1;
/* total blocks in file system block size */
upper_limit >>= (bits - 9);
/* indirect blocks */
meta_blocks = 1;
/* double indirect blocks */
meta_blocks += 1 + (1LL << (bits-2));
/* tripple indirect blocks */
meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
upper_limit -= meta_blocks;
upper_limit <<= bits;
res += 1LL << (bits-2);
res += 1LL << (2*(bits-2));
res += 1LL << (3*(bits-2));
res <<= bits;
if (res > upper_limit)
res = upper_limit;
if (res > MAX_LFS_FILESIZE)
res = MAX_LFS_FILESIZE;
return res;
}
static ext3_fsblk_t descriptor_loc(struct super_block *sb,
ext3_fsblk_t logic_sb_block,
int nr)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
unsigned long bg, first_meta_bg;
int has_super = 0;
first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
if (!EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_META_BG) ||
nr < first_meta_bg)
return (logic_sb_block + nr + 1);
bg = sbi->s_desc_per_block * nr;
if (ext3_bg_has_super(sb, bg))
has_super = 1;
return (has_super + ext3_group_first_block_no(sb, bg));
}
static int ext3_fill_super (struct super_block *sb, void *data, int silent)
{
struct buffer_head * bh;
struct ext3_super_block *es = NULL;
struct ext3_sb_info *sbi;
ext3_fsblk_t block;
ext3_fsblk_t sb_block = get_sb_block(&data, sb);
ext3_fsblk_t logic_sb_block;
unsigned long offset = 0;
unsigned int journal_inum = 0;
unsigned long journal_devnum = 0;
unsigned long def_mount_opts;
struct inode *root;
int blocksize;
int hblock;
int db_count;
int i;
int needs_recovery;
int ret = -EINVAL;
__le32 features;
int err;
sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
sbi->s_blockgroup_lock =
kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
if (!sbi->s_blockgroup_lock) {
kfree(sbi);
return -ENOMEM;
}
sb->s_fs_info = sbi;
sbi->s_sb_block = sb_block;
blocksize = sb_min_blocksize(sb, EXT3_MIN_BLOCK_SIZE);
if (!blocksize) {
ext3_msg(sb, KERN_ERR, "error: unable to set blocksize");
goto out_fail;
}
/*
* The ext3 superblock will not be buffer aligned for other than 1kB
* block sizes. We need to calculate the offset from buffer start.
*/
if (blocksize != EXT3_MIN_BLOCK_SIZE) {
logic_sb_block = (sb_block * EXT3_MIN_BLOCK_SIZE) / blocksize;
offset = (sb_block * EXT3_MIN_BLOCK_SIZE) % blocksize;
} else {
logic_sb_block = sb_block;
}
if (!(bh = sb_bread(sb, logic_sb_block))) {
ext3_msg(sb, KERN_ERR, "error: unable to read superblock");
goto out_fail;
}
/*
* Note: s_es must be initialized as soon as possible because
* some ext3 macro-instructions depend on its value
*/
es = (struct ext3_super_block *) (bh->b_data + offset);
sbi->s_es = es;
sb->s_magic = le16_to_cpu(es->s_magic);
if (sb->s_magic != EXT3_SUPER_MAGIC)
goto cantfind_ext3;
/* Set defaults before we parse the mount options */
def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
if (def_mount_opts & EXT3_DEFM_DEBUG)
set_opt(sbi->s_mount_opt, DEBUG);
if (def_mount_opts & EXT3_DEFM_BSDGROUPS)
set_opt(sbi->s_mount_opt, GRPID);
if (def_mount_opts & EXT3_DEFM_UID16)
set_opt(sbi->s_mount_opt, NO_UID32);
#ifdef CONFIG_EXT3_FS_XATTR
if (def_mount_opts & EXT3_DEFM_XATTR_USER)
set_opt(sbi->s_mount_opt, XATTR_USER);
#endif
#ifdef CONFIG_EXT3_FS_POSIX_ACL
if (def_mount_opts & EXT3_DEFM_ACL)
set_opt(sbi->s_mount_opt, POSIX_ACL);
#endif
if ((def_mount_opts & EXT3_DEFM_JMODE) == EXT3_DEFM_JMODE_DATA)
set_opt(sbi->s_mount_opt, JOURNAL_DATA);
else if ((def_mount_opts & EXT3_DEFM_JMODE) == EXT3_DEFM_JMODE_ORDERED)
set_opt(sbi->s_mount_opt, ORDERED_DATA);
else if ((def_mount_opts & EXT3_DEFM_JMODE) == EXT3_DEFM_JMODE_WBACK)
set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
if (le16_to_cpu(sbi->s_es->s_errors) == EXT3_ERRORS_PANIC)
set_opt(sbi->s_mount_opt, ERRORS_PANIC);
else if (le16_to_cpu(sbi->s_es->s_errors) == EXT3_ERRORS_CONTINUE)
set_opt(sbi->s_mount_opt, ERRORS_CONT);
else
set_opt(sbi->s_mount_opt, ERRORS_RO);
sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
/* enable barriers by default */
set_opt(sbi->s_mount_opt, BARRIER);
set_opt(sbi->s_mount_opt, RESERVATION);
if (!parse_options ((char *) data, sb, &journal_inum, &journal_devnum,
NULL, 0))
goto failed_mount;
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
if (le32_to_cpu(es->s_rev_level) == EXT3_GOOD_OLD_REV &&
(EXT3_HAS_COMPAT_FEATURE(sb, ~0U) ||
EXT3_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
EXT3_HAS_INCOMPAT_FEATURE(sb, ~0U)))
ext3_msg(sb, KERN_WARNING,
"warning: feature flags set on rev 0 fs, "
"running e2fsck is recommended");
/*
* Check feature flags regardless of the revision level, since we
* previously didn't change the revision level when setting the flags,
* so there is a chance incompat flags are set on a rev 0 filesystem.
*/
features = EXT3_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP);
if (features) {
ext3_msg(sb, KERN_ERR,
"error: couldn't mount because of unsupported "
"optional features (%x)", le32_to_cpu(features));
goto failed_mount;
}
features = EXT3_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP);
if (!(sb->s_flags & MS_RDONLY) && features) {
ext3_msg(sb, KERN_ERR,
"error: couldn't mount RDWR because of unsupported "
"optional features (%x)", le32_to_cpu(features));
goto failed_mount;
}
blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
if (blocksize < EXT3_MIN_BLOCK_SIZE ||
blocksize > EXT3_MAX_BLOCK_SIZE) {
ext3_msg(sb, KERN_ERR,
"error: couldn't mount because of unsupported "
"filesystem blocksize %d", blocksize);
goto failed_mount;
}
hblock = bdev_logical_block_size(sb->s_bdev);
if (sb->s_blocksize != blocksize) {
/*
* Make sure the blocksize for the filesystem is larger
* than the hardware sectorsize for the machine.
*/
if (blocksize < hblock) {
ext3_msg(sb, KERN_ERR,
"error: fsblocksize %d too small for "
"hardware sectorsize %d", blocksize, hblock);
goto failed_mount;
}
brelse (bh);
if (!sb_set_blocksize(sb, blocksize)) {
ext3_msg(sb, KERN_ERR,
"error: bad blocksize %d", blocksize);
goto out_fail;
}
logic_sb_block = (sb_block * EXT3_MIN_BLOCK_SIZE) / blocksize;
offset = (sb_block * EXT3_MIN_BLOCK_SIZE) % blocksize;
bh = sb_bread(sb, logic_sb_block);
if (!bh) {
ext3_msg(sb, KERN_ERR,
"error: can't read superblock on 2nd try");
goto failed_mount;
}
es = (struct ext3_super_block *)(bh->b_data + offset);
sbi->s_es = es;
if (es->s_magic != cpu_to_le16(EXT3_SUPER_MAGIC)) {
ext3_msg(sb, KERN_ERR,
"error: magic mismatch");
goto failed_mount;
}
}
sb->s_maxbytes = ext3_max_size(sb->s_blocksize_bits);
if (le32_to_cpu(es->s_rev_level) == EXT3_GOOD_OLD_REV) {
sbi->s_inode_size = EXT3_GOOD_OLD_INODE_SIZE;
sbi->s_first_ino = EXT3_GOOD_OLD_FIRST_INO;
} else {
sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
if ((sbi->s_inode_size < EXT3_GOOD_OLD_INODE_SIZE) ||
(!is_power_of_2(sbi->s_inode_size)) ||
(sbi->s_inode_size > blocksize)) {
ext3_msg(sb, KERN_ERR,
"error: unsupported inode size: %d",
sbi->s_inode_size);
goto failed_mount;
}
}
sbi->s_frag_size = EXT3_MIN_FRAG_SIZE <<
le32_to_cpu(es->s_log_frag_size);
if (blocksize != sbi->s_frag_size) {
ext3_msg(sb, KERN_ERR,
"error: fragsize %lu != blocksize %u (unsupported)",
sbi->s_frag_size, blocksize);
goto failed_mount;
}
sbi->s_frags_per_block = 1;
sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
sbi->s_frags_per_group = le32_to_cpu(es->s_frags_per_group);
sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
if (EXT3_INODE_SIZE(sb) == 0 || EXT3_INODES_PER_GROUP(sb) == 0)
goto cantfind_ext3;
sbi->s_inodes_per_block = blocksize / EXT3_INODE_SIZE(sb);
if (sbi->s_inodes_per_block == 0)
goto cantfind_ext3;
sbi->s_itb_per_group = sbi->s_inodes_per_group /
sbi->s_inodes_per_block;
sbi->s_desc_per_block = blocksize / sizeof(struct ext3_group_desc);
sbi->s_sbh = bh;
sbi->s_mount_state = le16_to_cpu(es->s_state);
sbi->s_addr_per_block_bits = ilog2(EXT3_ADDR_PER_BLOCK(sb));
sbi->s_desc_per_block_bits = ilog2(EXT3_DESC_PER_BLOCK(sb));
for (i=0; i < 4; i++)
sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
sbi->s_def_hash_version = es->s_def_hash_version;
i = le32_to_cpu(es->s_flags);
if (i & EXT2_FLAGS_UNSIGNED_HASH)
sbi->s_hash_unsigned = 3;
else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
#ifdef __CHAR_UNSIGNED__
es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
sbi->s_hash_unsigned = 3;
#else
es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
#endif
}
if (sbi->s_blocks_per_group > blocksize * 8) {
ext3_msg(sb, KERN_ERR,
"#blocks per group too big: %lu",
sbi->s_blocks_per_group);
goto failed_mount;
}
if (sbi->s_frags_per_group > blocksize * 8) {
ext3_msg(sb, KERN_ERR,
"error: #fragments per group too big: %lu",
sbi->s_frags_per_group);
goto failed_mount;
}
if (sbi->s_inodes_per_group > blocksize * 8) {
ext3_msg(sb, KERN_ERR,
"error: #inodes per group too big: %lu",
sbi->s_inodes_per_group);
goto failed_mount;
}
err = generic_check_addressable(sb->s_blocksize_bits,
le32_to_cpu(es->s_blocks_count));
if (err) {
ext3_msg(sb, KERN_ERR,
"error: filesystem is too large to mount safely");
if (sizeof(sector_t) < 8)
ext3_msg(sb, KERN_ERR,
"error: CONFIG_LBDAF not enabled");
ret = err;
goto failed_mount;
}
if (EXT3_BLOCKS_PER_GROUP(sb) == 0)
goto cantfind_ext3;
sbi->s_groups_count = ((le32_to_cpu(es->s_blocks_count) -
le32_to_cpu(es->s_first_data_block) - 1)
/ EXT3_BLOCKS_PER_GROUP(sb)) + 1;
db_count = DIV_ROUND_UP(sbi->s_groups_count, EXT3_DESC_PER_BLOCK(sb));
sbi->s_group_desc = kmalloc(db_count * sizeof (struct buffer_head *),
GFP_KERNEL);
if (sbi->s_group_desc == NULL) {
ext3_msg(sb, KERN_ERR,
"error: not enough memory");
ret = -ENOMEM;
goto failed_mount;
}
bgl_lock_init(sbi->s_blockgroup_lock);
for (i = 0; i < db_count; i++) {
block = descriptor_loc(sb, logic_sb_block, i);
sbi->s_group_desc[i] = sb_bread(sb, block);
if (!sbi->s_group_desc[i]) {
ext3_msg(sb, KERN_ERR,
"error: can't read group descriptor %d", i);
db_count = i;
goto failed_mount2;
}
}
if (!ext3_check_descriptors (sb)) {
ext3_msg(sb, KERN_ERR,
"error: group descriptors corrupted");
goto failed_mount2;
}
sbi->s_gdb_count = db_count;
get_random_bytes(&sbi->s_next_generation, sizeof(u32));
spin_lock_init(&sbi->s_next_gen_lock);
/* per fileystem reservation list head & lock */
spin_lock_init(&sbi->s_rsv_window_lock);
sbi->s_rsv_window_root = RB_ROOT;
/* Add a single, static dummy reservation to the start of the
* reservation window list --- it gives us a placeholder for
* append-at-start-of-list which makes the allocation logic
* _much_ simpler. */
sbi->s_rsv_window_head.rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
sbi->s_rsv_window_head.rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
sbi->s_rsv_window_head.rsv_alloc_hit = 0;
sbi->s_rsv_window_head.rsv_goal_size = 0;
ext3_rsv_window_add(sb, &sbi->s_rsv_window_head);
/*
* set up enough so that it can read an inode
*/
sb->s_op = &ext3_sops;
sb->s_export_op = &ext3_export_ops;
sb->s_xattr = ext3_xattr_handlers;
#ifdef CONFIG_QUOTA
sb->s_qcop = &ext3_qctl_operations;
sb->dq_op = &ext3_quota_operations;
#endif
memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
mutex_init(&sbi->s_orphan_lock);
mutex_init(&sbi->s_resize_lock);
sb->s_root = NULL;
needs_recovery = (es->s_last_orphan != 0 ||
EXT3_HAS_INCOMPAT_FEATURE(sb,
EXT3_FEATURE_INCOMPAT_RECOVER));
/*
* The first inode we look at is the journal inode. Don't try
* root first: it may be modified in the journal!
*/
if (!test_opt(sb, NOLOAD) &&
EXT3_HAS_COMPAT_FEATURE(sb, EXT3_FEATURE_COMPAT_HAS_JOURNAL)) {
if (ext3_load_journal(sb, es, journal_devnum))
goto failed_mount2;
} else if (journal_inum) {
if (ext3_create_journal(sb, es, journal_inum))
goto failed_mount2;
} else {
if (!silent)
ext3_msg(sb, KERN_ERR,
"error: no journal found. "
"mounting ext3 over ext2?");
goto failed_mount2;
}
err = percpu_counter_init(&sbi->s_freeblocks_counter,
ext3_count_free_blocks(sb));
if (!err) {
err = percpu_counter_init(&sbi->s_freeinodes_counter,
ext3_count_free_inodes(sb));
}
if (!err) {
err = percpu_counter_init(&sbi->s_dirs_counter,
ext3_count_dirs(sb));
}
if (err) {
ext3_msg(sb, KERN_ERR, "error: insufficient memory");
ret = err;
goto failed_mount3;
}
/* We have now updated the journal if required, so we can
* validate the data journaling mode. */
switch (test_opt(sb, DATA_FLAGS)) {
case 0:
/* No mode set, assume a default based on the journal
capabilities: ORDERED_DATA if the journal can
cope, else JOURNAL_DATA */
if (journal_check_available_features
(sbi->s_journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE))
set_opt(sbi->s_mount_opt, DEFAULT_DATA_MODE);
else
set_opt(sbi->s_mount_opt, JOURNAL_DATA);
break;
case EXT3_MOUNT_ORDERED_DATA:
case EXT3_MOUNT_WRITEBACK_DATA:
if (!journal_check_available_features
(sbi->s_journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)) {
ext3_msg(sb, KERN_ERR,
"error: journal does not support "
"requested data journaling mode");
goto failed_mount3;
}
default:
break;
}
/*
* The journal_load will have done any necessary log recovery,
* so we can safely mount the rest of the filesystem now.
*/
root = ext3_iget(sb, EXT3_ROOT_INO);
if (IS_ERR(root)) {
ext3_msg(sb, KERN_ERR, "error: get root inode failed");
ret = PTR_ERR(root);
goto failed_mount3;
}
if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
iput(root);
ext3_msg(sb, KERN_ERR, "error: corrupt root inode, run e2fsck");
goto failed_mount3;
}
sb->s_root = d_make_root(root);
if (!sb->s_root) {
ext3_msg(sb, KERN_ERR, "error: get root dentry failed");
ret = -ENOMEM;
goto failed_mount3;
}
if (ext3_setup_super(sb, es, sb->s_flags & MS_RDONLY))
sb->s_flags |= MS_RDONLY;
EXT3_SB(sb)->s_mount_state |= EXT3_ORPHAN_FS;
ext3_orphan_cleanup(sb, es);
EXT3_SB(sb)->s_mount_state &= ~EXT3_ORPHAN_FS;
if (needs_recovery) {
ext3_mark_recovery_complete(sb, es);
ext3_msg(sb, KERN_INFO, "recovery complete");
}
ext3_msg(sb, KERN_INFO, "mounted filesystem with %s data mode",
test_opt(sb,DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ? "journal":
test_opt(sb,DATA_FLAGS) == EXT3_MOUNT_ORDERED_DATA ? "ordered":
"writeback");
sb->s_flags |= MS_SNAP_STABLE;
return 0;
cantfind_ext3:
if (!silent)
ext3_msg(sb, KERN_INFO,
"error: can't find ext3 filesystem on dev %s.",
sb->s_id);
goto failed_mount;
failed_mount3:
percpu_counter_destroy(&sbi->s_freeblocks_counter);
percpu_counter_destroy(&sbi->s_freeinodes_counter);
percpu_counter_destroy(&sbi->s_dirs_counter);
journal_destroy(sbi->s_journal);
failed_mount2:
for (i = 0; i < db_count; i++)
brelse(sbi->s_group_desc[i]);
kfree(sbi->s_group_desc);
failed_mount:
#ifdef CONFIG_QUOTA
for (i = 0; i < MAXQUOTAS; i++)
kfree(sbi->s_qf_names[i]);
#endif
ext3_blkdev_remove(sbi);
brelse(bh);
out_fail:
sb->s_fs_info = NULL;
kfree(sbi->s_blockgroup_lock);
kfree(sbi);
return ret;
}
/*
* Setup any per-fs journal parameters now. We'll do this both on
* initial mount, once the journal has been initialised but before we've
* done any recovery; and again on any subsequent remount.
*/
static void ext3_init_journal_params(struct super_block *sb, journal_t *journal)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
if (sbi->s_commit_interval)
journal->j_commit_interval = sbi->s_commit_interval;
/* We could also set up an ext3-specific default for the commit
* interval here, but for now we'll just fall back to the jbd
* default. */
spin_lock(&journal->j_state_lock);
if (test_opt(sb, BARRIER))
journal->j_flags |= JFS_BARRIER;
else
journal->j_flags &= ~JFS_BARRIER;
if (test_opt(sb, DATA_ERR_ABORT))
journal->j_flags |= JFS_ABORT_ON_SYNCDATA_ERR;
else
journal->j_flags &= ~JFS_ABORT_ON_SYNCDATA_ERR;
spin_unlock(&journal->j_state_lock);
}
static journal_t *ext3_get_journal(struct super_block *sb,
unsigned int journal_inum)
{
struct inode *journal_inode;
journal_t *journal;
/* First, test for the existence of a valid inode on disk. Bad
* things happen if we iget() an unused inode, as the subsequent
* iput() will try to delete it. */
journal_inode = ext3_iget(sb, journal_inum);
if (IS_ERR(journal_inode)) {
ext3_msg(sb, KERN_ERR, "error: no journal found");
return NULL;
}
if (!journal_inode->i_nlink) {
make_bad_inode(journal_inode);
iput(journal_inode);
ext3_msg(sb, KERN_ERR, "error: journal inode is deleted");
return NULL;
}
jbd_debug(2, "Journal inode found at %p: %Ld bytes\n",
journal_inode, journal_inode->i_size);
if (!S_ISREG(journal_inode->i_mode)) {
ext3_msg(sb, KERN_ERR, "error: invalid journal inode");
iput(journal_inode);
return NULL;
}
journal = journal_init_inode(journal_inode);
if (!journal) {
ext3_msg(sb, KERN_ERR, "error: could not load journal inode");
iput(journal_inode);
return NULL;
}
journal->j_private = sb;
ext3_init_journal_params(sb, journal);
return journal;
}
static journal_t *ext3_get_dev_journal(struct super_block *sb,
dev_t j_dev)
{
struct buffer_head * bh;
journal_t *journal;
ext3_fsblk_t start;
ext3_fsblk_t len;
int hblock, blocksize;
ext3_fsblk_t sb_block;
unsigned long offset;
struct ext3_super_block * es;
struct block_device *bdev;
bdev = ext3_blkdev_get(j_dev, sb);
if (bdev == NULL)
return NULL;
blocksize = sb->s_blocksize;
hblock = bdev_logical_block_size(bdev);
if (blocksize < hblock) {
ext3_msg(sb, KERN_ERR,
"error: blocksize too small for journal device");
goto out_bdev;
}
sb_block = EXT3_MIN_BLOCK_SIZE / blocksize;
offset = EXT3_MIN_BLOCK_SIZE % blocksize;
set_blocksize(bdev, blocksize);
if (!(bh = __bread(bdev, sb_block, blocksize))) {
ext3_msg(sb, KERN_ERR, "error: couldn't read superblock of "
"external journal");
goto out_bdev;
}
es = (struct ext3_super_block *) (bh->b_data + offset);
if ((le16_to_cpu(es->s_magic) != EXT3_SUPER_MAGIC) ||
!(le32_to_cpu(es->s_feature_incompat) &
EXT3_FEATURE_INCOMPAT_JOURNAL_DEV)) {
ext3_msg(sb, KERN_ERR, "error: external journal has "
"bad superblock");
brelse(bh);
goto out_bdev;
}
if (memcmp(EXT3_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
ext3_msg(sb, KERN_ERR, "error: journal UUID does not match");
brelse(bh);
goto out_bdev;
}
len = le32_to_cpu(es->s_blocks_count);
start = sb_block + 1;
brelse(bh); /* we're done with the superblock */
journal = journal_init_dev(bdev, sb->s_bdev,
start, len, blocksize);
if (!journal) {
ext3_msg(sb, KERN_ERR,
"error: failed to create device journal");
goto out_bdev;
}
journal->j_private = sb;
if (!bh_uptodate_or_lock(journal->j_sb_buffer)) {
if (bh_submit_read(journal->j_sb_buffer)) {
ext3_msg(sb, KERN_ERR, "I/O error on journal device");
goto out_journal;
}
}
if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
ext3_msg(sb, KERN_ERR,
"error: external journal has more than one "
"user (unsupported) - %d",
be32_to_cpu(journal->j_superblock->s_nr_users));
goto out_journal;
}
EXT3_SB(sb)->journal_bdev = bdev;
ext3_init_journal_params(sb, journal);
return journal;
out_journal:
journal_destroy(journal);
out_bdev:
ext3_blkdev_put(bdev);
return NULL;
}
static int ext3_load_journal(struct super_block *sb,
struct ext3_super_block *es,
unsigned long journal_devnum)
{
journal_t *journal;
unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
dev_t journal_dev;
int err = 0;
int really_read_only;
if (journal_devnum &&
journal_devnum != le32_to_cpu(es->s_journal_dev)) {
ext3_msg(sb, KERN_INFO, "external journal device major/minor "
"numbers have changed");
journal_dev = new_decode_dev(journal_devnum);
} else
journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
really_read_only = bdev_read_only(sb->s_bdev);
/*
* Are we loading a blank journal or performing recovery after a
* crash? For recovery, we need to check in advance whether we
* can get read-write access to the device.
*/
if (EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER)) {
if (sb->s_flags & MS_RDONLY) {
ext3_msg(sb, KERN_INFO,
"recovery required on readonly filesystem");
if (really_read_only) {
ext3_msg(sb, KERN_ERR, "error: write access "
"unavailable, cannot proceed");
return -EROFS;
}
ext3_msg(sb, KERN_INFO,
"write access will be enabled during recovery");
}
}
if (journal_inum && journal_dev) {
ext3_msg(sb, KERN_ERR, "error: filesystem has both journal "
"and inode journals");
return -EINVAL;
}
if (journal_inum) {
if (!(journal = ext3_get_journal(sb, journal_inum)))
return -EINVAL;
} else {
if (!(journal = ext3_get_dev_journal(sb, journal_dev)))
return -EINVAL;
}
if (!(journal->j_flags & JFS_BARRIER))
printk(KERN_INFO "EXT3-fs: barriers not enabled\n");
if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
err = journal_update_format(journal);
if (err) {
ext3_msg(sb, KERN_ERR, "error updating journal");
journal_destroy(journal);
return err;
}
}
if (!EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER))
err = journal_wipe(journal, !really_read_only);
if (!err)
err = journal_load(journal);
if (err) {
ext3_msg(sb, KERN_ERR, "error loading journal");
journal_destroy(journal);
return err;
}
EXT3_SB(sb)->s_journal = journal;
ext3_clear_journal_err(sb, es);
if (!really_read_only && journal_devnum &&
journal_devnum != le32_to_cpu(es->s_journal_dev)) {
es->s_journal_dev = cpu_to_le32(journal_devnum);
/* Make sure we flush the recovery flag to disk. */
ext3_commit_super(sb, es, 1);
}
return 0;
}
static int ext3_create_journal(struct super_block *sb,
struct ext3_super_block *es,
unsigned int journal_inum)
{
journal_t *journal;
int err;
if (sb->s_flags & MS_RDONLY) {
ext3_msg(sb, KERN_ERR,
"error: readonly filesystem when trying to "
"create journal");
return -EROFS;
}
journal = ext3_get_journal(sb, journal_inum);
if (!journal)
return -EINVAL;
ext3_msg(sb, KERN_INFO, "creating new journal on inode %u",
journal_inum);
err = journal_create(journal);
if (err) {
ext3_msg(sb, KERN_ERR, "error creating journal");
journal_destroy(journal);
return -EIO;
}
EXT3_SB(sb)->s_journal = journal;
ext3_update_dynamic_rev(sb);
EXT3_SET_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER);
EXT3_SET_COMPAT_FEATURE(sb, EXT3_FEATURE_COMPAT_HAS_JOURNAL);
es->s_journal_inum = cpu_to_le32(journal_inum);
/* Make sure we flush the recovery flag to disk. */
ext3_commit_super(sb, es, 1);
return 0;
}
static int ext3_commit_super(struct super_block *sb,
struct ext3_super_block *es,
int sync)
{
struct buffer_head *sbh = EXT3_SB(sb)->s_sbh;
int error = 0;
if (!sbh)
return error;
if (buffer_write_io_error(sbh)) {
/*
* Oh, dear. A previous attempt to write the
* superblock failed. This could happen because the
* USB device was yanked out. Or it could happen to
* be a transient write error and maybe the block will
* be remapped. Nothing we can do but to retry the
* write and hope for the best.
*/
ext3_msg(sb, KERN_ERR, "previous I/O error to "
"superblock detected");
clear_buffer_write_io_error(sbh);
set_buffer_uptodate(sbh);
}
/*
* If the file system is mounted read-only, don't update the
* superblock write time. This avoids updating the superblock
* write time when we are mounting the root file system
* read/only but we need to replay the journal; at that point,
* for people who are east of GMT and who make their clock
* tick in localtime for Windows bug-for-bug compatibility,
* the clock is set in the future, and this will cause e2fsck
* to complain and force a full file system check.
*/
if (!(sb->s_flags & MS_RDONLY))
es->s_wtime = cpu_to_le32(get_seconds());
es->s_free_blocks_count = cpu_to_le32(ext3_count_free_blocks(sb));
es->s_free_inodes_count = cpu_to_le32(ext3_count_free_inodes(sb));
BUFFER_TRACE(sbh, "marking dirty");
mark_buffer_dirty(sbh);
if (sync) {
error = sync_dirty_buffer(sbh);
if (buffer_write_io_error(sbh)) {
ext3_msg(sb, KERN_ERR, "I/O error while writing "
"superblock");
clear_buffer_write_io_error(sbh);
set_buffer_uptodate(sbh);
}
}
return error;
}
/*
* Have we just finished recovery? If so, and if we are mounting (or
* remounting) the filesystem readonly, then we will end up with a
* consistent fs on disk. Record that fact.
*/
static void ext3_mark_recovery_complete(struct super_block * sb,
struct ext3_super_block * es)
{
journal_t *journal = EXT3_SB(sb)->s_journal;
journal_lock_updates(journal);
if (journal_flush(journal) < 0)
goto out;
if (EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER) &&
sb->s_flags & MS_RDONLY) {
EXT3_CLEAR_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER);
ext3_commit_super(sb, es, 1);
}
out:
journal_unlock_updates(journal);
}
/*
* If we are mounting (or read-write remounting) a filesystem whose journal
* has recorded an error from a previous lifetime, move that error to the
* main filesystem now.
*/
static void ext3_clear_journal_err(struct super_block *sb,
struct ext3_super_block *es)
{
journal_t *journal;
int j_errno;
const char *errstr;
journal = EXT3_SB(sb)->s_journal;
/*
* Now check for any error status which may have been recorded in the
* journal by a prior ext3_error() or ext3_abort()
*/
j_errno = journal_errno(journal);
if (j_errno) {
char nbuf[16];
errstr = ext3_decode_error(sb, j_errno, nbuf);
ext3_warning(sb, __func__, "Filesystem error recorded "
"from previous mount: %s", errstr);
ext3_warning(sb, __func__, "Marking fs in need of "
"filesystem check.");
EXT3_SB(sb)->s_mount_state |= EXT3_ERROR_FS;
es->s_state |= cpu_to_le16(EXT3_ERROR_FS);
ext3_commit_super (sb, es, 1);
journal_clear_err(journal);
}
}
/*
* Force the running and committing transactions to commit,
* and wait on the commit.
*/
int ext3_force_commit(struct super_block *sb)
{
journal_t *journal;
int ret;
if (sb->s_flags & MS_RDONLY)
return 0;
journal = EXT3_SB(sb)->s_journal;
ret = ext3_journal_force_commit(journal);
return ret;
}
static int ext3_sync_fs(struct super_block *sb, int wait)
{
tid_t target;
trace_ext3_sync_fs(sb, wait);
/*
* Writeback quota in non-journalled quota case - journalled quota has
* no dirty dquots
*/
dquot_writeback_dquots(sb, -1);
if (journal_start_commit(EXT3_SB(sb)->s_journal, &target)) {
if (wait)
log_wait_commit(EXT3_SB(sb)->s_journal, target);
}
return 0;
}
/*
* LVM calls this function before a (read-only) snapshot is created. This
* gives us a chance to flush the journal completely and mark the fs clean.
*/
static int ext3_freeze(struct super_block *sb)
{
int error = 0;
journal_t *journal;
if (!(sb->s_flags & MS_RDONLY)) {
journal = EXT3_SB(sb)->s_journal;
/* Now we set up the journal barrier. */
journal_lock_updates(journal);
/*
* We don't want to clear needs_recovery flag when we failed
* to flush the journal.
*/
error = journal_flush(journal);
if (error < 0)
goto out;
/* Journal blocked and flushed, clear needs_recovery flag. */
EXT3_CLEAR_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER);
error = ext3_commit_super(sb, EXT3_SB(sb)->s_es, 1);
if (error)
goto out;
}
return 0;
out:
journal_unlock_updates(journal);
return error;
}
/*
* Called by LVM after the snapshot is done. We need to reset the RECOVER
* flag here, even though the filesystem is not technically dirty yet.
*/
static int ext3_unfreeze(struct super_block *sb)
{
if (!(sb->s_flags & MS_RDONLY)) {
/* Reser the needs_recovery flag before the fs is unlocked. */
EXT3_SET_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER);
ext3_commit_super(sb, EXT3_SB(sb)->s_es, 1);
journal_unlock_updates(EXT3_SB(sb)->s_journal);
}
return 0;
}
static int ext3_remount (struct super_block * sb, int * flags, char * data)
{
struct ext3_super_block * es;
struct ext3_sb_info *sbi = EXT3_SB(sb);
ext3_fsblk_t n_blocks_count = 0;
unsigned long old_sb_flags;
struct ext3_mount_options old_opts;
int enable_quota = 0;
int err;
#ifdef CONFIG_QUOTA
int i;
#endif
/* Store the original options */
old_sb_flags = sb->s_flags;
old_opts.s_mount_opt = sbi->s_mount_opt;
old_opts.s_resuid = sbi->s_resuid;
old_opts.s_resgid = sbi->s_resgid;
old_opts.s_commit_interval = sbi->s_commit_interval;
#ifdef CONFIG_QUOTA
old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
for (i = 0; i < MAXQUOTAS; i++)
if (sbi->s_qf_names[i]) {
old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
GFP_KERNEL);
if (!old_opts.s_qf_names[i]) {
int j;
for (j = 0; j < i; j++)
kfree(old_opts.s_qf_names[j]);
return -ENOMEM;
}
} else
old_opts.s_qf_names[i] = NULL;
#endif
/*
* Allow the "check" option to be passed as a remount option.
*/
if (!parse_options(data, sb, NULL, NULL, &n_blocks_count, 1)) {
err = -EINVAL;
goto restore_opts;
}
if (test_opt(sb, ABORT))
ext3_abort(sb, __func__, "Abort forced by user");
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
es = sbi->s_es;
ext3_init_journal_params(sb, sbi->s_journal);
if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
n_blocks_count > le32_to_cpu(es->s_blocks_count)) {
if (test_opt(sb, ABORT)) {
err = -EROFS;
goto restore_opts;
}
if (*flags & MS_RDONLY) {
err = dquot_suspend(sb, -1);
if (err < 0)
goto restore_opts;
/*
* First of all, the unconditional stuff we have to do
* to disable replay of the journal when we next remount
*/
sb->s_flags |= MS_RDONLY;
/*
* OK, test if we are remounting a valid rw partition
* readonly, and if so set the rdonly flag and then
* mark the partition as valid again.
*/
if (!(es->s_state & cpu_to_le16(EXT3_VALID_FS)) &&
(sbi->s_mount_state & EXT3_VALID_FS))
es->s_state = cpu_to_le16(sbi->s_mount_state);
ext3_mark_recovery_complete(sb, es);
} else {
__le32 ret;
if ((ret = EXT3_HAS_RO_COMPAT_FEATURE(sb,
~EXT3_FEATURE_RO_COMPAT_SUPP))) {
ext3_msg(sb, KERN_WARNING,
"warning: couldn't remount RDWR "
"because of unsupported optional "
"features (%x)", le32_to_cpu(ret));
err = -EROFS;
goto restore_opts;
}
/*
* If we have an unprocessed orphan list hanging
* around from a previously readonly bdev mount,
* require a full umount & mount for now.
*/
if (es->s_last_orphan) {
ext3_msg(sb, KERN_WARNING, "warning: couldn't "
"remount RDWR because of unprocessed "
"orphan inode list. Please "
"umount & mount instead.");
err = -EINVAL;
goto restore_opts;
}
/*
* Mounting a RDONLY partition read-write, so reread
* and store the current valid flag. (It may have
* been changed by e2fsck since we originally mounted
* the partition.)
*/
ext3_clear_journal_err(sb, es);
sbi->s_mount_state = le16_to_cpu(es->s_state);
if ((err = ext3_group_extend(sb, es, n_blocks_count)))
goto restore_opts;
if (!ext3_setup_super (sb, es, 0))
sb->s_flags &= ~MS_RDONLY;
enable_quota = 1;
}
}
#ifdef CONFIG_QUOTA
/* Release old quota file names */
for (i = 0; i < MAXQUOTAS; i++)
kfree(old_opts.s_qf_names[i]);
#endif
if (enable_quota)
dquot_resume(sb, -1);
return 0;
restore_opts:
sb->s_flags = old_sb_flags;
sbi->s_mount_opt = old_opts.s_mount_opt;
sbi->s_resuid = old_opts.s_resuid;
sbi->s_resgid = old_opts.s_resgid;
sbi->s_commit_interval = old_opts.s_commit_interval;
#ifdef CONFIG_QUOTA
sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
for (i = 0; i < MAXQUOTAS; i++) {
kfree(sbi->s_qf_names[i]);
sbi->s_qf_names[i] = old_opts.s_qf_names[i];
}
#endif
return err;
}
static int ext3_statfs (struct dentry * dentry, struct kstatfs * buf)
{
struct super_block *sb = dentry->d_sb;
struct ext3_sb_info *sbi = EXT3_SB(sb);
struct ext3_super_block *es = sbi->s_es;
u64 fsid;
if (test_opt(sb, MINIX_DF)) {
sbi->s_overhead_last = 0;
} else if (sbi->s_blocks_last != le32_to_cpu(es->s_blocks_count)) {
unsigned long ngroups = sbi->s_groups_count, i;
ext3_fsblk_t overhead = 0;
smp_rmb();
/*
* Compute the overhead (FS structures). This is constant
* for a given filesystem unless the number of block groups
* changes so we cache the previous value until it does.
*/
/*
* All of the blocks before first_data_block are
* overhead
*/
overhead = le32_to_cpu(es->s_first_data_block);
/*
* Add the overhead attributed to the superblock and
* block group descriptors. If the sparse superblocks
* feature is turned on, then not all groups have this.
*/
for (i = 0; i < ngroups; i++) {
overhead += ext3_bg_has_super(sb, i) +
ext3_bg_num_gdb(sb, i);
cond_resched();
}
/*
* Every block group has an inode bitmap, a block
* bitmap, and an inode table.
*/
overhead += ngroups * (2 + sbi->s_itb_per_group);
sbi->s_overhead_last = overhead;
smp_wmb();
sbi->s_blocks_last = le32_to_cpu(es->s_blocks_count);
}
buf->f_type = EXT3_SUPER_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = le32_to_cpu(es->s_blocks_count) - sbi->s_overhead_last;
buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter);
buf->f_bavail = buf->f_bfree - le32_to_cpu(es->s_r_blocks_count);
if (buf->f_bfree < le32_to_cpu(es->s_r_blocks_count))
buf->f_bavail = 0;
buf->f_files = le32_to_cpu(es->s_inodes_count);
buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
buf->f_namelen = EXT3_NAME_LEN;
fsid = le64_to_cpup((void *)es->s_uuid) ^
le64_to_cpup((void *)es->s_uuid + sizeof(u64));
buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
return 0;
}
/* Helper function for writing quotas on sync - we need to start transaction before quota file
* is locked for write. Otherwise the are possible deadlocks:
* Process 1 Process 2
* ext3_create() quota_sync()
* journal_start() write_dquot()
* dquot_initialize() down(dqio_mutex)
* down(dqio_mutex) journal_start()
*
*/
#ifdef CONFIG_QUOTA
static inline struct inode *dquot_to_inode(struct dquot *dquot)
{
return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
}
static int ext3_write_dquot(struct dquot *dquot)
{
int ret, err;
handle_t *handle;
struct inode *inode;
inode = dquot_to_inode(dquot);
handle = ext3_journal_start(inode,
EXT3_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = dquot_commit(dquot);
err = ext3_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static int ext3_acquire_dquot(struct dquot *dquot)
{
int ret, err;
handle_t *handle;
handle = ext3_journal_start(dquot_to_inode(dquot),
EXT3_QUOTA_INIT_BLOCKS(dquot->dq_sb));
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = dquot_acquire(dquot);
err = ext3_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static int ext3_release_dquot(struct dquot *dquot)
{
int ret, err;
handle_t *handle;
handle = ext3_journal_start(dquot_to_inode(dquot),
EXT3_QUOTA_DEL_BLOCKS(dquot->dq_sb));
if (IS_ERR(handle)) {
/* Release dquot anyway to avoid endless cycle in dqput() */
dquot_release(dquot);
return PTR_ERR(handle);
}
ret = dquot_release(dquot);
err = ext3_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static int ext3_mark_dquot_dirty(struct dquot *dquot)
{
/* Are we journaling quotas? */
if (EXT3_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
EXT3_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
dquot_mark_dquot_dirty(dquot);
return ext3_write_dquot(dquot);
} else {
return dquot_mark_dquot_dirty(dquot);
}
}
static int ext3_write_info(struct super_block *sb, int type)
{
int ret, err;
handle_t *handle;
/* Data block + inode block */
handle = ext3_journal_start(sb->s_root->d_inode, 2);
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = dquot_commit_info(sb, type);
err = ext3_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
/*
* Turn on quotas during mount time - we need to find
* the quota file and such...
*/
static int ext3_quota_on_mount(struct super_block *sb, int type)
{
return dquot_quota_on_mount(sb, EXT3_SB(sb)->s_qf_names[type],
EXT3_SB(sb)->s_jquota_fmt, type);
}
/*
* Standard function to be called on quota_on
*/
static int ext3_quota_on(struct super_block *sb, int type, int format_id,
struct path *path)
{
int err;
if (!test_opt(sb, QUOTA))
return -EINVAL;
/* Quotafile not on the same filesystem? */
if (path->dentry->d_sb != sb)
return -EXDEV;
/* Journaling quota? */
if (EXT3_SB(sb)->s_qf_names[type]) {
/* Quotafile not of fs root? */
if (path->dentry->d_parent != sb->s_root)
ext3_msg(sb, KERN_WARNING,
"warning: Quota file not on filesystem root. "
"Journaled quota will not work.");
}
/*
* When we journal data on quota file, we have to flush journal to see
* all updates to the file when we bypass pagecache...
*/
if (ext3_should_journal_data(path->dentry->d_inode)) {
/*
* We don't need to lock updates but journal_flush() could
* otherwise be livelocked...
*/
journal_lock_updates(EXT3_SB(sb)->s_journal);
err = journal_flush(EXT3_SB(sb)->s_journal);
journal_unlock_updates(EXT3_SB(sb)->s_journal);
if (err)
return err;
}
return dquot_quota_on(sb, type, format_id, path);
}
/* Read data from quotafile - avoid pagecache and such because we cannot afford
* acquiring the locks... As quota files are never truncated and quota code
* itself serializes the operations (and no one else should touch the files)
* we don't have to be afraid of races */
static ssize_t ext3_quota_read(struct super_block *sb, int type, char *data,
size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
sector_t blk = off >> EXT3_BLOCK_SIZE_BITS(sb);
int err = 0;
int offset = off & (sb->s_blocksize - 1);
int tocopy;
size_t toread;
struct buffer_head *bh;
loff_t i_size = i_size_read(inode);
if (off > i_size)
return 0;
if (off+len > i_size)
len = i_size-off;
toread = len;
while (toread > 0) {
tocopy = sb->s_blocksize - offset < toread ?
sb->s_blocksize - offset : toread;
bh = ext3_bread(NULL, inode, blk, 0, &err);
if (err)
return err;
if (!bh) /* A hole? */
memset(data, 0, tocopy);
else
memcpy(data, bh->b_data+offset, tocopy);
brelse(bh);
offset = 0;
toread -= tocopy;
data += tocopy;
blk++;
}
return len;
}
/* Write to quotafile (we know the transaction is already started and has
* enough credits) */
static ssize_t ext3_quota_write(struct super_block *sb, int type,
const char *data, size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
sector_t blk = off >> EXT3_BLOCK_SIZE_BITS(sb);
int err = 0;
int offset = off & (sb->s_blocksize - 1);
int journal_quota = EXT3_SB(sb)->s_qf_names[type] != NULL;
struct buffer_head *bh;
handle_t *handle = journal_current_handle();
if (!handle) {
ext3_msg(sb, KERN_WARNING,
"warning: quota write (off=%llu, len=%llu)"
" cancelled because transaction is not started.",
(unsigned long long)off, (unsigned long long)len);
return -EIO;
}
/*
* Since we account only one data block in transaction credits,
* then it is impossible to cross a block boundary.
*/
if (sb->s_blocksize - offset < len) {
ext3_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
" cancelled because not block aligned",
(unsigned long long)off, (unsigned long long)len);
return -EIO;
}
bh = ext3_bread(handle, inode, blk, 1, &err);
if (!bh)
goto out;
if (journal_quota) {
err = ext3_journal_get_write_access(handle, bh);
if (err) {
brelse(bh);
goto out;
}
}
lock_buffer(bh);
memcpy(bh->b_data+offset, data, len);
flush_dcache_page(bh->b_page);
unlock_buffer(bh);
if (journal_quota)
err = ext3_journal_dirty_metadata(handle, bh);
else {
/* Always do at least ordered writes for quotas */
err = ext3_journal_dirty_data(handle, bh);
mark_buffer_dirty(bh);
}
brelse(bh);
out:
if (err)
return err;
if (inode->i_size < off + len) {
i_size_write(inode, off + len);
EXT3_I(inode)->i_disksize = inode->i_size;
}
inode->i_version++;
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
ext3_mark_inode_dirty(handle, inode);
return len;
}
#endif
static struct dentry *ext3_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, ext3_fill_super);
}
static struct file_system_type ext3_fs_type = {
.owner = THIS_MODULE,
.name = "ext3",
.mount = ext3_mount,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
static int __init init_ext3_fs(void)
{
int err = init_ext3_xattr();
if (err)
return err;
err = init_inodecache();
if (err)
goto out1;
err = register_filesystem(&ext3_fs_type);
if (err)
goto out;
return 0;
out:
destroy_inodecache();
out1:
exit_ext3_xattr();
return err;
}
static void __exit exit_ext3_fs(void)
{
unregister_filesystem(&ext3_fs_type);
destroy_inodecache();
exit_ext3_xattr();
}
MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
MODULE_DESCRIPTION("Second Extended Filesystem with journaling extensions");
MODULE_LICENSE("GPL");
module_init(init_ext3_fs)
module_exit(exit_ext3_fs)