blob: 1166f725f556f6c64c65be2dfdfb6356e460dd3d [file] [log] [blame]
/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "ath9k.h"
void
ath9k_hw_write_regs(struct ath_hw *ah, u32 modesIndex, u32 freqIndex,
int regWrites)
{
REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
}
bool
ath9k_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
{
u32 channelSel = 0;
u32 bModeSynth = 0;
u32 aModeRefSel = 0;
u32 reg32 = 0;
u16 freq;
struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
if (freq < 4800) {
u32 txctl;
if (((freq - 2192) % 5) == 0) {
channelSel = ((freq - 672) * 2 - 3040) / 10;
bModeSynth = 0;
} else if (((freq - 2224) % 5) == 0) {
channelSel = ((freq - 704) * 2 - 3040) / 10;
bModeSynth = 1;
} else {
DPRINTF(ah, ATH_DBG_FATAL,
"Invalid channel %u MHz\n", freq);
return false;
}
channelSel = (channelSel << 2) & 0xff;
channelSel = ath9k_hw_reverse_bits(channelSel, 8);
txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) {
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
}
} else if ((freq % 20) == 0 && freq >= 5120) {
channelSel =
ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
aModeRefSel = ath9k_hw_reverse_bits(1, 2);
} else if ((freq % 10) == 0) {
channelSel =
ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
aModeRefSel = ath9k_hw_reverse_bits(2, 2);
else
aModeRefSel = ath9k_hw_reverse_bits(1, 2);
} else if ((freq % 5) == 0) {
channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
aModeRefSel = ath9k_hw_reverse_bits(1, 2);
} else {
DPRINTF(ah, ATH_DBG_FATAL,
"Invalid channel %u MHz\n", freq);
return false;
}
reg32 =
(channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
(1 << 5) | 0x1;
REG_WRITE(ah, AR_PHY(0x37), reg32);
ah->curchan = chan;
ah->curchan_rad_index = -1;
return true;
}
void ath9k_hw_ar9280_set_channel(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u16 bMode, fracMode, aModeRefSel = 0;
u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
struct chan_centers centers;
u32 refDivA = 24;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
reg32 &= 0xc0000000;
if (freq < 4800) {
u32 txctl;
bMode = 1;
fracMode = 1;
aModeRefSel = 0;
channelSel = (freq * 0x10000) / 15;
txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) {
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
}
} else {
bMode = 0;
fracMode = 0;
switch(ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
case 0:
if ((freq % 20) == 0) {
aModeRefSel = 3;
} else if ((freq % 10) == 0) {
aModeRefSel = 2;
}
if (aModeRefSel)
break;
case 1:
default:
aModeRefSel = 0;
fracMode = 1;
refDivA = 1;
channelSel = (freq * 0x8000) / 15;
REG_RMW_FIELD(ah, AR_AN_SYNTH9,
AR_AN_SYNTH9_REFDIVA, refDivA);
}
if (!fracMode) {
ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
channelSel = ndiv & 0x1ff;
channelFrac = (ndiv & 0xfffffe00) * 2;
channelSel = (channelSel << 17) | channelFrac;
}
}
reg32 = reg32 |
(bMode << 29) |
(fracMode << 28) | (aModeRefSel << 26) | (channelSel);
REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
ah->curchan = chan;
ah->curchan_rad_index = -1;
}
static void
ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
u32 numBits, u32 firstBit,
u32 column)
{
u32 tmp32, mask, arrayEntry, lastBit;
int32_t bitPosition, bitsLeft;
tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
arrayEntry = (firstBit - 1) / 8;
bitPosition = (firstBit - 1) % 8;
bitsLeft = numBits;
while (bitsLeft > 0) {
lastBit = (bitPosition + bitsLeft > 8) ?
8 : bitPosition + bitsLeft;
mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
(column * 8);
rfBuf[arrayEntry] &= ~mask;
rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
(column * 8)) & mask;
bitsLeft -= 8 - bitPosition;
tmp32 = tmp32 >> (8 - bitPosition);
bitPosition = 0;
arrayEntry++;
}
}
bool
ath9k_hw_set_rf_regs(struct ath_hw *ah, struct ath9k_channel *chan,
u16 modesIndex)
{
u32 eepMinorRev;
u32 ob5GHz = 0, db5GHz = 0;
u32 ob2GHz = 0, db2GHz = 0;
int regWrites = 0;
if (AR_SREV_9280_10_OR_LATER(ah))
return true;
eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
modesIndex);
{
int i;
for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
ah->analogBank6Data[i] =
INI_RA(&ah->iniBank6TPC, i, modesIndex);
}
}
if (eepMinorRev >= 2) {
if (IS_CHAN_2GHZ(chan)) {
ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
ob2GHz, 3, 197, 0);
ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
db2GHz, 3, 194, 0);
} else {
ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
ob5GHz, 3, 203, 0);
ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
db5GHz, 3, 200, 0);
}
}
RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
regWrites);
REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
regWrites);
REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
regWrites);
REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
regWrites);
REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
regWrites);
REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
regWrites);
return true;
}
void
ath9k_hw_rf_free(struct ath_hw *ah)
{
#define ATH_FREE_BANK(bank) do { \
kfree(bank); \
bank = NULL; \
} while (0);
ATH_FREE_BANK(ah->analogBank0Data);
ATH_FREE_BANK(ah->analogBank1Data);
ATH_FREE_BANK(ah->analogBank2Data);
ATH_FREE_BANK(ah->analogBank3Data);
ATH_FREE_BANK(ah->analogBank6Data);
ATH_FREE_BANK(ah->analogBank6TPCData);
ATH_FREE_BANK(ah->analogBank7Data);
ATH_FREE_BANK(ah->addac5416_21);
ATH_FREE_BANK(ah->bank6Temp);
#undef ATH_FREE_BANK
}
bool ath9k_hw_init_rf(struct ath_hw *ah, int *status)
{
if (!AR_SREV_9280_10_OR_LATER(ah)) {
ah->analogBank0Data =
kzalloc((sizeof(u32) *
ah->iniBank0.ia_rows), GFP_KERNEL);
ah->analogBank1Data =
kzalloc((sizeof(u32) *
ah->iniBank1.ia_rows), GFP_KERNEL);
ah->analogBank2Data =
kzalloc((sizeof(u32) *
ah->iniBank2.ia_rows), GFP_KERNEL);
ah->analogBank3Data =
kzalloc((sizeof(u32) *
ah->iniBank3.ia_rows), GFP_KERNEL);
ah->analogBank6Data =
kzalloc((sizeof(u32) *
ah->iniBank6.ia_rows), GFP_KERNEL);
ah->analogBank6TPCData =
kzalloc((sizeof(u32) *
ah->iniBank6TPC.ia_rows), GFP_KERNEL);
ah->analogBank7Data =
kzalloc((sizeof(u32) *
ah->iniBank7.ia_rows), GFP_KERNEL);
if (ah->analogBank0Data == NULL
|| ah->analogBank1Data == NULL
|| ah->analogBank2Data == NULL
|| ah->analogBank3Data == NULL
|| ah->analogBank6Data == NULL
|| ah->analogBank6TPCData == NULL
|| ah->analogBank7Data == NULL) {
DPRINTF(ah, ATH_DBG_FATAL,
"Cannot allocate RF banks\n");
*status = -ENOMEM;
return false;
}
ah->addac5416_21 =
kzalloc((sizeof(u32) *
ah->iniAddac.ia_rows *
ah->iniAddac.ia_columns), GFP_KERNEL);
if (ah->addac5416_21 == NULL) {
DPRINTF(ah, ATH_DBG_FATAL,
"Cannot allocate addac5416_21\n");
*status = -ENOMEM;
return false;
}
ah->bank6Temp =
kzalloc((sizeof(u32) *
ah->iniBank6.ia_rows), GFP_KERNEL);
if (ah->bank6Temp == NULL) {
DPRINTF(ah, ATH_DBG_FATAL,
"Cannot allocate bank6Temp\n");
*status = -ENOMEM;
return false;
}
}
return true;
}
void
ath9k_hw_decrease_chain_power(struct ath_hw *ah, struct ath9k_channel *chan)
{
int i, regWrites = 0;
u32 bank6SelMask;
u32 *bank6Temp = ah->bank6Temp;
switch (ah->config.diversity_control) {
case ATH9K_ANT_FIXED_A:
bank6SelMask =
(ah->config.antenna_switch_swap & ANTSWAP_AB) ?
REDUCE_CHAIN_0 : REDUCE_CHAIN_1;
break;
case ATH9K_ANT_FIXED_B:
bank6SelMask =
(ah->config.antenna_switch_swap & ANTSWAP_AB) ?
REDUCE_CHAIN_1 : REDUCE_CHAIN_0;
break;
case ATH9K_ANT_VARIABLE:
return;
break;
default:
return;
break;
}
for (i = 0; i < ah->iniBank6.ia_rows; i++)
bank6Temp[i] = ah->analogBank6Data[i];
REG_WRITE(ah, AR_PHY_BASE + 0xD8, bank6SelMask);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 189, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 190, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 191, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 192, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 193, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 222, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 245, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 246, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 247, 0);
REG_WRITE_RF_ARRAY(&ah->iniBank6, bank6Temp, regWrites);
REG_WRITE(ah, AR_PHY_BASE + 0xD8, 0x00000053);
#ifdef ALTER_SWITCH
REG_WRITE(ah, PHY_SWITCH_CHAIN_0,
(REG_READ(ah, PHY_SWITCH_CHAIN_0) & ~0x38)
| ((REG_READ(ah, PHY_SWITCH_CHAIN_0) >> 3) & 0x38));
#endif
}