| /* mpihelp-div.c - MPI helper functions |
| * Copyright (C) 1994, 1996 Free Software Foundation, Inc. |
| * Copyright (C) 1998, 1999 Free Software Foundation, Inc. |
| * |
| * This file is part of GnuPG. |
| * |
| * GnuPG is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * GnuPG is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA |
| * |
| * Note: This code is heavily based on the GNU MP Library. |
| * Actually it's the same code with only minor changes in the |
| * way the data is stored; this is to support the abstraction |
| * of an optional secure memory allocation which may be used |
| * to avoid revealing of sensitive data due to paging etc. |
| * The GNU MP Library itself is published under the LGPL; |
| * however I decided to publish this code under the plain GPL. |
| */ |
| |
| #include "mpi-internal.h" |
| #include "longlong.h" |
| |
| #ifndef UMUL_TIME |
| #define UMUL_TIME 1 |
| #endif |
| #ifndef UDIV_TIME |
| #define UDIV_TIME UMUL_TIME |
| #endif |
| |
| /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write |
| * the NSIZE-DSIZE least significant quotient limbs at QP |
| * and the DSIZE long remainder at NP. If QEXTRA_LIMBS is |
| * non-zero, generate that many fraction bits and append them after the |
| * other quotient limbs. |
| * Return the most significant limb of the quotient, this is always 0 or 1. |
| * |
| * Preconditions: |
| * 0. NSIZE >= DSIZE. |
| * 1. The most significant bit of the divisor must be set. |
| * 2. QP must either not overlap with the input operands at all, or |
| * QP + DSIZE >= NP must hold true. (This means that it's |
| * possible to put the quotient in the high part of NUM, right after the |
| * remainder in NUM. |
| * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero. |
| */ |
| |
| mpi_limb_t |
| mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs, |
| mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize) |
| { |
| mpi_limb_t most_significant_q_limb = 0; |
| |
| switch (dsize) { |
| case 0: |
| /* We are asked to divide by zero, so go ahead and do it! (To make |
| the compiler not remove this statement, return the value.) */ |
| /* |
| * existing clients of this function have been modified |
| * not to call it with dsize == 0, so this should not happen |
| */ |
| return 1 / dsize; |
| |
| case 1: |
| { |
| mpi_size_t i; |
| mpi_limb_t n1; |
| mpi_limb_t d; |
| |
| d = dp[0]; |
| n1 = np[nsize - 1]; |
| |
| if (n1 >= d) { |
| n1 -= d; |
| most_significant_q_limb = 1; |
| } |
| |
| qp += qextra_limbs; |
| for (i = nsize - 2; i >= 0; i--) |
| udiv_qrnnd(qp[i], n1, n1, np[i], d); |
| qp -= qextra_limbs; |
| |
| for (i = qextra_limbs - 1; i >= 0; i--) |
| udiv_qrnnd(qp[i], n1, n1, 0, d); |
| |
| np[0] = n1; |
| } |
| break; |
| |
| case 2: |
| { |
| mpi_size_t i; |
| mpi_limb_t n1, n0, n2; |
| mpi_limb_t d1, d0; |
| |
| np += nsize - 2; |
| d1 = dp[1]; |
| d0 = dp[0]; |
| n1 = np[1]; |
| n0 = np[0]; |
| |
| if (n1 >= d1 && (n1 > d1 || n0 >= d0)) { |
| sub_ddmmss(n1, n0, n1, n0, d1, d0); |
| most_significant_q_limb = 1; |
| } |
| |
| for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) { |
| mpi_limb_t q; |
| mpi_limb_t r; |
| |
| if (i >= qextra_limbs) |
| np--; |
| else |
| np[0] = 0; |
| |
| if (n1 == d1) { |
| /* Q should be either 111..111 or 111..110. Need special |
| * treatment of this rare case as normal division would |
| * give overflow. */ |
| q = ~(mpi_limb_t) 0; |
| |
| r = n0 + d1; |
| if (r < d1) { /* Carry in the addition? */ |
| add_ssaaaa(n1, n0, r - d0, |
| np[0], 0, d0); |
| qp[i] = q; |
| continue; |
| } |
| n1 = d0 - (d0 != 0 ? 1 : 0); |
| n0 = -d0; |
| } else { |
| udiv_qrnnd(q, r, n1, n0, d1); |
| umul_ppmm(n1, n0, d0, q); |
| } |
| |
| n2 = np[0]; |
| q_test: |
| if (n1 > r || (n1 == r && n0 > n2)) { |
| /* The estimated Q was too large. */ |
| q--; |
| sub_ddmmss(n1, n0, n1, n0, 0, d0); |
| r += d1; |
| if (r >= d1) /* If not carry, test Q again. */ |
| goto q_test; |
| } |
| |
| qp[i] = q; |
| sub_ddmmss(n1, n0, r, n2, n1, n0); |
| } |
| np[1] = n1; |
| np[0] = n0; |
| } |
| break; |
| |
| default: |
| { |
| mpi_size_t i; |
| mpi_limb_t dX, d1, n0; |
| |
| np += nsize - dsize; |
| dX = dp[dsize - 1]; |
| d1 = dp[dsize - 2]; |
| n0 = np[dsize - 1]; |
| |
| if (n0 >= dX) { |
| if (n0 > dX |
| || mpihelp_cmp(np, dp, dsize - 1) >= 0) { |
| mpihelp_sub_n(np, np, dp, dsize); |
| n0 = np[dsize - 1]; |
| most_significant_q_limb = 1; |
| } |
| } |
| |
| for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) { |
| mpi_limb_t q; |
| mpi_limb_t n1, n2; |
| mpi_limb_t cy_limb; |
| |
| if (i >= qextra_limbs) { |
| np--; |
| n2 = np[dsize]; |
| } else { |
| n2 = np[dsize - 1]; |
| MPN_COPY_DECR(np + 1, np, dsize - 1); |
| np[0] = 0; |
| } |
| |
| if (n0 == dX) { |
| /* This might over-estimate q, but it's probably not worth |
| * the extra code here to find out. */ |
| q = ~(mpi_limb_t) 0; |
| } else { |
| mpi_limb_t r; |
| |
| udiv_qrnnd(q, r, n0, np[dsize - 1], dX); |
| umul_ppmm(n1, n0, d1, q); |
| |
| while (n1 > r |
| || (n1 == r |
| && n0 > np[dsize - 2])) { |
| q--; |
| r += dX; |
| if (r < dX) /* I.e. "carry in previous addition?" */ |
| break; |
| n1 -= n0 < d1; |
| n0 -= d1; |
| } |
| } |
| |
| /* Possible optimization: We already have (q * n0) and (1 * n1) |
| * after the calculation of q. Taking advantage of that, we |
| * could make this loop make two iterations less. */ |
| cy_limb = mpihelp_submul_1(np, dp, dsize, q); |
| |
| if (n2 != cy_limb) { |
| mpihelp_add_n(np, np, dp, dsize); |
| q--; |
| } |
| |
| qp[i] = q; |
| n0 = np[dsize - 1]; |
| } |
| } |
| } |
| |
| return most_significant_q_limb; |
| } |