| /* Broadcom NetXtreme-C/E network driver. |
| * |
| * Copyright (c) 2014-2016 Broadcom Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation. |
| */ |
| |
| #include <linux/module.h> |
| |
| #include <linux/stringify.h> |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/bitops.h> |
| #include <linux/io.h> |
| #include <linux/irq.h> |
| #include <linux/delay.h> |
| #include <asm/byteorder.h> |
| #include <asm/page.h> |
| #include <linux/time.h> |
| #include <linux/mii.h> |
| #include <linux/if.h> |
| #include <linux/if_vlan.h> |
| #include <linux/rtc.h> |
| #include <net/ip.h> |
| #include <net/tcp.h> |
| #include <net/udp.h> |
| #include <net/checksum.h> |
| #include <net/ip6_checksum.h> |
| #include <net/udp_tunnel.h> |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| #include <net/busy_poll.h> |
| #endif |
| #include <linux/workqueue.h> |
| #include <linux/prefetch.h> |
| #include <linux/cache.h> |
| #include <linux/log2.h> |
| #include <linux/aer.h> |
| #include <linux/bitmap.h> |
| #include <linux/cpu_rmap.h> |
| |
| #include "bnxt_hsi.h" |
| #include "bnxt.h" |
| #include "bnxt_sriov.h" |
| #include "bnxt_ethtool.h" |
| |
| #define BNXT_TX_TIMEOUT (5 * HZ) |
| |
| static const char version[] = |
| "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n"; |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); |
| MODULE_VERSION(DRV_MODULE_VERSION); |
| |
| #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) |
| #define BNXT_RX_DMA_OFFSET NET_SKB_PAD |
| #define BNXT_RX_COPY_THRESH 256 |
| |
| #define BNXT_TX_PUSH_THRESH 164 |
| |
| enum board_idx { |
| BCM57301, |
| BCM57302, |
| BCM57304, |
| BCM57417_NPAR, |
| BCM58700, |
| BCM57311, |
| BCM57312, |
| BCM57402, |
| BCM57404, |
| BCM57406, |
| BCM57402_NPAR, |
| BCM57407, |
| BCM57412, |
| BCM57414, |
| BCM57416, |
| BCM57417, |
| BCM57412_NPAR, |
| BCM57314, |
| BCM57417_SFP, |
| BCM57416_SFP, |
| BCM57404_NPAR, |
| BCM57406_NPAR, |
| BCM57407_SFP, |
| BCM57407_NPAR, |
| BCM57414_NPAR, |
| BCM57416_NPAR, |
| BCM57452, |
| BCM57454, |
| NETXTREME_E_VF, |
| NETXTREME_C_VF, |
| }; |
| |
| /* indexed by enum above */ |
| static const struct { |
| char *name; |
| } board_info[] = { |
| { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, |
| { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, |
| { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, |
| { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, |
| { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, |
| { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, |
| { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, |
| { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, |
| { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, |
| { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, |
| { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, |
| { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, |
| { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, |
| { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, |
| { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, |
| { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, |
| { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, |
| { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, |
| { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, |
| { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, |
| { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, |
| { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, |
| { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, |
| { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, |
| { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, |
| { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, |
| { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, |
| { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, |
| { "Broadcom NetXtreme-E Ethernet Virtual Function" }, |
| { "Broadcom NetXtreme-C Ethernet Virtual Function" }, |
| }; |
| |
| static const struct pci_device_id bnxt_pci_tbl[] = { |
| { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, |
| { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, |
| { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, |
| { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, |
| { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, |
| { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, |
| { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, |
| { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, |
| { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, |
| { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, |
| { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, |
| { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, |
| #ifdef CONFIG_BNXT_SRIOV |
| { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, |
| #endif |
| { 0 } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); |
| |
| static const u16 bnxt_vf_req_snif[] = { |
| HWRM_FUNC_CFG, |
| HWRM_PORT_PHY_QCFG, |
| HWRM_CFA_L2_FILTER_ALLOC, |
| }; |
| |
| static const u16 bnxt_async_events_arr[] = { |
| HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, |
| HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, |
| HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, |
| HWRM_ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, |
| HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, |
| }; |
| |
| static bool bnxt_vf_pciid(enum board_idx idx) |
| { |
| return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF); |
| } |
| |
| #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) |
| #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) |
| #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) |
| |
| #define BNXT_CP_DB_REARM(db, raw_cons) \ |
| writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db) |
| |
| #define BNXT_CP_DB(db, raw_cons) \ |
| writel(DB_CP_FLAGS | RING_CMP(raw_cons), db) |
| |
| #define BNXT_CP_DB_IRQ_DIS(db) \ |
| writel(DB_CP_IRQ_DIS_FLAGS, db) |
| |
| static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr) |
| { |
| /* Tell compiler to fetch tx indices from memory. */ |
| barrier(); |
| |
| return bp->tx_ring_size - |
| ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask); |
| } |
| |
| static const u16 bnxt_lhint_arr[] = { |
| TX_BD_FLAGS_LHINT_512_AND_SMALLER, |
| TX_BD_FLAGS_LHINT_512_TO_1023, |
| TX_BD_FLAGS_LHINT_1024_TO_2047, |
| TX_BD_FLAGS_LHINT_1024_TO_2047, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| }; |
| |
| static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| struct tx_bd *txbd; |
| struct tx_bd_ext *txbd1; |
| struct netdev_queue *txq; |
| int i; |
| dma_addr_t mapping; |
| unsigned int length, pad = 0; |
| u32 len, free_size, vlan_tag_flags, cfa_action, flags; |
| u16 prod, last_frag; |
| struct pci_dev *pdev = bp->pdev; |
| struct bnxt_tx_ring_info *txr; |
| struct bnxt_sw_tx_bd *tx_buf; |
| |
| i = skb_get_queue_mapping(skb); |
| if (unlikely(i >= bp->tx_nr_rings)) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| txr = &bp->tx_ring[i]; |
| txq = netdev_get_tx_queue(dev, i); |
| prod = txr->tx_prod; |
| |
| free_size = bnxt_tx_avail(bp, txr); |
| if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { |
| netif_tx_stop_queue(txq); |
| return NETDEV_TX_BUSY; |
| } |
| |
| length = skb->len; |
| len = skb_headlen(skb); |
| last_frag = skb_shinfo(skb)->nr_frags; |
| |
| txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; |
| |
| txbd->tx_bd_opaque = prod; |
| |
| tx_buf = &txr->tx_buf_ring[prod]; |
| tx_buf->skb = skb; |
| tx_buf->nr_frags = last_frag; |
| |
| vlan_tag_flags = 0; |
| cfa_action = 0; |
| if (skb_vlan_tag_present(skb)) { |
| vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | |
| skb_vlan_tag_get(skb); |
| /* Currently supports 8021Q, 8021AD vlan offloads |
| * QINQ1, QINQ2, QINQ3 vlan headers are deprecated |
| */ |
| if (skb->vlan_proto == htons(ETH_P_8021Q)) |
| vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; |
| } |
| |
| if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) { |
| struct tx_push_buffer *tx_push_buf = txr->tx_push; |
| struct tx_push_bd *tx_push = &tx_push_buf->push_bd; |
| struct tx_bd_ext *tx_push1 = &tx_push->txbd2; |
| void *pdata = tx_push_buf->data; |
| u64 *end; |
| int j, push_len; |
| |
| /* Set COAL_NOW to be ready quickly for the next push */ |
| tx_push->tx_bd_len_flags_type = |
| cpu_to_le32((length << TX_BD_LEN_SHIFT) | |
| TX_BD_TYPE_LONG_TX_BD | |
| TX_BD_FLAGS_LHINT_512_AND_SMALLER | |
| TX_BD_FLAGS_COAL_NOW | |
| TX_BD_FLAGS_PACKET_END | |
| (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) |
| tx_push1->tx_bd_hsize_lflags = |
| cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); |
| else |
| tx_push1->tx_bd_hsize_lflags = 0; |
| |
| tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); |
| tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action); |
| |
| end = pdata + length; |
| end = PTR_ALIGN(end, 8) - 1; |
| *end = 0; |
| |
| skb_copy_from_linear_data(skb, pdata, len); |
| pdata += len; |
| for (j = 0; j < last_frag; j++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; |
| void *fptr; |
| |
| fptr = skb_frag_address_safe(frag); |
| if (!fptr) |
| goto normal_tx; |
| |
| memcpy(pdata, fptr, skb_frag_size(frag)); |
| pdata += skb_frag_size(frag); |
| } |
| |
| txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; |
| txbd->tx_bd_haddr = txr->data_mapping; |
| prod = NEXT_TX(prod); |
| txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; |
| memcpy(txbd, tx_push1, sizeof(*txbd)); |
| prod = NEXT_TX(prod); |
| tx_push->doorbell = |
| cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); |
| txr->tx_prod = prod; |
| |
| tx_buf->is_push = 1; |
| netdev_tx_sent_queue(txq, skb->len); |
| wmb(); /* Sync is_push and byte queue before pushing data */ |
| |
| push_len = (length + sizeof(*tx_push) + 7) / 8; |
| if (push_len > 16) { |
| __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16); |
| __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1, |
| (push_len - 16) << 1); |
| } else { |
| __iowrite64_copy(txr->tx_doorbell, tx_push_buf, |
| push_len); |
| } |
| |
| goto tx_done; |
| } |
| |
| normal_tx: |
| if (length < BNXT_MIN_PKT_SIZE) { |
| pad = BNXT_MIN_PKT_SIZE - length; |
| if (skb_pad(skb, pad)) { |
| /* SKB already freed. */ |
| tx_buf->skb = NULL; |
| return NETDEV_TX_OK; |
| } |
| length = BNXT_MIN_PKT_SIZE; |
| } |
| |
| mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); |
| |
| if (unlikely(dma_mapping_error(&pdev->dev, mapping))) { |
| dev_kfree_skb_any(skb); |
| tx_buf->skb = NULL; |
| return NETDEV_TX_OK; |
| } |
| |
| dma_unmap_addr_set(tx_buf, mapping, mapping); |
| flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | |
| ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); |
| |
| txbd->tx_bd_haddr = cpu_to_le64(mapping); |
| |
| prod = NEXT_TX(prod); |
| txbd1 = (struct tx_bd_ext *) |
| &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; |
| |
| txbd1->tx_bd_hsize_lflags = 0; |
| if (skb_is_gso(skb)) { |
| u32 hdr_len; |
| |
| if (skb->encapsulation) |
| hdr_len = skb_inner_network_offset(skb) + |
| skb_inner_network_header_len(skb) + |
| inner_tcp_hdrlen(skb); |
| else |
| hdr_len = skb_transport_offset(skb) + |
| tcp_hdrlen(skb); |
| |
| txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO | |
| TX_BD_FLAGS_T_IPID | |
| (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); |
| length = skb_shinfo(skb)->gso_size; |
| txbd1->tx_bd_mss = cpu_to_le32(length); |
| length += hdr_len; |
| } else if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| txbd1->tx_bd_hsize_lflags = |
| cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); |
| txbd1->tx_bd_mss = 0; |
| } |
| |
| length >>= 9; |
| if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { |
| dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", |
| skb->len); |
| i = 0; |
| goto tx_dma_error; |
| } |
| flags |= bnxt_lhint_arr[length]; |
| txbd->tx_bd_len_flags_type = cpu_to_le32(flags); |
| |
| txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); |
| txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action); |
| for (i = 0; i < last_frag; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| |
| prod = NEXT_TX(prod); |
| txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; |
| |
| len = skb_frag_size(frag); |
| mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, |
| DMA_TO_DEVICE); |
| |
| if (unlikely(dma_mapping_error(&pdev->dev, mapping))) |
| goto tx_dma_error; |
| |
| tx_buf = &txr->tx_buf_ring[prod]; |
| dma_unmap_addr_set(tx_buf, mapping, mapping); |
| |
| txbd->tx_bd_haddr = cpu_to_le64(mapping); |
| |
| flags = len << TX_BD_LEN_SHIFT; |
| txbd->tx_bd_len_flags_type = cpu_to_le32(flags); |
| } |
| |
| flags &= ~TX_BD_LEN; |
| txbd->tx_bd_len_flags_type = |
| cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | |
| TX_BD_FLAGS_PACKET_END); |
| |
| netdev_tx_sent_queue(txq, skb->len); |
| |
| /* Sync BD data before updating doorbell */ |
| wmb(); |
| |
| prod = NEXT_TX(prod); |
| txr->tx_prod = prod; |
| |
| writel(DB_KEY_TX | prod, txr->tx_doorbell); |
| writel(DB_KEY_TX | prod, txr->tx_doorbell); |
| |
| tx_done: |
| |
| mmiowb(); |
| |
| if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { |
| netif_tx_stop_queue(txq); |
| |
| /* netif_tx_stop_queue() must be done before checking |
| * tx index in bnxt_tx_avail() below, because in |
| * bnxt_tx_int(), we update tx index before checking for |
| * netif_tx_queue_stopped(). |
| */ |
| smp_mb(); |
| if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) |
| netif_tx_wake_queue(txq); |
| } |
| return NETDEV_TX_OK; |
| |
| tx_dma_error: |
| last_frag = i; |
| |
| /* start back at beginning and unmap skb */ |
| prod = txr->tx_prod; |
| tx_buf = &txr->tx_buf_ring[prod]; |
| tx_buf->skb = NULL; |
| dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), |
| skb_headlen(skb), PCI_DMA_TODEVICE); |
| prod = NEXT_TX(prod); |
| |
| /* unmap remaining mapped pages */ |
| for (i = 0; i < last_frag; i++) { |
| prod = NEXT_TX(prod); |
| tx_buf = &txr->tx_buf_ring[prod]; |
| dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), |
| skb_frag_size(&skb_shinfo(skb)->frags[i]), |
| PCI_DMA_TODEVICE); |
| } |
| |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) |
| { |
| struct bnxt_tx_ring_info *txr = bnapi->tx_ring; |
| int index = txr - &bp->tx_ring[0]; |
| struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index); |
| u16 cons = txr->tx_cons; |
| struct pci_dev *pdev = bp->pdev; |
| int i; |
| unsigned int tx_bytes = 0; |
| |
| for (i = 0; i < nr_pkts; i++) { |
| struct bnxt_sw_tx_bd *tx_buf; |
| struct sk_buff *skb; |
| int j, last; |
| |
| tx_buf = &txr->tx_buf_ring[cons]; |
| cons = NEXT_TX(cons); |
| skb = tx_buf->skb; |
| tx_buf->skb = NULL; |
| |
| if (tx_buf->is_push) { |
| tx_buf->is_push = 0; |
| goto next_tx_int; |
| } |
| |
| dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), |
| skb_headlen(skb), PCI_DMA_TODEVICE); |
| last = tx_buf->nr_frags; |
| |
| for (j = 0; j < last; j++) { |
| cons = NEXT_TX(cons); |
| tx_buf = &txr->tx_buf_ring[cons]; |
| dma_unmap_page( |
| &pdev->dev, |
| dma_unmap_addr(tx_buf, mapping), |
| skb_frag_size(&skb_shinfo(skb)->frags[j]), |
| PCI_DMA_TODEVICE); |
| } |
| |
| next_tx_int: |
| cons = NEXT_TX(cons); |
| |
| tx_bytes += skb->len; |
| dev_kfree_skb_any(skb); |
| } |
| |
| netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); |
| txr->tx_cons = cons; |
| |
| /* Need to make the tx_cons update visible to bnxt_start_xmit() |
| * before checking for netif_tx_queue_stopped(). Without the |
| * memory barrier, there is a small possibility that bnxt_start_xmit() |
| * will miss it and cause the queue to be stopped forever. |
| */ |
| smp_mb(); |
| |
| if (unlikely(netif_tx_queue_stopped(txq)) && |
| (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) { |
| __netif_tx_lock(txq, smp_processor_id()); |
| if (netif_tx_queue_stopped(txq) && |
| bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && |
| txr->dev_state != BNXT_DEV_STATE_CLOSING) |
| netif_tx_wake_queue(txq); |
| __netif_tx_unlock(txq); |
| } |
| } |
| |
| static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, |
| gfp_t gfp) |
| { |
| u8 *data; |
| struct pci_dev *pdev = bp->pdev; |
| |
| data = kmalloc(bp->rx_buf_size, gfp); |
| if (!data) |
| return NULL; |
| |
| *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET, |
| bp->rx_buf_use_size, PCI_DMA_FROMDEVICE); |
| |
| if (dma_mapping_error(&pdev->dev, *mapping)) { |
| kfree(data); |
| data = NULL; |
| } |
| return data; |
| } |
| |
| static inline int bnxt_alloc_rx_data(struct bnxt *bp, |
| struct bnxt_rx_ring_info *rxr, |
| u16 prod, gfp_t gfp) |
| { |
| struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; |
| struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; |
| u8 *data; |
| dma_addr_t mapping; |
| |
| data = __bnxt_alloc_rx_data(bp, &mapping, gfp); |
| if (!data) |
| return -ENOMEM; |
| |
| rx_buf->data = data; |
| dma_unmap_addr_set(rx_buf, mapping, mapping); |
| |
| rxbd->rx_bd_haddr = cpu_to_le64(mapping); |
| |
| return 0; |
| } |
| |
| static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, |
| u8 *data) |
| { |
| u16 prod = rxr->rx_prod; |
| struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; |
| struct rx_bd *cons_bd, *prod_bd; |
| |
| prod_rx_buf = &rxr->rx_buf_ring[prod]; |
| cons_rx_buf = &rxr->rx_buf_ring[cons]; |
| |
| prod_rx_buf->data = data; |
| |
| dma_unmap_addr_set(prod_rx_buf, mapping, |
| dma_unmap_addr(cons_rx_buf, mapping)); |
| |
| prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; |
| cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; |
| |
| prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; |
| } |
| |
| static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) |
| { |
| u16 next, max = rxr->rx_agg_bmap_size; |
| |
| next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); |
| if (next >= max) |
| next = find_first_zero_bit(rxr->rx_agg_bmap, max); |
| return next; |
| } |
| |
| static inline int bnxt_alloc_rx_page(struct bnxt *bp, |
| struct bnxt_rx_ring_info *rxr, |
| u16 prod, gfp_t gfp) |
| { |
| struct rx_bd *rxbd = |
| &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; |
| struct bnxt_sw_rx_agg_bd *rx_agg_buf; |
| struct pci_dev *pdev = bp->pdev; |
| struct page *page; |
| dma_addr_t mapping; |
| u16 sw_prod = rxr->rx_sw_agg_prod; |
| unsigned int offset = 0; |
| |
| if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { |
| page = rxr->rx_page; |
| if (!page) { |
| page = alloc_page(gfp); |
| if (!page) |
| return -ENOMEM; |
| rxr->rx_page = page; |
| rxr->rx_page_offset = 0; |
| } |
| offset = rxr->rx_page_offset; |
| rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; |
| if (rxr->rx_page_offset == PAGE_SIZE) |
| rxr->rx_page = NULL; |
| else |
| get_page(page); |
| } else { |
| page = alloc_page(gfp); |
| if (!page) |
| return -ENOMEM; |
| } |
| |
| mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE, |
| PCI_DMA_FROMDEVICE); |
| if (dma_mapping_error(&pdev->dev, mapping)) { |
| __free_page(page); |
| return -EIO; |
| } |
| |
| if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) |
| sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); |
| |
| __set_bit(sw_prod, rxr->rx_agg_bmap); |
| rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; |
| rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); |
| |
| rx_agg_buf->page = page; |
| rx_agg_buf->offset = offset; |
| rx_agg_buf->mapping = mapping; |
| rxbd->rx_bd_haddr = cpu_to_le64(mapping); |
| rxbd->rx_bd_opaque = sw_prod; |
| return 0; |
| } |
| |
| static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons, |
| u32 agg_bufs) |
| { |
| struct bnxt *bp = bnapi->bp; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| u16 prod = rxr->rx_agg_prod; |
| u16 sw_prod = rxr->rx_sw_agg_prod; |
| u32 i; |
| |
| for (i = 0; i < agg_bufs; i++) { |
| u16 cons; |
| struct rx_agg_cmp *agg; |
| struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; |
| struct rx_bd *prod_bd; |
| struct page *page; |
| |
| agg = (struct rx_agg_cmp *) |
| &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| cons = agg->rx_agg_cmp_opaque; |
| __clear_bit(cons, rxr->rx_agg_bmap); |
| |
| if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) |
| sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); |
| |
| __set_bit(sw_prod, rxr->rx_agg_bmap); |
| prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; |
| cons_rx_buf = &rxr->rx_agg_ring[cons]; |
| |
| /* It is possible for sw_prod to be equal to cons, so |
| * set cons_rx_buf->page to NULL first. |
| */ |
| page = cons_rx_buf->page; |
| cons_rx_buf->page = NULL; |
| prod_rx_buf->page = page; |
| prod_rx_buf->offset = cons_rx_buf->offset; |
| |
| prod_rx_buf->mapping = cons_rx_buf->mapping; |
| |
| prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; |
| |
| prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); |
| prod_bd->rx_bd_opaque = sw_prod; |
| |
| prod = NEXT_RX_AGG(prod); |
| sw_prod = NEXT_RX_AGG(sw_prod); |
| cp_cons = NEXT_CMP(cp_cons); |
| } |
| rxr->rx_agg_prod = prod; |
| rxr->rx_sw_agg_prod = sw_prod; |
| } |
| |
| static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, |
| struct bnxt_rx_ring_info *rxr, u16 cons, |
| u16 prod, u8 *data, dma_addr_t dma_addr, |
| unsigned int len) |
| { |
| int err; |
| struct sk_buff *skb; |
| |
| err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); |
| if (unlikely(err)) { |
| bnxt_reuse_rx_data(rxr, cons, data); |
| return NULL; |
| } |
| |
| skb = build_skb(data, 0); |
| dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, |
| PCI_DMA_FROMDEVICE); |
| if (!skb) { |
| kfree(data); |
| return NULL; |
| } |
| |
| skb_reserve(skb, BNXT_RX_OFFSET); |
| skb_put(skb, len); |
| return skb; |
| } |
| |
| static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi, |
| struct sk_buff *skb, u16 cp_cons, |
| u32 agg_bufs) |
| { |
| struct pci_dev *pdev = bp->pdev; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| u16 prod = rxr->rx_agg_prod; |
| u32 i; |
| |
| for (i = 0; i < agg_bufs; i++) { |
| u16 cons, frag_len; |
| struct rx_agg_cmp *agg; |
| struct bnxt_sw_rx_agg_bd *cons_rx_buf; |
| struct page *page; |
| dma_addr_t mapping; |
| |
| agg = (struct rx_agg_cmp *) |
| &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| cons = agg->rx_agg_cmp_opaque; |
| frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & |
| RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; |
| |
| cons_rx_buf = &rxr->rx_agg_ring[cons]; |
| skb_fill_page_desc(skb, i, cons_rx_buf->page, |
| cons_rx_buf->offset, frag_len); |
| __clear_bit(cons, rxr->rx_agg_bmap); |
| |
| /* It is possible for bnxt_alloc_rx_page() to allocate |
| * a sw_prod index that equals the cons index, so we |
| * need to clear the cons entry now. |
| */ |
| mapping = dma_unmap_addr(cons_rx_buf, mapping); |
| page = cons_rx_buf->page; |
| cons_rx_buf->page = NULL; |
| |
| if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { |
| struct skb_shared_info *shinfo; |
| unsigned int nr_frags; |
| |
| shinfo = skb_shinfo(skb); |
| nr_frags = --shinfo->nr_frags; |
| __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); |
| |
| dev_kfree_skb(skb); |
| |
| cons_rx_buf->page = page; |
| |
| /* Update prod since possibly some pages have been |
| * allocated already. |
| */ |
| rxr->rx_agg_prod = prod; |
| bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i); |
| return NULL; |
| } |
| |
| dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, |
| PCI_DMA_FROMDEVICE); |
| |
| skb->data_len += frag_len; |
| skb->len += frag_len; |
| skb->truesize += PAGE_SIZE; |
| |
| prod = NEXT_RX_AGG(prod); |
| cp_cons = NEXT_CMP(cp_cons); |
| } |
| rxr->rx_agg_prod = prod; |
| return skb; |
| } |
| |
| static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, |
| u8 agg_bufs, u32 *raw_cons) |
| { |
| u16 last; |
| struct rx_agg_cmp *agg; |
| |
| *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); |
| last = RING_CMP(*raw_cons); |
| agg = (struct rx_agg_cmp *) |
| &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; |
| return RX_AGG_CMP_VALID(agg, *raw_cons); |
| } |
| |
| static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, |
| unsigned int len, |
| dma_addr_t mapping) |
| { |
| struct bnxt *bp = bnapi->bp; |
| struct pci_dev *pdev = bp->pdev; |
| struct sk_buff *skb; |
| |
| skb = napi_alloc_skb(&bnapi->napi, len); |
| if (!skb) |
| return NULL; |
| |
| dma_sync_single_for_cpu(&pdev->dev, mapping, |
| bp->rx_copy_thresh, PCI_DMA_FROMDEVICE); |
| |
| memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET); |
| |
| dma_sync_single_for_device(&pdev->dev, mapping, |
| bp->rx_copy_thresh, |
| PCI_DMA_FROMDEVICE); |
| |
| skb_put(skb, len); |
| return skb; |
| } |
| |
| static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi, |
| u32 *raw_cons, void *cmp) |
| { |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct rx_cmp *rxcmp = cmp; |
| u32 tmp_raw_cons = *raw_cons; |
| u8 cmp_type, agg_bufs = 0; |
| |
| cmp_type = RX_CMP_TYPE(rxcmp); |
| |
| if (cmp_type == CMP_TYPE_RX_L2_CMP) { |
| agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & |
| RX_CMP_AGG_BUFS) >> |
| RX_CMP_AGG_BUFS_SHIFT; |
| } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { |
| struct rx_tpa_end_cmp *tpa_end = cmp; |
| |
| agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & |
| RX_TPA_END_CMP_AGG_BUFS) >> |
| RX_TPA_END_CMP_AGG_BUFS_SHIFT; |
| } |
| |
| if (agg_bufs) { |
| if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) |
| return -EBUSY; |
| } |
| *raw_cons = tmp_raw_cons; |
| return 0; |
| } |
| |
| static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) |
| { |
| if (!rxr->bnapi->in_reset) { |
| rxr->bnapi->in_reset = true; |
| set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); |
| schedule_work(&bp->sp_task); |
| } |
| rxr->rx_next_cons = 0xffff; |
| } |
| |
| static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, |
| struct rx_tpa_start_cmp *tpa_start, |
| struct rx_tpa_start_cmp_ext *tpa_start1) |
| { |
| u8 agg_id = TPA_START_AGG_ID(tpa_start); |
| u16 cons, prod; |
| struct bnxt_tpa_info *tpa_info; |
| struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; |
| struct rx_bd *prod_bd; |
| dma_addr_t mapping; |
| |
| cons = tpa_start->rx_tpa_start_cmp_opaque; |
| prod = rxr->rx_prod; |
| cons_rx_buf = &rxr->rx_buf_ring[cons]; |
| prod_rx_buf = &rxr->rx_buf_ring[prod]; |
| tpa_info = &rxr->rx_tpa[agg_id]; |
| |
| if (unlikely(cons != rxr->rx_next_cons)) { |
| netdev_warn(bp->dev, "TPA cons %x != expected cons %x\n", |
| cons, rxr->rx_next_cons); |
| bnxt_sched_reset(bp, rxr); |
| return; |
| } |
| |
| prod_rx_buf->data = tpa_info->data; |
| |
| mapping = tpa_info->mapping; |
| dma_unmap_addr_set(prod_rx_buf, mapping, mapping); |
| |
| prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; |
| |
| prod_bd->rx_bd_haddr = cpu_to_le64(mapping); |
| |
| tpa_info->data = cons_rx_buf->data; |
| cons_rx_buf->data = NULL; |
| tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping); |
| |
| tpa_info->len = |
| le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> |
| RX_TPA_START_CMP_LEN_SHIFT; |
| if (likely(TPA_START_HASH_VALID(tpa_start))) { |
| u32 hash_type = TPA_START_HASH_TYPE(tpa_start); |
| |
| tpa_info->hash_type = PKT_HASH_TYPE_L4; |
| tpa_info->gso_type = SKB_GSO_TCPV4; |
| /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ |
| if (hash_type == 3) |
| tpa_info->gso_type = SKB_GSO_TCPV6; |
| tpa_info->rss_hash = |
| le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); |
| } else { |
| tpa_info->hash_type = PKT_HASH_TYPE_NONE; |
| tpa_info->gso_type = 0; |
| if (netif_msg_rx_err(bp)) |
| netdev_warn(bp->dev, "TPA packet without valid hash\n"); |
| } |
| tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); |
| tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); |
| tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); |
| |
| rxr->rx_prod = NEXT_RX(prod); |
| cons = NEXT_RX(cons); |
| rxr->rx_next_cons = NEXT_RX(cons); |
| cons_rx_buf = &rxr->rx_buf_ring[cons]; |
| |
| bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); |
| rxr->rx_prod = NEXT_RX(rxr->rx_prod); |
| cons_rx_buf->data = NULL; |
| } |
| |
| static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi, |
| u16 cp_cons, u32 agg_bufs) |
| { |
| if (agg_bufs) |
| bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); |
| } |
| |
| static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, |
| int payload_off, int tcp_ts, |
| struct sk_buff *skb) |
| { |
| #ifdef CONFIG_INET |
| struct tcphdr *th; |
| int len, nw_off; |
| u16 outer_ip_off, inner_ip_off, inner_mac_off; |
| u32 hdr_info = tpa_info->hdr_info; |
| bool loopback = false; |
| |
| inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); |
| inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); |
| outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); |
| |
| /* If the packet is an internal loopback packet, the offsets will |
| * have an extra 4 bytes. |
| */ |
| if (inner_mac_off == 4) { |
| loopback = true; |
| } else if (inner_mac_off > 4) { |
| __be16 proto = *((__be16 *)(skb->data + inner_ip_off - |
| ETH_HLEN - 2)); |
| |
| /* We only support inner iPv4/ipv6. If we don't see the |
| * correct protocol ID, it must be a loopback packet where |
| * the offsets are off by 4. |
| */ |
| if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) |
| loopback = true; |
| } |
| if (loopback) { |
| /* internal loopback packet, subtract all offsets by 4 */ |
| inner_ip_off -= 4; |
| inner_mac_off -= 4; |
| outer_ip_off -= 4; |
| } |
| |
| nw_off = inner_ip_off - ETH_HLEN; |
| skb_set_network_header(skb, nw_off); |
| if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { |
| struct ipv6hdr *iph = ipv6_hdr(skb); |
| |
| skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); |
| len = skb->len - skb_transport_offset(skb); |
| th = tcp_hdr(skb); |
| th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); |
| } else { |
| struct iphdr *iph = ip_hdr(skb); |
| |
| skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); |
| len = skb->len - skb_transport_offset(skb); |
| th = tcp_hdr(skb); |
| th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); |
| } |
| |
| if (inner_mac_off) { /* tunnel */ |
| struct udphdr *uh = NULL; |
| __be16 proto = *((__be16 *)(skb->data + outer_ip_off - |
| ETH_HLEN - 2)); |
| |
| if (proto == htons(ETH_P_IP)) { |
| struct iphdr *iph = (struct iphdr *)skb->data; |
| |
| if (iph->protocol == IPPROTO_UDP) |
| uh = (struct udphdr *)(iph + 1); |
| } else { |
| struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; |
| |
| if (iph->nexthdr == IPPROTO_UDP) |
| uh = (struct udphdr *)(iph + 1); |
| } |
| if (uh) { |
| if (uh->check) |
| skb_shinfo(skb)->gso_type |= |
| SKB_GSO_UDP_TUNNEL_CSUM; |
| else |
| skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; |
| } |
| } |
| #endif |
| return skb; |
| } |
| |
| #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) |
| #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) |
| |
| static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, |
| int payload_off, int tcp_ts, |
| struct sk_buff *skb) |
| { |
| #ifdef CONFIG_INET |
| struct tcphdr *th; |
| int len, nw_off, tcp_opt_len = 0; |
| |
| if (tcp_ts) |
| tcp_opt_len = 12; |
| |
| if (tpa_info->gso_type == SKB_GSO_TCPV4) { |
| struct iphdr *iph; |
| |
| nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - |
| ETH_HLEN; |
| skb_set_network_header(skb, nw_off); |
| iph = ip_hdr(skb); |
| skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); |
| len = skb->len - skb_transport_offset(skb); |
| th = tcp_hdr(skb); |
| th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); |
| } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { |
| struct ipv6hdr *iph; |
| |
| nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - |
| ETH_HLEN; |
| skb_set_network_header(skb, nw_off); |
| iph = ipv6_hdr(skb); |
| skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); |
| len = skb->len - skb_transport_offset(skb); |
| th = tcp_hdr(skb); |
| th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); |
| } else { |
| dev_kfree_skb_any(skb); |
| return NULL; |
| } |
| tcp_gro_complete(skb); |
| |
| if (nw_off) { /* tunnel */ |
| struct udphdr *uh = NULL; |
| |
| if (skb->protocol == htons(ETH_P_IP)) { |
| struct iphdr *iph = (struct iphdr *)skb->data; |
| |
| if (iph->protocol == IPPROTO_UDP) |
| uh = (struct udphdr *)(iph + 1); |
| } else { |
| struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; |
| |
| if (iph->nexthdr == IPPROTO_UDP) |
| uh = (struct udphdr *)(iph + 1); |
| } |
| if (uh) { |
| if (uh->check) |
| skb_shinfo(skb)->gso_type |= |
| SKB_GSO_UDP_TUNNEL_CSUM; |
| else |
| skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; |
| } |
| } |
| #endif |
| return skb; |
| } |
| |
| static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, |
| struct bnxt_tpa_info *tpa_info, |
| struct rx_tpa_end_cmp *tpa_end, |
| struct rx_tpa_end_cmp_ext *tpa_end1, |
| struct sk_buff *skb) |
| { |
| #ifdef CONFIG_INET |
| int payload_off; |
| u16 segs; |
| |
| segs = TPA_END_TPA_SEGS(tpa_end); |
| if (segs == 1) |
| return skb; |
| |
| NAPI_GRO_CB(skb)->count = segs; |
| skb_shinfo(skb)->gso_size = |
| le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); |
| skb_shinfo(skb)->gso_type = tpa_info->gso_type; |
| payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & |
| RX_TPA_END_CMP_PAYLOAD_OFFSET) >> |
| RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT; |
| skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); |
| #endif |
| return skb; |
| } |
| |
| static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, |
| struct bnxt_napi *bnapi, |
| u32 *raw_cons, |
| struct rx_tpa_end_cmp *tpa_end, |
| struct rx_tpa_end_cmp_ext *tpa_end1, |
| bool *agg_event) |
| { |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| u8 agg_id = TPA_END_AGG_ID(tpa_end); |
| u8 *data, agg_bufs; |
| u16 cp_cons = RING_CMP(*raw_cons); |
| unsigned int len; |
| struct bnxt_tpa_info *tpa_info; |
| dma_addr_t mapping; |
| struct sk_buff *skb; |
| |
| if (unlikely(bnapi->in_reset)) { |
| int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end); |
| |
| if (rc < 0) |
| return ERR_PTR(-EBUSY); |
| return NULL; |
| } |
| |
| tpa_info = &rxr->rx_tpa[agg_id]; |
| data = tpa_info->data; |
| prefetch(data); |
| len = tpa_info->len; |
| mapping = tpa_info->mapping; |
| |
| agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & |
| RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT; |
| |
| if (agg_bufs) { |
| if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) |
| return ERR_PTR(-EBUSY); |
| |
| *agg_event = true; |
| cp_cons = NEXT_CMP(cp_cons); |
| } |
| |
| if (unlikely(agg_bufs > MAX_SKB_FRAGS)) { |
| bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); |
| netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", |
| agg_bufs, (int)MAX_SKB_FRAGS); |
| return NULL; |
| } |
| |
| if (len <= bp->rx_copy_thresh) { |
| skb = bnxt_copy_skb(bnapi, data, len, mapping); |
| if (!skb) { |
| bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); |
| return NULL; |
| } |
| } else { |
| u8 *new_data; |
| dma_addr_t new_mapping; |
| |
| new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); |
| if (!new_data) { |
| bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); |
| return NULL; |
| } |
| |
| tpa_info->data = new_data; |
| tpa_info->mapping = new_mapping; |
| |
| skb = build_skb(data, 0); |
| dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size, |
| PCI_DMA_FROMDEVICE); |
| |
| if (!skb) { |
| kfree(data); |
| bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); |
| return NULL; |
| } |
| skb_reserve(skb, BNXT_RX_OFFSET); |
| skb_put(skb, len); |
| } |
| |
| if (agg_bufs) { |
| skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs); |
| if (!skb) { |
| /* Page reuse already handled by bnxt_rx_pages(). */ |
| return NULL; |
| } |
| } |
| skb->protocol = eth_type_trans(skb, bp->dev); |
| |
| if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) |
| skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); |
| |
| if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && |
| (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) { |
| u16 vlan_proto = tpa_info->metadata >> |
| RX_CMP_FLAGS2_METADATA_TPID_SFT; |
| u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK; |
| |
| __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag); |
| } |
| |
| skb_checksum_none_assert(skb); |
| if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb->csum_level = |
| (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; |
| } |
| |
| if (TPA_END_GRO(tpa_end)) |
| skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); |
| |
| return skb; |
| } |
| |
| /* returns the following: |
| * 1 - 1 packet successfully received |
| * 0 - successful TPA_START, packet not completed yet |
| * -EBUSY - completion ring does not have all the agg buffers yet |
| * -ENOMEM - packet aborted due to out of memory |
| * -EIO - packet aborted due to hw error indicated in BD |
| */ |
| static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons, |
| bool *agg_event) |
| { |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| struct net_device *dev = bp->dev; |
| struct rx_cmp *rxcmp; |
| struct rx_cmp_ext *rxcmp1; |
| u32 tmp_raw_cons = *raw_cons; |
| u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); |
| struct bnxt_sw_rx_bd *rx_buf; |
| unsigned int len; |
| u8 *data, agg_bufs, cmp_type; |
| dma_addr_t dma_addr; |
| struct sk_buff *skb; |
| int rc = 0; |
| |
| rxcmp = (struct rx_cmp *) |
| &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| |
| tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); |
| cp_cons = RING_CMP(tmp_raw_cons); |
| rxcmp1 = (struct rx_cmp_ext *) |
| &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| |
| if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) |
| return -EBUSY; |
| |
| cmp_type = RX_CMP_TYPE(rxcmp); |
| |
| prod = rxr->rx_prod; |
| |
| if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { |
| bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, |
| (struct rx_tpa_start_cmp_ext *)rxcmp1); |
| |
| goto next_rx_no_prod; |
| |
| } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { |
| skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons, |
| (struct rx_tpa_end_cmp *)rxcmp, |
| (struct rx_tpa_end_cmp_ext *)rxcmp1, |
| agg_event); |
| |
| if (unlikely(IS_ERR(skb))) |
| return -EBUSY; |
| |
| rc = -ENOMEM; |
| if (likely(skb)) { |
| skb_record_rx_queue(skb, bnapi->index); |
| skb_mark_napi_id(skb, &bnapi->napi); |
| if (bnxt_busy_polling(bnapi)) |
| netif_receive_skb(skb); |
| else |
| napi_gro_receive(&bnapi->napi, skb); |
| rc = 1; |
| } |
| goto next_rx_no_prod; |
| } |
| |
| cons = rxcmp->rx_cmp_opaque; |
| if (unlikely(cons != rxr->rx_next_cons)) { |
| int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp); |
| |
| netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", |
| cons, rxr->rx_next_cons); |
| bnxt_sched_reset(bp, rxr); |
| return rc1; |
| } |
| rx_buf = &rxr->rx_buf_ring[cons]; |
| data = rx_buf->data; |
| prefetch(data); |
| |
| agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >> |
| RX_CMP_AGG_BUFS_SHIFT; |
| |
| if (agg_bufs) { |
| if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) |
| return -EBUSY; |
| |
| cp_cons = NEXT_CMP(cp_cons); |
| *agg_event = true; |
| } |
| |
| rx_buf->data = NULL; |
| if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { |
| u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); |
| |
| bnxt_reuse_rx_data(rxr, cons, data); |
| if (agg_bufs) |
| bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); |
| |
| rc = -EIO; |
| if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { |
| netdev_warn(bp->dev, "RX buffer error %x\n", rx_err); |
| bnxt_sched_reset(bp, rxr); |
| } |
| goto next_rx; |
| } |
| |
| len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT; |
| dma_addr = dma_unmap_addr(rx_buf, mapping); |
| |
| if (len <= bp->rx_copy_thresh) { |
| skb = bnxt_copy_skb(bnapi, data, len, dma_addr); |
| bnxt_reuse_rx_data(rxr, cons, data); |
| if (!skb) { |
| if (agg_bufs) |
| bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); |
| rc = -ENOMEM; |
| goto next_rx; |
| } |
| } else { |
| skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len); |
| if (!skb) { |
| rc = -ENOMEM; |
| goto next_rx; |
| } |
| } |
| |
| if (agg_bufs) { |
| skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs); |
| if (!skb) { |
| rc = -ENOMEM; |
| goto next_rx; |
| } |
| } |
| |
| if (RX_CMP_HASH_VALID(rxcmp)) { |
| u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); |
| enum pkt_hash_types type = PKT_HASH_TYPE_L4; |
| |
| /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ |
| if (hash_type != 1 && hash_type != 3) |
| type = PKT_HASH_TYPE_L3; |
| skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); |
| } |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| if ((rxcmp1->rx_cmp_flags2 & |
| cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && |
| (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) { |
| u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); |
| u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK; |
| u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT; |
| |
| __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag); |
| } |
| |
| skb_checksum_none_assert(skb); |
| if (RX_CMP_L4_CS_OK(rxcmp1)) { |
| if (dev->features & NETIF_F_RXCSUM) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb->csum_level = RX_CMP_ENCAP(rxcmp1); |
| } |
| } else { |
| if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { |
| if (dev->features & NETIF_F_RXCSUM) |
| cpr->rx_l4_csum_errors++; |
| } |
| } |
| |
| skb_record_rx_queue(skb, bnapi->index); |
| skb_mark_napi_id(skb, &bnapi->napi); |
| if (bnxt_busy_polling(bnapi)) |
| netif_receive_skb(skb); |
| else |
| napi_gro_receive(&bnapi->napi, skb); |
| rc = 1; |
| |
| next_rx: |
| rxr->rx_prod = NEXT_RX(prod); |
| rxr->rx_next_cons = NEXT_RX(cons); |
| |
| next_rx_no_prod: |
| *raw_cons = tmp_raw_cons; |
| |
| return rc; |
| } |
| |
| #define BNXT_GET_EVENT_PORT(data) \ |
| ((data) & \ |
| HWRM_ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) |
| |
| static int bnxt_async_event_process(struct bnxt *bp, |
| struct hwrm_async_event_cmpl *cmpl) |
| { |
| u16 event_id = le16_to_cpu(cmpl->event_id); |
| |
| /* TODO CHIMP_FW: Define event id's for link change, error etc */ |
| switch (event_id) { |
| case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { |
| u32 data1 = le32_to_cpu(cmpl->event_data1); |
| struct bnxt_link_info *link_info = &bp->link_info; |
| |
| if (BNXT_VF(bp)) |
| goto async_event_process_exit; |
| |
| /* print unsupported speed warning in forced speed mode only */ |
| if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && |
| (data1 & 0x20000)) { |
| u16 fw_speed = link_info->force_link_speed; |
| u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); |
| |
| if (speed != SPEED_UNKNOWN) |
| netdev_warn(bp->dev, "Link speed %d no longer supported\n", |
| speed); |
| } |
| set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); |
| /* fall thru */ |
| } |
| case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: |
| set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); |
| break; |
| case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: |
| set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); |
| break; |
| case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { |
| u32 data1 = le32_to_cpu(cmpl->event_data1); |
| u16 port_id = BNXT_GET_EVENT_PORT(data1); |
| |
| if (BNXT_VF(bp)) |
| break; |
| |
| if (bp->pf.port_id != port_id) |
| break; |
| |
| set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); |
| break; |
| } |
| case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: |
| if (BNXT_PF(bp)) |
| goto async_event_process_exit; |
| set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); |
| break; |
| default: |
| netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n", |
| event_id); |
| goto async_event_process_exit; |
| } |
| schedule_work(&bp->sp_task); |
| async_event_process_exit: |
| return 0; |
| } |
| |
| static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) |
| { |
| u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; |
| struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; |
| struct hwrm_fwd_req_cmpl *fwd_req_cmpl = |
| (struct hwrm_fwd_req_cmpl *)txcmp; |
| |
| switch (cmpl_type) { |
| case CMPL_BASE_TYPE_HWRM_DONE: |
| seq_id = le16_to_cpu(h_cmpl->sequence_id); |
| if (seq_id == bp->hwrm_intr_seq_id) |
| bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID; |
| else |
| netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); |
| break; |
| |
| case CMPL_BASE_TYPE_HWRM_FWD_REQ: |
| vf_id = le16_to_cpu(fwd_req_cmpl->source_id); |
| |
| if ((vf_id < bp->pf.first_vf_id) || |
| (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { |
| netdev_err(bp->dev, "Msg contains invalid VF id %x\n", |
| vf_id); |
| return -EINVAL; |
| } |
| |
| set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); |
| set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); |
| schedule_work(&bp->sp_task); |
| break; |
| |
| case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: |
| bnxt_async_event_process(bp, |
| (struct hwrm_async_event_cmpl *)txcmp); |
| |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static irqreturn_t bnxt_msix(int irq, void *dev_instance) |
| { |
| struct bnxt_napi *bnapi = dev_instance; |
| struct bnxt *bp = bnapi->bp; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| u32 cons = RING_CMP(cpr->cp_raw_cons); |
| |
| prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); |
| napi_schedule(&bnapi->napi); |
| return IRQ_HANDLED; |
| } |
| |
| static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) |
| { |
| u32 raw_cons = cpr->cp_raw_cons; |
| u16 cons = RING_CMP(raw_cons); |
| struct tx_cmp *txcmp; |
| |
| txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; |
| |
| return TX_CMP_VALID(txcmp, raw_cons); |
| } |
| |
| static irqreturn_t bnxt_inta(int irq, void *dev_instance) |
| { |
| struct bnxt_napi *bnapi = dev_instance; |
| struct bnxt *bp = bnapi->bp; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| u32 cons = RING_CMP(cpr->cp_raw_cons); |
| u32 int_status; |
| |
| prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); |
| |
| if (!bnxt_has_work(bp, cpr)) { |
| int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); |
| /* return if erroneous interrupt */ |
| if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) |
| return IRQ_NONE; |
| } |
| |
| /* disable ring IRQ */ |
| BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell); |
| |
| /* Return here if interrupt is shared and is disabled. */ |
| if (unlikely(atomic_read(&bp->intr_sem) != 0)) |
| return IRQ_HANDLED; |
| |
| napi_schedule(&bnapi->napi); |
| return IRQ_HANDLED; |
| } |
| |
| static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) |
| { |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| u32 raw_cons = cpr->cp_raw_cons; |
| u32 cons; |
| int tx_pkts = 0; |
| int rx_pkts = 0; |
| bool rx_event = false; |
| bool agg_event = false; |
| struct tx_cmp *txcmp; |
| |
| while (1) { |
| int rc; |
| |
| cons = RING_CMP(raw_cons); |
| txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; |
| |
| if (!TX_CMP_VALID(txcmp, raw_cons)) |
| break; |
| |
| /* The valid test of the entry must be done first before |
| * reading any further. |
| */ |
| dma_rmb(); |
| if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { |
| tx_pkts++; |
| /* return full budget so NAPI will complete. */ |
| if (unlikely(tx_pkts > bp->tx_wake_thresh)) { |
| rx_pkts = budget; |
| raw_cons = NEXT_RAW_CMP(raw_cons); |
| break; |
| } |
| } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { |
| rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event); |
| if (likely(rc >= 0)) |
| rx_pkts += rc; |
| else if (rc == -EBUSY) /* partial completion */ |
| break; |
| rx_event = true; |
| } else if (unlikely((TX_CMP_TYPE(txcmp) == |
| CMPL_BASE_TYPE_HWRM_DONE) || |
| (TX_CMP_TYPE(txcmp) == |
| CMPL_BASE_TYPE_HWRM_FWD_REQ) || |
| (TX_CMP_TYPE(txcmp) == |
| CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { |
| bnxt_hwrm_handler(bp, txcmp); |
| } |
| raw_cons = NEXT_RAW_CMP(raw_cons); |
| |
| if (rx_pkts && rx_pkts == budget) |
| break; |
| } |
| |
| cpr->cp_raw_cons = raw_cons; |
| /* ACK completion ring before freeing tx ring and producing new |
| * buffers in rx/agg rings to prevent overflowing the completion |
| * ring. |
| */ |
| BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); |
| |
| if (tx_pkts) |
| bnxt_tx_int(bp, bnapi, tx_pkts); |
| |
| if (rx_event) { |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| |
| writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); |
| writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); |
| if (agg_event) { |
| writel(DB_KEY_RX | rxr->rx_agg_prod, |
| rxr->rx_agg_doorbell); |
| writel(DB_KEY_RX | rxr->rx_agg_prod, |
| rxr->rx_agg_doorbell); |
| } |
| } |
| return rx_pkts; |
| } |
| |
| static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) |
| { |
| struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); |
| struct bnxt *bp = bnapi->bp; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| struct tx_cmp *txcmp; |
| struct rx_cmp_ext *rxcmp1; |
| u32 cp_cons, tmp_raw_cons; |
| u32 raw_cons = cpr->cp_raw_cons; |
| u32 rx_pkts = 0; |
| bool agg_event = false; |
| |
| while (1) { |
| int rc; |
| |
| cp_cons = RING_CMP(raw_cons); |
| txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| |
| if (!TX_CMP_VALID(txcmp, raw_cons)) |
| break; |
| |
| if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { |
| tmp_raw_cons = NEXT_RAW_CMP(raw_cons); |
| cp_cons = RING_CMP(tmp_raw_cons); |
| rxcmp1 = (struct rx_cmp_ext *) |
| &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| |
| if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) |
| break; |
| |
| /* force an error to recycle the buffer */ |
| rxcmp1->rx_cmp_cfa_code_errors_v2 |= |
| cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); |
| |
| rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event); |
| if (likely(rc == -EIO)) |
| rx_pkts++; |
| else if (rc == -EBUSY) /* partial completion */ |
| break; |
| } else if (unlikely(TX_CMP_TYPE(txcmp) == |
| CMPL_BASE_TYPE_HWRM_DONE)) { |
| bnxt_hwrm_handler(bp, txcmp); |
| } else { |
| netdev_err(bp->dev, |
| "Invalid completion received on special ring\n"); |
| } |
| raw_cons = NEXT_RAW_CMP(raw_cons); |
| |
| if (rx_pkts == budget) |
| break; |
| } |
| |
| cpr->cp_raw_cons = raw_cons; |
| BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); |
| writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); |
| writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); |
| |
| if (agg_event) { |
| writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell); |
| writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell); |
| } |
| |
| if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { |
| napi_complete(napi); |
| BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); |
| } |
| return rx_pkts; |
| } |
| |
| static int bnxt_poll(struct napi_struct *napi, int budget) |
| { |
| struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); |
| struct bnxt *bp = bnapi->bp; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| int work_done = 0; |
| |
| if (!bnxt_lock_napi(bnapi)) |
| return budget; |
| |
| while (1) { |
| work_done += bnxt_poll_work(bp, bnapi, budget - work_done); |
| |
| if (work_done >= budget) { |
| if (!budget) |
| BNXT_CP_DB_REARM(cpr->cp_doorbell, |
| cpr->cp_raw_cons); |
| break; |
| } |
| |
| if (!bnxt_has_work(bp, cpr)) { |
| napi_complete(napi); |
| BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); |
| break; |
| } |
| } |
| mmiowb(); |
| bnxt_unlock_napi(bnapi); |
| return work_done; |
| } |
| |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| static int bnxt_busy_poll(struct napi_struct *napi) |
| { |
| struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); |
| struct bnxt *bp = bnapi->bp; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| int rx_work, budget = 4; |
| |
| if (atomic_read(&bp->intr_sem) != 0) |
| return LL_FLUSH_FAILED; |
| |
| if (!bp->link_info.link_up) |
| return LL_FLUSH_FAILED; |
| |
| if (!bnxt_lock_poll(bnapi)) |
| return LL_FLUSH_BUSY; |
| |
| rx_work = bnxt_poll_work(bp, bnapi, budget); |
| |
| BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); |
| |
| bnxt_unlock_poll(bnapi); |
| return rx_work; |
| } |
| #endif |
| |
| static void bnxt_free_tx_skbs(struct bnxt *bp) |
| { |
| int i, max_idx; |
| struct pci_dev *pdev = bp->pdev; |
| |
| if (!bp->tx_ring) |
| return; |
| |
| max_idx = bp->tx_nr_pages * TX_DESC_CNT; |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| int j; |
| |
| for (j = 0; j < max_idx;) { |
| struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; |
| struct sk_buff *skb = tx_buf->skb; |
| int k, last; |
| |
| if (!skb) { |
| j++; |
| continue; |
| } |
| |
| tx_buf->skb = NULL; |
| |
| if (tx_buf->is_push) { |
| dev_kfree_skb(skb); |
| j += 2; |
| continue; |
| } |
| |
| dma_unmap_single(&pdev->dev, |
| dma_unmap_addr(tx_buf, mapping), |
| skb_headlen(skb), |
| PCI_DMA_TODEVICE); |
| |
| last = tx_buf->nr_frags; |
| j += 2; |
| for (k = 0; k < last; k++, j++) { |
| int ring_idx = j & bp->tx_ring_mask; |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; |
| |
| tx_buf = &txr->tx_buf_ring[ring_idx]; |
| dma_unmap_page( |
| &pdev->dev, |
| dma_unmap_addr(tx_buf, mapping), |
| skb_frag_size(frag), PCI_DMA_TODEVICE); |
| } |
| dev_kfree_skb(skb); |
| } |
| netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); |
| } |
| } |
| |
| static void bnxt_free_rx_skbs(struct bnxt *bp) |
| { |
| int i, max_idx, max_agg_idx; |
| struct pci_dev *pdev = bp->pdev; |
| |
| if (!bp->rx_ring) |
| return; |
| |
| max_idx = bp->rx_nr_pages * RX_DESC_CNT; |
| max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| int j; |
| |
| if (rxr->rx_tpa) { |
| for (j = 0; j < MAX_TPA; j++) { |
| struct bnxt_tpa_info *tpa_info = |
| &rxr->rx_tpa[j]; |
| u8 *data = tpa_info->data; |
| |
| if (!data) |
| continue; |
| |
| dma_unmap_single( |
| &pdev->dev, |
| dma_unmap_addr(tpa_info, mapping), |
| bp->rx_buf_use_size, |
| PCI_DMA_FROMDEVICE); |
| |
| tpa_info->data = NULL; |
| |
| kfree(data); |
| } |
| } |
| |
| for (j = 0; j < max_idx; j++) { |
| struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j]; |
| u8 *data = rx_buf->data; |
| |
| if (!data) |
| continue; |
| |
| dma_unmap_single(&pdev->dev, |
| dma_unmap_addr(rx_buf, mapping), |
| bp->rx_buf_use_size, |
| PCI_DMA_FROMDEVICE); |
| |
| rx_buf->data = NULL; |
| |
| kfree(data); |
| } |
| |
| for (j = 0; j < max_agg_idx; j++) { |
| struct bnxt_sw_rx_agg_bd *rx_agg_buf = |
| &rxr->rx_agg_ring[j]; |
| struct page *page = rx_agg_buf->page; |
| |
| if (!page) |
| continue; |
| |
| dma_unmap_page(&pdev->dev, |
| dma_unmap_addr(rx_agg_buf, mapping), |
| BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE); |
| |
| rx_agg_buf->page = NULL; |
| __clear_bit(j, rxr->rx_agg_bmap); |
| |
| __free_page(page); |
| } |
| if (rxr->rx_page) { |
| __free_page(rxr->rx_page); |
| rxr->rx_page = NULL; |
| } |
| } |
| } |
| |
| static void bnxt_free_skbs(struct bnxt *bp) |
| { |
| bnxt_free_tx_skbs(bp); |
| bnxt_free_rx_skbs(bp); |
| } |
| |
| static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring) |
| { |
| struct pci_dev *pdev = bp->pdev; |
| int i; |
| |
| for (i = 0; i < ring->nr_pages; i++) { |
| if (!ring->pg_arr[i]) |
| continue; |
| |
| dma_free_coherent(&pdev->dev, ring->page_size, |
| ring->pg_arr[i], ring->dma_arr[i]); |
| |
| ring->pg_arr[i] = NULL; |
| } |
| if (ring->pg_tbl) { |
| dma_free_coherent(&pdev->dev, ring->nr_pages * 8, |
| ring->pg_tbl, ring->pg_tbl_map); |
| ring->pg_tbl = NULL; |
| } |
| if (ring->vmem_size && *ring->vmem) { |
| vfree(*ring->vmem); |
| *ring->vmem = NULL; |
| } |
| } |
| |
| static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring) |
| { |
| int i; |
| struct pci_dev *pdev = bp->pdev; |
| |
| if (ring->nr_pages > 1) { |
| ring->pg_tbl = dma_alloc_coherent(&pdev->dev, |
| ring->nr_pages * 8, |
| &ring->pg_tbl_map, |
| GFP_KERNEL); |
| if (!ring->pg_tbl) |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < ring->nr_pages; i++) { |
| ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev, |
| ring->page_size, |
| &ring->dma_arr[i], |
| GFP_KERNEL); |
| if (!ring->pg_arr[i]) |
| return -ENOMEM; |
| |
| if (ring->nr_pages > 1) |
| ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]); |
| } |
| |
| if (ring->vmem_size) { |
| *ring->vmem = vzalloc(ring->vmem_size); |
| if (!(*ring->vmem)) |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void bnxt_free_rx_rings(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->rx_ring) |
| return; |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_ring_struct *ring; |
| |
| kfree(rxr->rx_tpa); |
| rxr->rx_tpa = NULL; |
| |
| kfree(rxr->rx_agg_bmap); |
| rxr->rx_agg_bmap = NULL; |
| |
| ring = &rxr->rx_ring_struct; |
| bnxt_free_ring(bp, ring); |
| |
| ring = &rxr->rx_agg_ring_struct; |
| bnxt_free_ring(bp, ring); |
| } |
| } |
| |
| static int bnxt_alloc_rx_rings(struct bnxt *bp) |
| { |
| int i, rc, agg_rings = 0, tpa_rings = 0; |
| |
| if (!bp->rx_ring) |
| return -ENOMEM; |
| |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) |
| agg_rings = 1; |
| |
| if (bp->flags & BNXT_FLAG_TPA) |
| tpa_rings = 1; |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_ring_struct *ring; |
| |
| ring = &rxr->rx_ring_struct; |
| |
| rc = bnxt_alloc_ring(bp, ring); |
| if (rc) |
| return rc; |
| |
| if (agg_rings) { |
| u16 mem_size; |
| |
| ring = &rxr->rx_agg_ring_struct; |
| rc = bnxt_alloc_ring(bp, ring); |
| if (rc) |
| return rc; |
| |
| rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; |
| mem_size = rxr->rx_agg_bmap_size / 8; |
| rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); |
| if (!rxr->rx_agg_bmap) |
| return -ENOMEM; |
| |
| if (tpa_rings) { |
| rxr->rx_tpa = kcalloc(MAX_TPA, |
| sizeof(struct bnxt_tpa_info), |
| GFP_KERNEL); |
| if (!rxr->rx_tpa) |
| return -ENOMEM; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static void bnxt_free_tx_rings(struct bnxt *bp) |
| { |
| int i; |
| struct pci_dev *pdev = bp->pdev; |
| |
| if (!bp->tx_ring) |
| return; |
| |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| struct bnxt_ring_struct *ring; |
| |
| if (txr->tx_push) { |
| dma_free_coherent(&pdev->dev, bp->tx_push_size, |
| txr->tx_push, txr->tx_push_mapping); |
| txr->tx_push = NULL; |
| } |
| |
| ring = &txr->tx_ring_struct; |
| |
| bnxt_free_ring(bp, ring); |
| } |
| } |
| |
| static int bnxt_alloc_tx_rings(struct bnxt *bp) |
| { |
| int i, j, rc; |
| struct pci_dev *pdev = bp->pdev; |
| |
| bp->tx_push_size = 0; |
| if (bp->tx_push_thresh) { |
| int push_size; |
| |
| push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + |
| bp->tx_push_thresh); |
| |
| if (push_size > 256) { |
| push_size = 0; |
| bp->tx_push_thresh = 0; |
| } |
| |
| bp->tx_push_size = push_size; |
| } |
| |
| for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| struct bnxt_ring_struct *ring; |
| |
| ring = &txr->tx_ring_struct; |
| |
| rc = bnxt_alloc_ring(bp, ring); |
| if (rc) |
| return rc; |
| |
| if (bp->tx_push_size) { |
| dma_addr_t mapping; |
| |
| /* One pre-allocated DMA buffer to backup |
| * TX push operation |
| */ |
| txr->tx_push = dma_alloc_coherent(&pdev->dev, |
| bp->tx_push_size, |
| &txr->tx_push_mapping, |
| GFP_KERNEL); |
| |
| if (!txr->tx_push) |
| return -ENOMEM; |
| |
| mapping = txr->tx_push_mapping + |
| sizeof(struct tx_push_bd); |
| txr->data_mapping = cpu_to_le64(mapping); |
| |
| memset(txr->tx_push, 0, sizeof(struct tx_push_bd)); |
| } |
| ring->queue_id = bp->q_info[j].queue_id; |
| if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) |
| j++; |
| } |
| return 0; |
| } |
| |
| static void bnxt_free_cp_rings(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr; |
| struct bnxt_ring_struct *ring; |
| |
| if (!bnapi) |
| continue; |
| |
| cpr = &bnapi->cp_ring; |
| ring = &cpr->cp_ring_struct; |
| |
| bnxt_free_ring(bp, ring); |
| } |
| } |
| |
| static int bnxt_alloc_cp_rings(struct bnxt *bp) |
| { |
| int i, rc; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr; |
| struct bnxt_ring_struct *ring; |
| |
| if (!bnapi) |
| continue; |
| |
| cpr = &bnapi->cp_ring; |
| ring = &cpr->cp_ring_struct; |
| |
| rc = bnxt_alloc_ring(bp, ring); |
| if (rc) |
| return rc; |
| } |
| return 0; |
| } |
| |
| static void bnxt_init_ring_struct(struct bnxt *bp) |
| { |
| int i; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr; |
| struct bnxt_rx_ring_info *rxr; |
| struct bnxt_tx_ring_info *txr; |
| struct bnxt_ring_struct *ring; |
| |
| if (!bnapi) |
| continue; |
| |
| cpr = &bnapi->cp_ring; |
| ring = &cpr->cp_ring_struct; |
| ring->nr_pages = bp->cp_nr_pages; |
| ring->page_size = HW_CMPD_RING_SIZE; |
| ring->pg_arr = (void **)cpr->cp_desc_ring; |
| ring->dma_arr = cpr->cp_desc_mapping; |
| ring->vmem_size = 0; |
| |
| rxr = bnapi->rx_ring; |
| if (!rxr) |
| goto skip_rx; |
| |
| ring = &rxr->rx_ring_struct; |
| ring->nr_pages = bp->rx_nr_pages; |
| ring->page_size = HW_RXBD_RING_SIZE; |
| ring->pg_arr = (void **)rxr->rx_desc_ring; |
| ring->dma_arr = rxr->rx_desc_mapping; |
| ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; |
| ring->vmem = (void **)&rxr->rx_buf_ring; |
| |
| ring = &rxr->rx_agg_ring_struct; |
| ring->nr_pages = bp->rx_agg_nr_pages; |
| ring->page_size = HW_RXBD_RING_SIZE; |
| ring->pg_arr = (void **)rxr->rx_agg_desc_ring; |
| ring->dma_arr = rxr->rx_agg_desc_mapping; |
| ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; |
| ring->vmem = (void **)&rxr->rx_agg_ring; |
| |
| skip_rx: |
| txr = bnapi->tx_ring; |
| if (!txr) |
| continue; |
| |
| ring = &txr->tx_ring_struct; |
| ring->nr_pages = bp->tx_nr_pages; |
| ring->page_size = HW_RXBD_RING_SIZE; |
| ring->pg_arr = (void **)txr->tx_desc_ring; |
| ring->dma_arr = txr->tx_desc_mapping; |
| ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; |
| ring->vmem = (void **)&txr->tx_buf_ring; |
| } |
| } |
| |
| static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) |
| { |
| int i; |
| u32 prod; |
| struct rx_bd **rx_buf_ring; |
| |
| rx_buf_ring = (struct rx_bd **)ring->pg_arr; |
| for (i = 0, prod = 0; i < ring->nr_pages; i++) { |
| int j; |
| struct rx_bd *rxbd; |
| |
| rxbd = rx_buf_ring[i]; |
| if (!rxbd) |
| continue; |
| |
| for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { |
| rxbd->rx_bd_len_flags_type = cpu_to_le32(type); |
| rxbd->rx_bd_opaque = prod; |
| } |
| } |
| } |
| |
| static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) |
| { |
| struct net_device *dev = bp->dev; |
| struct bnxt_rx_ring_info *rxr; |
| struct bnxt_ring_struct *ring; |
| u32 prod, type; |
| int i; |
| |
| type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | |
| RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; |
| |
| if (NET_IP_ALIGN == 2) |
| type |= RX_BD_FLAGS_SOP; |
| |
| rxr = &bp->rx_ring[ring_nr]; |
| ring = &rxr->rx_ring_struct; |
| bnxt_init_rxbd_pages(ring, type); |
| |
| prod = rxr->rx_prod; |
| for (i = 0; i < bp->rx_ring_size; i++) { |
| if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) { |
| netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", |
| ring_nr, i, bp->rx_ring_size); |
| break; |
| } |
| prod = NEXT_RX(prod); |
| } |
| rxr->rx_prod = prod; |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| |
| ring = &rxr->rx_agg_ring_struct; |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| |
| if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) |
| return 0; |
| |
| type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | |
| RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; |
| |
| bnxt_init_rxbd_pages(ring, type); |
| |
| prod = rxr->rx_agg_prod; |
| for (i = 0; i < bp->rx_agg_ring_size; i++) { |
| if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) { |
| netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", |
| ring_nr, i, bp->rx_ring_size); |
| break; |
| } |
| prod = NEXT_RX_AGG(prod); |
| } |
| rxr->rx_agg_prod = prod; |
| |
| if (bp->flags & BNXT_FLAG_TPA) { |
| if (rxr->rx_tpa) { |
| u8 *data; |
| dma_addr_t mapping; |
| |
| for (i = 0; i < MAX_TPA; i++) { |
| data = __bnxt_alloc_rx_data(bp, &mapping, |
| GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| rxr->rx_tpa[i].data = data; |
| rxr->rx_tpa[i].mapping = mapping; |
| } |
| } else { |
| netdev_err(bp->dev, "No resource allocated for LRO/GRO\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void bnxt_init_cp_rings(struct bnxt *bp) |
| { |
| int i; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; |
| struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; |
| |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| } |
| } |
| |
| static int bnxt_init_rx_rings(struct bnxt *bp) |
| { |
| int i, rc = 0; |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| rc = bnxt_init_one_rx_ring(bp, i); |
| if (rc) |
| break; |
| } |
| |
| return rc; |
| } |
| |
| static int bnxt_init_tx_rings(struct bnxt *bp) |
| { |
| u16 i; |
| |
| bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, |
| MAX_SKB_FRAGS + 1); |
| |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| struct bnxt_ring_struct *ring = &txr->tx_ring_struct; |
| |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| } |
| |
| return 0; |
| } |
| |
| static void bnxt_free_ring_grps(struct bnxt *bp) |
| { |
| kfree(bp->grp_info); |
| bp->grp_info = NULL; |
| } |
| |
| static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) |
| { |
| int i; |
| |
| if (irq_re_init) { |
| bp->grp_info = kcalloc(bp->cp_nr_rings, |
| sizeof(struct bnxt_ring_grp_info), |
| GFP_KERNEL); |
| if (!bp->grp_info) |
| return -ENOMEM; |
| } |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| if (irq_re_init) |
| bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; |
| bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; |
| bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; |
| bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; |
| bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; |
| } |
| return 0; |
| } |
| |
| static void bnxt_free_vnics(struct bnxt *bp) |
| { |
| kfree(bp->vnic_info); |
| bp->vnic_info = NULL; |
| bp->nr_vnics = 0; |
| } |
| |
| static int bnxt_alloc_vnics(struct bnxt *bp) |
| { |
| int num_vnics = 1; |
| |
| #ifdef CONFIG_RFS_ACCEL |
| if (bp->flags & BNXT_FLAG_RFS) |
| num_vnics += bp->rx_nr_rings; |
| #endif |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| num_vnics++; |
| |
| bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), |
| GFP_KERNEL); |
| if (!bp->vnic_info) |
| return -ENOMEM; |
| |
| bp->nr_vnics = num_vnics; |
| return 0; |
| } |
| |
| static void bnxt_init_vnics(struct bnxt *bp) |
| { |
| int i; |
| |
| for (i = 0; i < bp->nr_vnics; i++) { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; |
| |
| vnic->fw_vnic_id = INVALID_HW_RING_ID; |
| vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID; |
| vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID; |
| vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; |
| |
| if (bp->vnic_info[i].rss_hash_key) { |
| if (i == 0) |
| prandom_bytes(vnic->rss_hash_key, |
| HW_HASH_KEY_SIZE); |
| else |
| memcpy(vnic->rss_hash_key, |
| bp->vnic_info[0].rss_hash_key, |
| HW_HASH_KEY_SIZE); |
| } |
| } |
| } |
| |
| static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) |
| { |
| int pages; |
| |
| pages = ring_size / desc_per_pg; |
| |
| if (!pages) |
| return 1; |
| |
| pages++; |
| |
| while (pages & (pages - 1)) |
| pages++; |
| |
| return pages; |
| } |
| |
| static void bnxt_set_tpa_flags(struct bnxt *bp) |
| { |
| bp->flags &= ~BNXT_FLAG_TPA; |
| if (bp->dev->features & NETIF_F_LRO) |
| bp->flags |= BNXT_FLAG_LRO; |
| if (bp->dev->features & NETIF_F_GRO) |
| bp->flags |= BNXT_FLAG_GRO; |
| } |
| |
| /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must |
| * be set on entry. |
| */ |
| void bnxt_set_ring_params(struct bnxt *bp) |
| { |
| u32 ring_size, rx_size, rx_space; |
| u32 agg_factor = 0, agg_ring_size = 0; |
| |
| /* 8 for CRC and VLAN */ |
| rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); |
| |
| rx_space = rx_size + NET_SKB_PAD + |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| |
| bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; |
| ring_size = bp->rx_ring_size; |
| bp->rx_agg_ring_size = 0; |
| bp->rx_agg_nr_pages = 0; |
| |
| if (bp->flags & BNXT_FLAG_TPA) |
| agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); |
| |
| bp->flags &= ~BNXT_FLAG_JUMBO; |
| if (rx_space > PAGE_SIZE) { |
| u32 jumbo_factor; |
| |
| bp->flags |= BNXT_FLAG_JUMBO; |
| jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; |
| if (jumbo_factor > agg_factor) |
| agg_factor = jumbo_factor; |
| } |
| agg_ring_size = ring_size * agg_factor; |
| |
| if (agg_ring_size) { |
| bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, |
| RX_DESC_CNT); |
| if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { |
| u32 tmp = agg_ring_size; |
| |
| bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; |
| agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; |
| netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", |
| tmp, agg_ring_size); |
| } |
| bp->rx_agg_ring_size = agg_ring_size; |
| bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; |
| rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); |
| rx_space = rx_size + NET_SKB_PAD + |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| } |
| |
| bp->rx_buf_use_size = rx_size; |
| bp->rx_buf_size = rx_space; |
| |
| bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); |
| bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; |
| |
| ring_size = bp->tx_ring_size; |
| bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); |
| bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; |
| |
| ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size; |
| bp->cp_ring_size = ring_size; |
| |
| bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); |
| if (bp->cp_nr_pages > MAX_CP_PAGES) { |
| bp->cp_nr_pages = MAX_CP_PAGES; |
| bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; |
| netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", |
| ring_size, bp->cp_ring_size); |
| } |
| bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; |
| bp->cp_ring_mask = bp->cp_bit - 1; |
| } |
| |
| static void bnxt_free_vnic_attributes(struct bnxt *bp) |
| { |
| int i; |
| struct bnxt_vnic_info *vnic; |
| struct pci_dev *pdev = bp->pdev; |
| |
| if (!bp->vnic_info) |
| return; |
| |
| for (i = 0; i < bp->nr_vnics; i++) { |
| vnic = &bp->vnic_info[i]; |
| |
| kfree(vnic->fw_grp_ids); |
| vnic->fw_grp_ids = NULL; |
| |
| kfree(vnic->uc_list); |
| vnic->uc_list = NULL; |
| |
| if (vnic->mc_list) { |
| dma_free_coherent(&pdev->dev, vnic->mc_list_size, |
| vnic->mc_list, vnic->mc_list_mapping); |
| vnic->mc_list = NULL; |
| } |
| |
| if (vnic->rss_table) { |
| dma_free_coherent(&pdev->dev, PAGE_SIZE, |
| vnic->rss_table, |
| vnic->rss_table_dma_addr); |
| vnic->rss_table = NULL; |
| } |
| |
| vnic->rss_hash_key = NULL; |
| vnic->flags = 0; |
| } |
| } |
| |
| static int bnxt_alloc_vnic_attributes(struct bnxt *bp) |
| { |
| int i, rc = 0, size; |
| struct bnxt_vnic_info *vnic; |
| struct pci_dev *pdev = bp->pdev; |
| int max_rings; |
| |
| for (i = 0; i < bp->nr_vnics; i++) { |
| vnic = &bp->vnic_info[i]; |
| |
| if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { |
| int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; |
| |
| if (mem_size > 0) { |
| vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); |
| if (!vnic->uc_list) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| } |
| } |
| |
| if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { |
| vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; |
| vnic->mc_list = |
| dma_alloc_coherent(&pdev->dev, |
| vnic->mc_list_size, |
| &vnic->mc_list_mapping, |
| GFP_KERNEL); |
| if (!vnic->mc_list) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| } |
| |
| if (vnic->flags & BNXT_VNIC_RSS_FLAG) |
| max_rings = bp->rx_nr_rings; |
| else |
| max_rings = 1; |
| |
| vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); |
| if (!vnic->fw_grp_ids) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| /* Allocate rss table and hash key */ |
| vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, |
| &vnic->rss_table_dma_addr, |
| GFP_KERNEL); |
| if (!vnic->rss_table) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); |
| |
| vnic->rss_hash_key = ((void *)vnic->rss_table) + size; |
| vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; |
| } |
| return 0; |
| |
| out: |
| return rc; |
| } |
| |
| static void bnxt_free_hwrm_resources(struct bnxt *bp) |
| { |
| struct pci_dev *pdev = bp->pdev; |
| |
| dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr, |
| bp->hwrm_cmd_resp_dma_addr); |
| |
| bp->hwrm_cmd_resp_addr = NULL; |
| if (bp->hwrm_dbg_resp_addr) { |
| dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE, |
| bp->hwrm_dbg_resp_addr, |
| bp->hwrm_dbg_resp_dma_addr); |
| |
| bp->hwrm_dbg_resp_addr = NULL; |
| } |
| } |
| |
| static int bnxt_alloc_hwrm_resources(struct bnxt *bp) |
| { |
| struct pci_dev *pdev = bp->pdev; |
| |
| bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, |
| &bp->hwrm_cmd_resp_dma_addr, |
| GFP_KERNEL); |
| if (!bp->hwrm_cmd_resp_addr) |
| return -ENOMEM; |
| bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev, |
| HWRM_DBG_REG_BUF_SIZE, |
| &bp->hwrm_dbg_resp_dma_addr, |
| GFP_KERNEL); |
| if (!bp->hwrm_dbg_resp_addr) |
| netdev_warn(bp->dev, "fail to alloc debug register dma mem\n"); |
| |
| return 0; |
| } |
| |
| static void bnxt_free_stats(struct bnxt *bp) |
| { |
| u32 size, i; |
| struct pci_dev *pdev = bp->pdev; |
| |
| if (bp->hw_rx_port_stats) { |
| dma_free_coherent(&pdev->dev, bp->hw_port_stats_size, |
| bp->hw_rx_port_stats, |
| bp->hw_rx_port_stats_map); |
| bp->hw_rx_port_stats = NULL; |
| bp->flags &= ~BNXT_FLAG_PORT_STATS; |
| } |
| |
| if (!bp->bnapi) |
| return; |
| |
| size = sizeof(struct ctx_hw_stats); |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| |
| if (cpr->hw_stats) { |
| dma_free_coherent(&pdev->dev, size, cpr->hw_stats, |
| cpr->hw_stats_map); |
| cpr->hw_stats = NULL; |
| } |
| } |
| } |
| |
| static int bnxt_alloc_stats(struct bnxt *bp) |
| { |
| u32 size, i; |
| struct pci_dev *pdev = bp->pdev; |
| |
| size = sizeof(struct ctx_hw_stats); |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| |
| cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size, |
| &cpr->hw_stats_map, |
| GFP_KERNEL); |
| if (!cpr->hw_stats) |
| return -ENOMEM; |
| |
| cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; |
| } |
| |
| if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) { |
| bp->hw_port_stats_size = sizeof(struct rx_port_stats) + |
| sizeof(struct tx_port_stats) + 1024; |
| |
| bp->hw_rx_port_stats = |
| dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size, |
| &bp->hw_rx_port_stats_map, |
| GFP_KERNEL); |
| if (!bp->hw_rx_port_stats) |
| return -ENOMEM; |
| |
| bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + |
| 512; |
| bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map + |
| sizeof(struct rx_port_stats) + 512; |
| bp->flags |= BNXT_FLAG_PORT_STATS; |
| } |
| return 0; |
| } |
| |
| static void bnxt_clear_ring_indices(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr; |
| struct bnxt_rx_ring_info *rxr; |
| struct bnxt_tx_ring_info *txr; |
| |
| if (!bnapi) |
| continue; |
| |
| cpr = &bnapi->cp_ring; |
| cpr->cp_raw_cons = 0; |
| |
| txr = bnapi->tx_ring; |
| if (txr) { |
| txr->tx_prod = 0; |
| txr->tx_cons = 0; |
| } |
| |
| rxr = bnapi->rx_ring; |
| if (rxr) { |
| rxr->rx_prod = 0; |
| rxr->rx_agg_prod = 0; |
| rxr->rx_sw_agg_prod = 0; |
| rxr->rx_next_cons = 0; |
| } |
| } |
| } |
| |
| static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| int i; |
| |
| /* Under rtnl_lock and all our NAPIs have been disabled. It's |
| * safe to delete the hash table. |
| */ |
| for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { |
| struct hlist_head *head; |
| struct hlist_node *tmp; |
| struct bnxt_ntuple_filter *fltr; |
| |
| head = &bp->ntp_fltr_hash_tbl[i]; |
| hlist_for_each_entry_safe(fltr, tmp, head, hash) { |
| hlist_del(&fltr->hash); |
| kfree(fltr); |
| } |
| } |
| if (irq_reinit) { |
| kfree(bp->ntp_fltr_bmap); |
| bp->ntp_fltr_bmap = NULL; |
| } |
| bp->ntp_fltr_count = 0; |
| #endif |
| } |
| |
| static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| int i, rc = 0; |
| |
| if (!(bp->flags & BNXT_FLAG_RFS)) |
| return 0; |
| |
| for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) |
| INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); |
| |
| bp->ntp_fltr_count = 0; |
| bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), |
| sizeof(long), |
| GFP_KERNEL); |
| |
| if (!bp->ntp_fltr_bmap) |
| rc = -ENOMEM; |
| |
| return rc; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) |
| { |
| bnxt_free_vnic_attributes(bp); |
| bnxt_free_tx_rings(bp); |
| bnxt_free_rx_rings(bp); |
| bnxt_free_cp_rings(bp); |
| bnxt_free_ntp_fltrs(bp, irq_re_init); |
| if (irq_re_init) { |
| bnxt_free_stats(bp); |
| bnxt_free_ring_grps(bp); |
| bnxt_free_vnics(bp); |
| kfree(bp->tx_ring); |
| bp->tx_ring = NULL; |
| kfree(bp->rx_ring); |
| bp->rx_ring = NULL; |
| kfree(bp->bnapi); |
| bp->bnapi = NULL; |
| } else { |
| bnxt_clear_ring_indices(bp); |
| } |
| } |
| |
| static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) |
| { |
| int i, j, rc, size, arr_size; |
| void *bnapi; |
| |
| if (irq_re_init) { |
| /* Allocate bnapi mem pointer array and mem block for |
| * all queues |
| */ |
| arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * |
| bp->cp_nr_rings); |
| size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); |
| bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); |
| if (!bnapi) |
| return -ENOMEM; |
| |
| bp->bnapi = bnapi; |
| bnapi += arr_size; |
| for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { |
| bp->bnapi[i] = bnapi; |
| bp->bnapi[i]->index = i; |
| bp->bnapi[i]->bp = bp; |
| } |
| |
| bp->rx_ring = kcalloc(bp->rx_nr_rings, |
| sizeof(struct bnxt_rx_ring_info), |
| GFP_KERNEL); |
| if (!bp->rx_ring) |
| return -ENOMEM; |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| bp->rx_ring[i].bnapi = bp->bnapi[i]; |
| bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; |
| } |
| |
| bp->tx_ring = kcalloc(bp->tx_nr_rings, |
| sizeof(struct bnxt_tx_ring_info), |
| GFP_KERNEL); |
| if (!bp->tx_ring) |
| return -ENOMEM; |
| |
| if (bp->flags & BNXT_FLAG_SHARED_RINGS) |
| j = 0; |
| else |
| j = bp->rx_nr_rings; |
| |
| for (i = 0; i < bp->tx_nr_rings; i++, j++) { |
| bp->tx_ring[i].bnapi = bp->bnapi[j]; |
| bp->bnapi[j]->tx_ring = &bp->tx_ring[i]; |
| } |
| |
| rc = bnxt_alloc_stats(bp); |
| if (rc) |
| goto alloc_mem_err; |
| |
| rc = bnxt_alloc_ntp_fltrs(bp); |
| if (rc) |
| goto alloc_mem_err; |
| |
| rc = bnxt_alloc_vnics(bp); |
| if (rc) |
| goto alloc_mem_err; |
| } |
| |
| bnxt_init_ring_struct(bp); |
| |
| rc = bnxt_alloc_rx_rings(bp); |
| if (rc) |
| goto alloc_mem_err; |
| |
| rc = bnxt_alloc_tx_rings(bp); |
| if (rc) |
| goto alloc_mem_err; |
| |
| rc = bnxt_alloc_cp_rings(bp); |
| if (rc) |
| goto alloc_mem_err; |
| |
| bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | |
| BNXT_VNIC_UCAST_FLAG; |
| rc = bnxt_alloc_vnic_attributes(bp); |
| if (rc) |
| goto alloc_mem_err; |
| return 0; |
| |
| alloc_mem_err: |
| bnxt_free_mem(bp, true); |
| return rc; |
| } |
| |
| void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type, |
| u16 cmpl_ring, u16 target_id) |
| { |
| struct input *req = request; |
| |
| req->req_type = cpu_to_le16(req_type); |
| req->cmpl_ring = cpu_to_le16(cmpl_ring); |
| req->target_id = cpu_to_le16(target_id); |
| req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr); |
| } |
| |
| static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len, |
| int timeout, bool silent) |
| { |
| int i, intr_process, rc, tmo_count; |
| struct input *req = msg; |
| u32 *data = msg; |
| __le32 *resp_len, *valid; |
| u16 cp_ring_id, len = 0; |
| struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr; |
| |
| req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++); |
| memset(resp, 0, PAGE_SIZE); |
| cp_ring_id = le16_to_cpu(req->cmpl_ring); |
| intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1; |
| |
| /* Write request msg to hwrm channel */ |
| __iowrite32_copy(bp->bar0, data, msg_len / 4); |
| |
| for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4) |
| writel(0, bp->bar0 + i); |
| |
| /* currently supports only one outstanding message */ |
| if (intr_process) |
| bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id); |
| |
| /* Ring channel doorbell */ |
| writel(1, bp->bar0 + 0x100); |
| |
| if (!timeout) |
| timeout = DFLT_HWRM_CMD_TIMEOUT; |
| |
| i = 0; |
| tmo_count = timeout * 40; |
| if (intr_process) { |
| /* Wait until hwrm response cmpl interrupt is processed */ |
| while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID && |
| i++ < tmo_count) { |
| usleep_range(25, 40); |
| } |
| |
| if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) { |
| netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", |
| le16_to_cpu(req->req_type)); |
| return -1; |
| } |
| } else { |
| /* Check if response len is updated */ |
| resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET; |
| for (i = 0; i < tmo_count; i++) { |
| len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >> |
| HWRM_RESP_LEN_SFT; |
| if (len) |
| break; |
| usleep_range(25, 40); |
| } |
| |
| if (i >= tmo_count) { |
| netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n", |
| timeout, le16_to_cpu(req->req_type), |
| le16_to_cpu(req->seq_id), len); |
| return -1; |
| } |
| |
| /* Last word of resp contains valid bit */ |
| valid = bp->hwrm_cmd_resp_addr + len - 4; |
| for (i = 0; i < 5; i++) { |
| if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK) |
| break; |
| udelay(1); |
| } |
| |
| if (i >= 5) { |
| netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n", |
| timeout, le16_to_cpu(req->req_type), |
| le16_to_cpu(req->seq_id), len, *valid); |
| return -1; |
| } |
| } |
| |
| rc = le16_to_cpu(resp->error_code); |
| if (rc && !silent) |
| netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", |
| le16_to_cpu(resp->req_type), |
| le16_to_cpu(resp->seq_id), rc); |
| return rc; |
| } |
| |
| int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) |
| { |
| return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false); |
| } |
| |
| int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) |
| { |
| int rc; |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, msg, msg_len, timeout); |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, |
| int timeout) |
| { |
| int rc; |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp) |
| { |
| struct hwrm_func_drv_rgtr_input req = {0}; |
| int i; |
| DECLARE_BITMAP(async_events_bmap, 256); |
| u32 *events = (u32 *)async_events_bmap; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); |
| |
| req.enables = |
| cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | |
| FUNC_DRV_RGTR_REQ_ENABLES_VER | |
| FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); |
| |
| memset(async_events_bmap, 0, sizeof(async_events_bmap)); |
| for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) |
| __set_bit(bnxt_async_events_arr[i], async_events_bmap); |
| |
| for (i = 0; i < 8; i++) |
| req.async_event_fwd[i] |= cpu_to_le32(events[i]); |
| |
| req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); |
| req.ver_maj = DRV_VER_MAJ; |
| req.ver_min = DRV_VER_MIN; |
| req.ver_upd = DRV_VER_UPD; |
| |
| if (BNXT_PF(bp)) { |
| DECLARE_BITMAP(vf_req_snif_bmap, 256); |
| u32 *data = (u32 *)vf_req_snif_bmap; |
| |
| memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap)); |
| for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) |
| __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap); |
| |
| for (i = 0; i < 8; i++) |
| req.vf_req_fwd[i] = cpu_to_le32(data[i]); |
| |
| req.enables |= |
| cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); |
| } |
| |
| return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| } |
| |
| static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) |
| { |
| struct hwrm_func_drv_unrgtr_input req = {0}; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1); |
| return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| } |
| |
| static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) |
| { |
| u32 rc = 0; |
| struct hwrm_tunnel_dst_port_free_input req = {0}; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1); |
| req.tunnel_type = tunnel_type; |
| |
| switch (tunnel_type) { |
| case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: |
| req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id; |
| break; |
| case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: |
| req.tunnel_dst_port_id = bp->nge_fw_dst_port_id; |
| break; |
| default: |
| break; |
| } |
| |
| rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (rc) |
| netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", |
| rc); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, |
| u8 tunnel_type) |
| { |
| u32 rc = 0; |
| struct hwrm_tunnel_dst_port_alloc_input req = {0}; |
| struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1); |
| |
| req.tunnel_type = tunnel_type; |
| req.tunnel_dst_port_val = port; |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", |
| rc); |
| goto err_out; |
| } |
| |
| switch (tunnel_type) { |
| case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: |
| bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id; |
| break; |
| case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: |
| bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id; |
| break; |
| default: |
| break; |
| } |
| |
| err_out: |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) |
| { |
| struct hwrm_cfa_l2_set_rx_mask_input req = {0}; |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1); |
| req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); |
| |
| req.num_mc_entries = cpu_to_le32(vnic->mc_list_count); |
| req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); |
| req.mask = cpu_to_le32(vnic->rx_mask); |
| return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| } |
| |
| #ifdef CONFIG_RFS_ACCEL |
| static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, |
| struct bnxt_ntuple_filter *fltr) |
| { |
| struct hwrm_cfa_ntuple_filter_free_input req = {0}; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1); |
| req.ntuple_filter_id = fltr->filter_id; |
| return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| } |
| |
| #define BNXT_NTP_FLTR_FLAGS \ |
| (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) |
| |
| static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, |
| struct bnxt_ntuple_filter *fltr) |
| { |
| int rc = 0; |
| struct hwrm_cfa_ntuple_filter_alloc_input req = {0}; |
| struct hwrm_cfa_ntuple_filter_alloc_output *resp = |
| bp->hwrm_cmd_resp_addr; |
| struct flow_keys *keys = &fltr->fkeys; |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1]; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1); |
| req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; |
| |
| req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); |
| |
| req.ethertype = htons(ETH_P_IP); |
| memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN); |
| req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; |
| req.ip_protocol = keys->basic.ip_proto; |
| |
| req.src_ipaddr[0] = keys->addrs.v4addrs.src; |
| req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); |
| req.dst_ipaddr[0] = keys->addrs.v4addrs.dst; |
| req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); |
| |
| req.src_port = keys->ports.src; |
| req.src_port_mask = cpu_to_be16(0xffff); |
| req.dst_port = keys->ports.dst; |
| req.dst_port_mask = cpu_to_be16(0xffff); |
| |
| req.dst_id = cpu_to_le16(vnic->fw_vnic_id); |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (!rc) |
| fltr->filter_id = resp->ntuple_filter_id; |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| #endif |
| |
| static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, |
| u8 *mac_addr) |
| { |
| u32 rc = 0; |
| struct hwrm_cfa_l2_filter_alloc_input req = {0}; |
| struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1); |
| req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); |
| if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| req.flags |= |
| cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); |
| req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); |
| req.enables = |
| cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | |
| CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | |
| CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); |
| memcpy(req.l2_addr, mac_addr, ETH_ALEN); |
| req.l2_addr_mask[0] = 0xff; |
| req.l2_addr_mask[1] = 0xff; |
| req.l2_addr_mask[2] = 0xff; |
| req.l2_addr_mask[3] = 0xff; |
| req.l2_addr_mask[4] = 0xff; |
| req.l2_addr_mask[5] = 0xff; |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (!rc) |
| bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = |
| resp->l2_filter_id; |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) |
| { |
| u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ |
| int rc = 0; |
| |
| /* Any associated ntuple filters will also be cleared by firmware. */ |
| mutex_lock(&bp->hwrm_cmd_lock); |
| for (i = 0; i < num_of_vnics; i++) { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; |
| |
| for (j = 0; j < vnic->uc_filter_count; j++) { |
| struct hwrm_cfa_l2_filter_free_input req = {0}; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, |
| HWRM_CFA_L2_FILTER_FREE, -1, -1); |
| |
| req.l2_filter_id = vnic->fw_l2_filter_id[j]; |
| |
| rc = _hwrm_send_message(bp, &req, sizeof(req), |
| HWRM_CMD_TIMEOUT); |
| } |
| vnic->uc_filter_count = 0; |
| } |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| |
| return rc; |
| } |
| |
| static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) |
| { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| struct hwrm_vnic_tpa_cfg_input req = {0}; |
| |
| if (vnic->fw_vnic_id == INVALID_HW_RING_ID) |
| return 0; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1); |
| |
| if (tpa_flags) { |
| u16 mss = bp->dev->mtu - 40; |
| u32 nsegs, n, segs = 0, flags; |
| |
| flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | |
| VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | |
| VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | |
| VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | |
| VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; |
| if (tpa_flags & BNXT_FLAG_GRO) |
| flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; |
| |
| req.flags = cpu_to_le32(flags); |
| |
| req.enables = |
| cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | |
| VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | |
| VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); |
| |
| /* Number of segs are log2 units, and first packet is not |
| * included as part of this units. |
| */ |
| if (mss <= BNXT_RX_PAGE_SIZE) { |
| n = BNXT_RX_PAGE_SIZE / mss; |
| nsegs = (MAX_SKB_FRAGS - 1) * n; |
| } else { |
| n = mss / BNXT_RX_PAGE_SIZE; |
| if (mss & (BNXT_RX_PAGE_SIZE - 1)) |
| n++; |
| nsegs = (MAX_SKB_FRAGS - n) / n; |
| } |
| |
| segs = ilog2(nsegs); |
| req.max_agg_segs = cpu_to_le16(segs); |
| req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX); |
| |
| req.min_agg_len = cpu_to_le32(512); |
| } |
| req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); |
| |
| return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| } |
| |
| static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) |
| { |
| u32 i, j, max_rings; |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| struct hwrm_vnic_rss_cfg_input req = {0}; |
| |
| if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) |
| return 0; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); |
| if (set_rss) { |
| vnic->hash_type = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | |
| VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | |
| VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | |
| VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; |
| |
| req.hash_type = cpu_to_le32(vnic->hash_type); |
| |
| if (vnic->flags & BNXT_VNIC_RSS_FLAG) { |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| max_rings = bp->rx_nr_rings - 1; |
| else |
| max_rings = bp->rx_nr_rings; |
| } else { |
| max_rings = 1; |
| } |
| |
| /* Fill the RSS indirection table with ring group ids */ |
| for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) { |
| if (j == max_rings) |
| j = 0; |
| vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); |
| } |
| |
| req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); |
| req.hash_key_tbl_addr = |
| cpu_to_le64(vnic->rss_hash_key_dma_addr); |
| } |
| req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); |
| return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| } |
| |
| static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) |
| { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| struct hwrm_vnic_plcmodes_cfg_input req = {0}; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1); |
| req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | |
| VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | |
| VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); |
| req.enables = |
| cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | |
| VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); |
| /* thresholds not implemented in firmware yet */ |
| req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); |
| req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh); |
| req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); |
| return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| } |
| |
| static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, |
| u16 ctx_idx) |
| { |
| struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0}; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1); |
| req.rss_cos_lb_ctx_id = |
| cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); |
| |
| hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; |
| } |
| |
| static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) |
| { |
| int i, j; |
| |
| for (i = 0; i < bp->nr_vnics; i++) { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; |
| |
| for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { |
| if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) |
| bnxt_hwrm_vnic_ctx_free_one(bp, i, j); |
| } |
| } |
| bp->rsscos_nr_ctxs = 0; |
| } |
| |
| static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) |
| { |
| int rc; |
| struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0}; |
| struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp = |
| bp->hwrm_cmd_resp_addr; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1, |
| -1); |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (!rc) |
| bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = |
| le16_to_cpu(resp->rss_cos_lb_ctx_id); |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| |
| return rc; |
| } |
| |
| static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) |
| { |
| unsigned int ring = 0, grp_idx; |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| struct hwrm_vnic_cfg_input req = {0}; |
| u16 def_vlan = 0; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1); |
| |
| req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); |
| /* Only RSS support for now TBD: COS & LB */ |
| if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { |
| req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); |
| req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | |
| VNIC_CFG_REQ_ENABLES_MRU); |
| } else { |
| req.rss_rule = cpu_to_le16(0xffff); |
| } |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp) && |
| (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { |
| req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); |
| req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); |
| } else { |
| req.cos_rule = cpu_to_le16(0xffff); |
| } |
| |
| if (vnic->flags & BNXT_VNIC_RSS_FLAG) |
| ring = 0; |
| else if (vnic->flags & BNXT_VNIC_RFS_FLAG) |
| ring = vnic_id - 1; |
| else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| ring = bp->rx_nr_rings - 1; |
| |
| grp_idx = bp->rx_ring[ring].bnapi->index; |
| req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); |
| req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); |
| |
| req.lb_rule = cpu_to_le16(0xffff); |
| req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + |
| VLAN_HLEN); |
| |
| #ifdef CONFIG_BNXT_SRIOV |
| if (BNXT_VF(bp)) |
| def_vlan = bp->vf.vlan; |
| #endif |
| if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) |
| req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); |
| |
| return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| } |
| |
| static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) |
| { |
| u32 rc = 0; |
| |
| if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { |
| struct hwrm_vnic_free_input req = {0}; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1); |
| req.vnic_id = |
| cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); |
| |
| rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (rc) |
| return rc; |
| bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; |
| } |
| return rc; |
| } |
| |
| static void bnxt_hwrm_vnic_free(struct bnxt *bp) |
| { |
| u16 i; |
| |
| for (i = 0; i < bp->nr_vnics; i++) |
| bnxt_hwrm_vnic_free_one(bp, i); |
| } |
| |
| static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, |
| unsigned int start_rx_ring_idx, |
| unsigned int nr_rings) |
| { |
| int rc = 0; |
| unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; |
| struct hwrm_vnic_alloc_input req = {0}; |
| struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr; |
| |
| /* map ring groups to this vnic */ |
| for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { |
| grp_idx = bp->rx_ring[i].bnapi->index; |
| if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { |
| netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", |
| j, nr_rings); |
| break; |
| } |
| bp->vnic_info[vnic_id].fw_grp_ids[j] = |
| bp->grp_info[grp_idx].fw_grp_id; |
| } |
| |
| bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID; |
| bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID; |
| if (vnic_id == 0) |
| req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1); |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (!rc) |
| bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id); |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) |
| { |
| u16 i; |
| u32 rc = 0; |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct hwrm_ring_grp_alloc_input req = {0}; |
| struct hwrm_ring_grp_alloc_output *resp = |
| bp->hwrm_cmd_resp_addr; |
| unsigned int grp_idx = bp->rx_ring[i].bnapi->index; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1); |
| |
| req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); |
| req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); |
| req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); |
| req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); |
| |
| rc = _hwrm_send_message(bp, &req, sizeof(req), |
| HWRM_CMD_TIMEOUT); |
| if (rc) |
| break; |
| |
| bp->grp_info[grp_idx].fw_grp_id = |
| le32_to_cpu(resp->ring_group_id); |
| } |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_ring_grp_free(struct bnxt *bp) |
| { |
| u16 i; |
| u32 rc = 0; |
| struct hwrm_ring_grp_free_input req = {0}; |
| |
| if (!bp->grp_info) |
| return 0; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1); |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) |
| continue; |
| req.ring_group_id = |
| cpu_to_le32(bp->grp_info[i].fw_grp_id); |
| |
| rc = _hwrm_send_message(bp, &req, sizeof(req), |
| HWRM_CMD_TIMEOUT); |
| if (rc) |
| break; |
| bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; |
| } |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static int hwrm_ring_alloc_send_msg(struct bnxt *bp, |
| struct bnxt_ring_struct *ring, |
| u32 ring_type, u32 map_index, |
| u32 stats_ctx_id) |
| { |
| int rc = 0, err = 0; |
| struct hwrm_ring_alloc_input req = {0}; |
| struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr; |
| u16 ring_id; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1); |
| |
| req.enables = 0; |
| if (ring->nr_pages > 1) { |
| req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map); |
| /* Page size is in log2 units */ |
| req.page_size = BNXT_PAGE_SHIFT; |
| req.page_tbl_depth = 1; |
| } else { |
| req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]); |
| } |
| req.fbo = 0; |
| /* Association of ring index with doorbell index and MSIX number */ |
| req.logical_id = cpu_to_le16(map_index); |
| |
| switch (ring_type) { |
| case HWRM_RING_ALLOC_TX: |
| req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX; |
| /* Association of transmit ring with completion ring */ |
| req.cmpl_ring_id = |
| cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id); |
| req.length = cpu_to_le32(bp->tx_ring_mask + 1); |
| req.stat_ctx_id = cpu_to_le32(stats_ctx_id); |
| req.queue_id = cpu_to_le16(ring->queue_id); |
| break; |
| case HWRM_RING_ALLOC_RX: |
| req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; |
| req.length = cpu_to_le32(bp->rx_ring_mask + 1); |
| break; |
| case HWRM_RING_ALLOC_AGG: |
| req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; |
| req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1); |
| break; |
| case HWRM_RING_ALLOC_CMPL: |
| req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL; |
| req.length = cpu_to_le32(bp->cp_ring_mask + 1); |
| if (bp->flags & BNXT_FLAG_USING_MSIX) |
| req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; |
| break; |
| default: |
| netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", |
| ring_type); |
| return -1; |
| } |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| err = le16_to_cpu(resp->error_code); |
| ring_id = le16_to_cpu(resp->ring_id); |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| |
| if (rc || err) { |
| switch (ring_type) { |
| case RING_FREE_REQ_RING_TYPE_CMPL: |
| netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n", |
| rc, err); |
| return -1; |
| |
| case RING_FREE_REQ_RING_TYPE_RX: |
| netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n", |
| rc, err); |
| return -1; |
| |
| case RING_FREE_REQ_RING_TYPE_TX: |
| netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n", |
| rc, err); |
| return -1; |
| |
| default: |
| netdev_err(bp->dev, "Invalid ring\n"); |
| return -1; |
| } |
| } |
| ring->fw_ring_id = ring_id; |
| return rc; |
| } |
| |
| static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) |
| { |
| int rc; |
| |
| if (BNXT_PF(bp)) { |
| struct hwrm_func_cfg_input req = {0}; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); |
| req.fid = cpu_to_le16(0xffff); |
| req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); |
| req.async_event_cr = cpu_to_le16(idx); |
| rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| } else { |
| struct hwrm_func_vf_cfg_input req = {0}; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); |
| req.enables = |
| cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); |
| req.async_event_cr = cpu_to_le16(idx); |
| rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| } |
| return rc; |
| } |
| |
| static int bnxt_hwrm_ring_alloc(struct bnxt *bp) |
| { |
| int i, rc = 0; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; |
| |
| cpr->cp_doorbell = bp->bar1 + i * 0x80; |
| rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i, |
| INVALID_STATS_CTX_ID); |
| if (rc) |
| goto err_out; |
| BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); |
| bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; |
| |
| if (!i) { |
| rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); |
| if (rc) |
| netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); |
| } |
| } |
| |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| struct bnxt_ring_struct *ring = &txr->tx_ring_struct; |
| u32 map_idx = txr->bnapi->index; |
| u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx; |
| |
| rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX, |
| map_idx, fw_stats_ctx); |
| if (rc) |
| goto err_out; |
| txr->tx_doorbell = bp->bar1 + map_idx * 0x80; |
| } |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; |
| u32 map_idx = rxr->bnapi->index; |
| |
| rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX, |
| map_idx, INVALID_STATS_CTX_ID); |
| if (rc) |
| goto err_out; |
| rxr->rx_doorbell = bp->bar1 + map_idx * 0x80; |
| writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); |
| bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; |
| } |
| |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) { |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_ring_struct *ring = |
| &rxr->rx_agg_ring_struct; |
| u32 grp_idx = rxr->bnapi->index; |
| u32 map_idx = grp_idx + bp->rx_nr_rings; |
| |
| rc = hwrm_ring_alloc_send_msg(bp, ring, |
| HWRM_RING_ALLOC_AGG, |
| map_idx, |
| INVALID_STATS_CTX_ID); |
| if (rc) |
| goto err_out; |
| |
| rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80; |
| writel(DB_KEY_RX | rxr->rx_agg_prod, |
| rxr->rx_agg_doorbell); |
| bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; |
| } |
| } |
| err_out: |
| return rc; |
| } |
| |
| static int hwrm_ring_free_send_msg(struct bnxt *bp, |
| struct bnxt_ring_struct *ring, |
| u32 ring_type, int cmpl_ring_id) |
| { |
| int rc; |
| struct hwrm_ring_free_input req = {0}; |
| struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr; |
| u16 error_code; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1); |
| req.ring_type = ring_type; |
| req.ring_id = cpu_to_le16(ring->fw_ring_id); |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| error_code = le16_to_cpu(resp->error_code); |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| |
| if (rc || error_code) { |
| switch (ring_type) { |
| case RING_FREE_REQ_RING_TYPE_CMPL: |
| netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n", |
| rc); |
| return rc; |
| case RING_FREE_REQ_RING_TYPE_RX: |
| netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n", |
| rc); |
| return rc; |
| case RING_FREE_REQ_RING_TYPE_TX: |
| netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n", |
| rc); |
| return rc; |
| default: |
| netdev_err(bp->dev, "Invalid ring\n"); |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) |
| { |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| struct bnxt_ring_struct *ring = &txr->tx_ring_struct; |
| u32 grp_idx = txr->bnapi->index; |
| u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id; |
| |
| if (ring->fw_ring_id != INVALID_HW_RING_ID) { |
| hwrm_ring_free_send_msg(bp, ring, |
| RING_FREE_REQ_RING_TYPE_TX, |
| close_path ? cmpl_ring_id : |
| INVALID_HW_RING_ID); |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| } |
| } |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; |
| u32 grp_idx = rxr->bnapi->index; |
| u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id; |
| |
| if (ring->fw_ring_id != INVALID_HW_RING_ID) { |
| hwrm_ring_free_send_msg(bp, ring, |
| RING_FREE_REQ_RING_TYPE_RX, |
| close_path ? cmpl_ring_id : |
| INVALID_HW_RING_ID); |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| bp->grp_info[grp_idx].rx_fw_ring_id = |
| INVALID_HW_RING_ID; |
| } |
| } |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; |
| u32 grp_idx = rxr->bnapi->index; |
| u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id; |
| |
| if (ring->fw_ring_id != INVALID_HW_RING_ID) { |
| hwrm_ring_free_send_msg(bp, ring, |
| RING_FREE_REQ_RING_TYPE_RX, |
| close_path ? cmpl_ring_id : |
| INVALID_HW_RING_ID); |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| bp->grp_info[grp_idx].agg_fw_ring_id = |
| INVALID_HW_RING_ID; |
| } |
| } |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; |
| |
| if (ring->fw_ring_id != INVALID_HW_RING_ID) { |
| hwrm_ring_free_send_msg(bp, ring, |
| RING_FREE_REQ_RING_TYPE_CMPL, |
| INVALID_HW_RING_ID); |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; |
| } |
| } |
| } |
| |
| static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs, |
| u32 buf_tmrs, u16 flags, |
| struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) |
| { |
| req->flags = cpu_to_le16(flags); |
| req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs); |
| req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16); |
| req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs); |
| req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16); |
| /* Minimum time between 2 interrupts set to buf_tmr x 2 */ |
| req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2); |
| req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4); |
| req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4); |
| } |
| |
| int bnxt_hwrm_set_coal(struct bnxt *bp) |
| { |
| int i, rc = 0; |
| struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}, |
| req_tx = {0}, *req; |
| u16 max_buf, max_buf_irq; |
| u16 buf_tmr, buf_tmr_irq; |
| u32 flags; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req_rx, |
| HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); |
| bnxt_hwrm_cmd_hdr_init(bp, &req_tx, |
| HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); |
| |
| /* Each rx completion (2 records) should be DMAed immediately. |
| * DMA 1/4 of the completion buffers at a time. |
| */ |
| max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2); |
| /* max_buf must not be zero */ |
| max_buf = clamp_t(u16, max_buf, 1, 63); |
| max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63); |
| buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks); |
| /* buf timer set to 1/4 of interrupt timer */ |
| buf_tmr = max_t(u16, buf_tmr / 4, 1); |
| buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq); |
| buf_tmr_irq = max_t(u16, buf_tmr_irq, 1); |
| |
| flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; |
| |
| /* RING_IDLE generates more IRQs for lower latency. Enable it only |
| * if coal_ticks is less than 25 us. |
| */ |
| if (bp->rx_coal_ticks < 25) |
| flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; |
| |
| bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf, |
| buf_tmr_irq << 16 | buf_tmr, flags, &req_rx); |
| |
| /* max_buf must not be zero */ |
| max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63); |
| max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63); |
| buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks); |
| /* buf timer set to 1/4 of interrupt timer */ |
| buf_tmr = max_t(u16, buf_tmr / 4, 1); |
| buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq); |
| buf_tmr_irq = max_t(u16, buf_tmr_irq, 1); |
| |
| flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; |
| bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf, |
| buf_tmr_irq << 16 | buf_tmr, flags, &req_tx); |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| |
| req = &req_rx; |
| if (!bnapi->rx_ring) |
| req = &req_tx; |
| req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id); |
| |
| rc = _hwrm_send_message(bp, req, sizeof(*req), |
| HWRM_CMD_TIMEOUT); |
| if (rc) |
| break; |
| } |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp) |
| { |
| int rc = 0, i; |
| struct hwrm_stat_ctx_free_input req = {0}; |
| |
| if (!bp->bnapi) |
| return 0; |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| return 0; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1); |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| |
| if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { |
| req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); |
| |
| rc = _hwrm_send_message(bp, &req, sizeof(req), |
| HWRM_CMD_TIMEOUT); |
| if (rc) |
| break; |
| |
| cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; |
| } |
| } |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) |
| { |
| int rc = 0, i; |
| struct hwrm_stat_ctx_alloc_input req = {0}; |
| struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| return 0; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1); |
| |
| req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| |
| req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map); |
| |
| rc = _hwrm_send_message(bp, &req, sizeof(req), |
| HWRM_CMD_TIMEOUT); |
| if (rc) |
| break; |
| |
| cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); |
| |
| bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; |
| } |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_func_qcfg(struct bnxt *bp) |
| { |
| struct hwrm_func_qcfg_input req = {0}; |
| struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; |
| int rc; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); |
| req.fid = cpu_to_le16(0xffff); |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (rc) |
| goto func_qcfg_exit; |
| |
| #ifdef CONFIG_BNXT_SRIOV |
| if (BNXT_VF(bp)) { |
| struct bnxt_vf_info *vf = &bp->vf; |
| |
| vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; |
| } |
| #endif |
| switch (resp->port_partition_type) { |
| case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: |
| case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: |
| case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: |
| bp->port_partition_type = resp->port_partition_type; |
| break; |
| } |
| |
| func_qcfg_exit: |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| int bnxt_hwrm_func_qcaps(struct bnxt *bp) |
| { |
| int rc = 0; |
| struct hwrm_func_qcaps_input req = {0}; |
| struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); |
| req.fid = cpu_to_le16(0xffff); |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (rc) |
| goto hwrm_func_qcaps_exit; |
| |
| bp->tx_push_thresh = 0; |
| if (resp->flags & |
| cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)) |
| bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; |
| |
| if (BNXT_PF(bp)) { |
| struct bnxt_pf_info *pf = &bp->pf; |
| |
| pf->fw_fid = le16_to_cpu(resp->fid); |
| pf->port_id = le16_to_cpu(resp->port_id); |
| bp->dev->dev_port = pf->port_id; |
| memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); |
| memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN); |
| pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); |
| pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); |
| pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings); |
| pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings); |
| pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); |
| if (!pf->max_hw_ring_grps) |
| pf->max_hw_ring_grps = pf->max_tx_rings; |
| pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); |
| pf->max_vnics = le16_to_cpu(resp->max_vnics); |
| pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); |
| pf->first_vf_id = le16_to_cpu(resp->first_vf_id); |
| pf->max_vfs = le16_to_cpu(resp->max_vfs); |
| pf->max_encap_records = le32_to_cpu(resp->max_encap_records); |
| pf->max_decap_records = le32_to_cpu(resp->max_decap_records); |
| pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); |
| pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); |
| pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); |
| pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); |
| } else { |
| #ifdef CONFIG_BNXT_SRIOV |
| struct bnxt_vf_info *vf = &bp->vf; |
| |
| vf->fw_fid = le16_to_cpu(resp->fid); |
| |
| vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); |
| vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); |
| vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings); |
| vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings); |
| vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); |
| if (!vf->max_hw_ring_grps) |
| vf->max_hw_ring_grps = vf->max_tx_rings; |
| vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); |
| vf->max_vnics = le16_to_cpu(resp->max_vnics); |
| vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); |
| |
| memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| |
| if (is_valid_ether_addr(vf->mac_addr)) { |
| /* overwrite netdev dev_adr with admin VF MAC */ |
| memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); |
| } else { |
| random_ether_addr(bp->dev->dev_addr); |
| rc = bnxt_approve_mac(bp, bp->dev->dev_addr); |
| } |
| return rc; |
| #endif |
| } |
| |
| hwrm_func_qcaps_exit: |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_func_reset(struct bnxt *bp) |
| { |
| struct hwrm_func_reset_input req = {0}; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1); |
| req.enables = 0; |
| |
| return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT); |
| } |
| |
| static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) |
| { |
| int rc = 0; |
| struct hwrm_queue_qportcfg_input req = {0}; |
| struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr; |
| u8 i, *qptr; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1); |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (rc) |
| goto qportcfg_exit; |
| |
| if (!resp->max_configurable_queues) { |
| rc = -EINVAL; |
| goto qportcfg_exit; |
| } |
| bp->max_tc = resp->max_configurable_queues; |
| if (bp->max_tc > BNXT_MAX_QUEUE) |
| bp->max_tc = BNXT_MAX_QUEUE; |
| |
| if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) |
| bp->max_tc = 1; |
| |
| qptr = &resp->queue_id0; |
| for (i = 0; i < bp->max_tc; i++) { |
| bp->q_info[i].queue_id = *qptr++; |
| bp->q_info[i].queue_profile = *qptr++; |
| } |
| |
| qportcfg_exit: |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_ver_get(struct bnxt *bp) |
| { |
| int rc; |
| struct hwrm_ver_get_input req = {0}; |
| struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr; |
| |
| bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1); |
| req.hwrm_intf_maj = HWRM_VERSION_MAJOR; |
| req.hwrm_intf_min = HWRM_VERSION_MINOR; |
| req.hwrm_intf_upd = HWRM_VERSION_UPDATE; |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (rc) |
| goto hwrm_ver_get_exit; |
| |
| memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); |
| |
| bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 | |
| resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd; |
| if (resp->hwrm_intf_maj < 1) { |
| netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", |
| resp->hwrm_intf_maj, resp->hwrm_intf_min, |
| resp->hwrm_intf_upd); |
| netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); |
| } |
| snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d", |
| resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld, |
| resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd); |
| |
| bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); |
| if (!bp->hwrm_cmd_timeout) |
| bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; |
| |
| if (resp->hwrm_intf_maj >= 1) |
| bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); |
| |
| bp->chip_num = le16_to_cpu(resp->chip_num); |
| if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && |
| !resp->chip_metal) |
| bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; |
| |
| hwrm_ver_get_exit: |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| int bnxt_hwrm_fw_set_time(struct bnxt *bp) |
| { |
| #if IS_ENABLED(CONFIG_RTC_LIB) |
| struct hwrm_fw_set_time_input req = {0}; |
| struct rtc_time tm; |
| struct timeval tv; |
| |
| if (bp->hwrm_spec_code < 0x10400) |
| return -EOPNOTSUPP; |
| |
| do_gettimeofday(&tv); |
| rtc_time_to_tm(tv.tv_sec, &tm); |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1); |
| req.year = cpu_to_le16(1900 + tm.tm_year); |
| req.month = 1 + tm.tm_mon; |
| req.day = tm.tm_mday; |
| req.hour = tm.tm_hour; |
| req.minute = tm.tm_min; |
| req.second = tm.tm_sec; |
| return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| #else |
| return -EOPNOTSUPP; |
| #endif |
| } |
| |
| static int bnxt_hwrm_port_qstats(struct bnxt *bp) |
| { |
| int rc; |
| struct bnxt_pf_info *pf = &bp->pf; |
| struct hwrm_port_qstats_input req = {0}; |
| |
| if (!(bp->flags & BNXT_FLAG_PORT_STATS)) |
| return 0; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1); |
| req.port_id = cpu_to_le16(pf->port_id); |
| req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map); |
| req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map); |
| rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| return rc; |
| } |
| |
| static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) |
| { |
| if (bp->vxlan_port_cnt) { |
| bnxt_hwrm_tunnel_dst_port_free( |
| bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); |
| } |
| bp->vxlan_port_cnt = 0; |
| if (bp->nge_port_cnt) { |
| bnxt_hwrm_tunnel_dst_port_free( |
| bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); |
| } |
| bp->nge_port_cnt = 0; |
| } |
| |
| static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) |
| { |
| int rc, i; |
| u32 tpa_flags = 0; |
| |
| if (set_tpa) |
| tpa_flags = bp->flags & BNXT_FLAG_TPA; |
| for (i = 0; i < bp->nr_vnics; i++) { |
| rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", |
| rc, i); |
| return rc; |
| } |
| } |
| return 0; |
| } |
| |
| static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) |
| { |
| int i; |
| |
| for (i = 0; i < bp->nr_vnics; i++) |
| bnxt_hwrm_vnic_set_rss(bp, i, false); |
| } |
| |
| static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, |
| bool irq_re_init) |
| { |
| if (bp->vnic_info) { |
| bnxt_hwrm_clear_vnic_filter(bp); |
| /* clear all RSS setting before free vnic ctx */ |
| bnxt_hwrm_clear_vnic_rss(bp); |
| bnxt_hwrm_vnic_ctx_free(bp); |
| /* before free the vnic, undo the vnic tpa settings */ |
| if (bp->flags & BNXT_FLAG_TPA) |
| bnxt_set_tpa(bp, false); |
| bnxt_hwrm_vnic_free(bp); |
| } |
| bnxt_hwrm_ring_free(bp, close_path); |
| bnxt_hwrm_ring_grp_free(bp); |
| if (irq_re_init) { |
| bnxt_hwrm_stat_ctx_free(bp); |
| bnxt_hwrm_free_tunnel_ports(bp); |
| } |
| } |
| |
| static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) |
| { |
| int rc; |
| |
| /* allocate context for vnic */ |
| rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", |
| vnic_id, rc); |
| goto vnic_setup_err; |
| } |
| bp->rsscos_nr_ctxs++; |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { |
| rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", |
| vnic_id, rc); |
| goto vnic_setup_err; |
| } |
| bp->rsscos_nr_ctxs++; |
| } |
| |
| /* configure default vnic, ring grp */ |
| rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", |
| vnic_id, rc); |
| goto vnic_setup_err; |
| } |
| |
| /* Enable RSS hashing on vnic */ |
| rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", |
| vnic_id, rc); |
| goto vnic_setup_err; |
| } |
| |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) { |
| rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", |
| vnic_id, rc); |
| } |
| } |
| |
| vnic_setup_err: |
| return rc; |
| } |
| |
| static int bnxt_alloc_rfs_vnics(struct bnxt *bp) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| int i, rc = 0; |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| u16 vnic_id = i + 1; |
| u16 ring_id = i; |
| |
| if (vnic_id >= bp->nr_vnics) |
| break; |
| |
| bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG; |
| rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", |
| vnic_id, rc); |
| break; |
| } |
| rc = bnxt_setup_vnic(bp, vnic_id); |
| if (rc) |
| break; |
| } |
| return rc; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* Allow PF and VF with default VLAN to be in promiscuous mode */ |
| static bool bnxt_promisc_ok(struct bnxt *bp) |
| { |
| #ifdef CONFIG_BNXT_SRIOV |
| if (BNXT_VF(bp) && !bp->vf.vlan) |
| return false; |
| #endif |
| return true; |
| } |
| |
| static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) |
| { |
| unsigned int rc = 0; |
| |
| rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); |
| if (rc) { |
| netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", |
| rc); |
| return rc; |
| } |
| |
| rc = bnxt_hwrm_vnic_cfg(bp, 1); |
| if (rc) { |
| netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", |
| rc); |
| return rc; |
| } |
| return rc; |
| } |
| |
| static int bnxt_cfg_rx_mode(struct bnxt *); |
| static bool bnxt_mc_list_updated(struct bnxt *, u32 *); |
| |
| static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) |
| { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; |
| int rc = 0; |
| unsigned int rx_nr_rings = bp->rx_nr_rings; |
| |
| if (irq_re_init) { |
| rc = bnxt_hwrm_stat_ctx_alloc(bp); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", |
| rc); |
| goto err_out; |
| } |
| } |
| |
| rc = bnxt_hwrm_ring_alloc(bp); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); |
| goto err_out; |
| } |
| |
| rc = bnxt_hwrm_ring_grp_alloc(bp); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); |
| goto err_out; |
| } |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| rx_nr_rings--; |
| |
| /* default vnic 0 */ |
| rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); |
| goto err_out; |
| } |
| |
| rc = bnxt_setup_vnic(bp, 0); |
| if (rc) |
| goto err_out; |
| |
| if (bp->flags & BNXT_FLAG_RFS) { |
| rc = bnxt_alloc_rfs_vnics(bp); |
| if (rc) |
| goto err_out; |
| } |
| |
| if (bp->flags & BNXT_FLAG_TPA) { |
| rc = bnxt_set_tpa(bp, true); |
| if (rc) |
| goto err_out; |
| } |
| |
| if (BNXT_VF(bp)) |
| bnxt_update_vf_mac(bp); |
| |
| /* Filter for default vnic 0 */ |
| rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); |
| if (rc) { |
| netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); |
| goto err_out; |
| } |
| vnic->uc_filter_count = 1; |
| |
| vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; |
| |
| if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp)) |
| vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; |
| |
| if (bp->dev->flags & IFF_ALLMULTI) { |
| vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; |
| vnic->mc_list_count = 0; |
| } else { |
| u32 mask = 0; |
| |
| bnxt_mc_list_updated(bp, &mask); |
| vnic->rx_mask |= mask; |
| } |
| |
| rc = bnxt_cfg_rx_mode(bp); |
| if (rc) |
| goto err_out; |
| |
| rc = bnxt_hwrm_set_coal(bp); |
| if (rc) |
| netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", |
| rc); |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { |
| rc = bnxt_setup_nitroa0_vnic(bp); |
| if (rc) |
| netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", |
| rc); |
| } |
| |
| if (BNXT_VF(bp)) { |
| bnxt_hwrm_func_qcfg(bp); |
| netdev_update_features(bp->dev); |
| } |
| |
| return 0; |
| |
| err_out: |
| bnxt_hwrm_resource_free(bp, 0, true); |
| |
| return rc; |
| } |
| |
| static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) |
| { |
| bnxt_hwrm_resource_free(bp, 1, irq_re_init); |
| return 0; |
| } |
| |
| static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) |
| { |
| bnxt_init_cp_rings(bp); |
| bnxt_init_rx_rings(bp); |
| bnxt_init_tx_rings(bp); |
| bnxt_init_ring_grps(bp, irq_re_init); |
| bnxt_init_vnics(bp); |
| |
| return bnxt_init_chip(bp, irq_re_init); |
| } |
| |
| static void bnxt_disable_int(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| |
| BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); |
| } |
| } |
| |
| static void bnxt_enable_int(struct bnxt *bp) |
| { |
| int i; |
| |
| atomic_set(&bp->intr_sem, 0); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| |
| BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); |
| } |
| } |
| |
| static int bnxt_set_real_num_queues(struct bnxt *bp) |
| { |
| int rc; |
| struct net_device *dev = bp->dev; |
| |
| rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings); |
| if (rc) |
| return rc; |
| |
| rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); |
| if (rc) |
| return rc; |
| |
| #ifdef CONFIG_RFS_ACCEL |
| if (bp->flags & BNXT_FLAG_RFS) |
| dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); |
| #endif |
| |
| return rc; |
| } |
| |
| static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, |
| bool shared) |
| { |
| int _rx = *rx, _tx = *tx; |
| |
| if (shared) { |
| *rx = min_t(int, _rx, max); |
| *tx = min_t(int, _tx, max); |
| } else { |
| if (max < 2) |
| return -ENOMEM; |
| |
| while (_rx + _tx > max) { |
| if (_rx > _tx && _rx > 1) |
| _rx--; |
| else if (_tx > 1) |
| _tx--; |
| } |
| *rx = _rx; |
| *tx = _tx; |
| } |
| return 0; |
| } |
| |
| static int bnxt_setup_msix(struct bnxt *bp) |
| { |
| struct msix_entry *msix_ent; |
| struct net_device *dev = bp->dev; |
| int i, total_vecs, rc = 0, min = 1; |
| const int len = sizeof(bp->irq_tbl[0].name); |
| |
| bp->flags &= ~BNXT_FLAG_USING_MSIX; |
| total_vecs = bp->cp_nr_rings; |
| |
| msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); |
| if (!msix_ent) |
| return -ENOMEM; |
| |
| for (i = 0; i < total_vecs; i++) { |
| msix_ent[i].entry = i; |
| msix_ent[i].vector = 0; |
| } |
| |
| if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) |
| min = 2; |
| |
| total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); |
| if (total_vecs < 0) { |
| rc = -ENODEV; |
| goto msix_setup_exit; |
| } |
| |
| bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); |
| if (bp->irq_tbl) { |
| int tcs; |
| |
| /* Trim rings based upon num of vectors allocated */ |
| rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, |
| total_vecs, min == 1); |
| if (rc) |
| goto msix_setup_exit; |
| |
| bp->tx_nr_rings_per_tc = bp->tx_nr_rings; |
| tcs = netdev_get_num_tc(dev); |
| if (tcs > 1) { |
| bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs; |
| if (bp->tx_nr_rings_per_tc == 0) { |
| netdev_reset_tc(dev); |
| bp->tx_nr_rings_per_tc = bp->tx_nr_rings; |
| } else { |
| int i, off, count; |
| |
| bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs; |
| for (i = 0; i < tcs; i++) { |
| count = bp->tx_nr_rings_per_tc; |
| off = i * count; |
| netdev_set_tc_queue(dev, i, count, off); |
| } |
| } |
| } |
| bp->cp_nr_rings = total_vecs; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| char *attr; |
| |
| bp->irq_tbl[i].vector = msix_ent[i].vector; |
| if (bp->flags & BNXT_FLAG_SHARED_RINGS) |
| attr = "TxRx"; |
| else if (i < bp->rx_nr_rings) |
| attr = "rx"; |
| else |
| attr = "tx"; |
| |
| snprintf(bp->irq_tbl[i].name, len, |
| "%s-%s-%d", dev->name, attr, i); |
| bp->irq_tbl[i].handler = bnxt_msix; |
| } |
| rc = bnxt_set_real_num_queues(bp); |
| if (rc) |
| goto msix_setup_exit; |
| } else { |
| rc = -ENOMEM; |
| goto msix_setup_exit; |
| } |
| bp->flags |= BNXT_FLAG_USING_MSIX; |
| kfree(msix_ent); |
| return 0; |
| |
| msix_setup_exit: |
| netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc); |
| pci_disable_msix(bp->pdev); |
| kfree(msix_ent); |
| return rc; |
| } |
| |
| static int bnxt_setup_inta(struct bnxt *bp) |
| { |
| int rc; |
| const int len = sizeof(bp->irq_tbl[0].name); |
| |
| if (netdev_get_num_tc(bp->dev)) |
| netdev_reset_tc(bp->dev); |
| |
| bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL); |
| if (!bp->irq_tbl) { |
| rc = -ENOMEM; |
| return rc; |
| } |
| bp->rx_nr_rings = 1; |
| bp->tx_nr_rings = 1; |
| bp->cp_nr_rings = 1; |
| bp->tx_nr_rings_per_tc = bp->tx_nr_rings; |
| bp->flags |= BNXT_FLAG_SHARED_RINGS; |
| bp->irq_tbl[0].vector = bp->pdev->irq; |
| snprintf(bp->irq_tbl[0].name, len, |
| "%s-%s-%d", bp->dev->name, "TxRx", 0); |
| bp->irq_tbl[0].handler = bnxt_inta; |
| rc = bnxt_set_real_num_queues(bp); |
| return rc; |
| } |
| |
| static int bnxt_setup_int_mode(struct bnxt *bp) |
| { |
| int rc = 0; |
| |
| if (bp->flags & BNXT_FLAG_MSIX_CAP) |
| rc = bnxt_setup_msix(bp); |
| |
| if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { |
| /* fallback to INTA */ |
| rc = bnxt_setup_inta(bp); |
| } |
| return rc; |
| } |
| |
| static void bnxt_free_irq(struct bnxt *bp) |
| { |
| struct bnxt_irq *irq; |
| int i; |
| |
| #ifdef CONFIG_RFS_ACCEL |
| free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); |
| bp->dev->rx_cpu_rmap = NULL; |
| #endif |
| if (!bp->irq_tbl) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| irq = &bp->irq_tbl[i]; |
| if (irq->requested) |
| free_irq(irq->vector, bp->bnapi[i]); |
| irq->requested = 0; |
| } |
| if (bp->flags & BNXT_FLAG_USING_MSIX) |
| pci_disable_msix(bp->pdev); |
| kfree(bp->irq_tbl); |
| bp->irq_tbl = NULL; |
| } |
| |
| static int bnxt_request_irq(struct bnxt *bp) |
| { |
| int i, j, rc = 0; |
| unsigned long flags = 0; |
| #ifdef CONFIG_RFS_ACCEL |
| struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap; |
| #endif |
| |
| if (!(bp->flags & BNXT_FLAG_USING_MSIX)) |
| flags = IRQF_SHARED; |
| |
| for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_irq *irq = &bp->irq_tbl[i]; |
| #ifdef CONFIG_RFS_ACCEL |
| if (rmap && bp->bnapi[i]->rx_ring) { |
| rc = irq_cpu_rmap_add(rmap, irq->vector); |
| if (rc) |
| netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", |
| j); |
| j++; |
| } |
| #endif |
| rc = request_irq(irq->vector, irq->handler, flags, irq->name, |
| bp->bnapi[i]); |
| if (rc) |
| break; |
| |
| irq->requested = 1; |
| } |
| return rc; |
| } |
| |
| static void bnxt_del_napi(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| |
| napi_hash_del(&bnapi->napi); |
| netif_napi_del(&bnapi->napi); |
| } |
| /* We called napi_hash_del() before netif_napi_del(), we need |
| * to respect an RCU grace period before freeing napi structures. |
| */ |
| synchronize_net(); |
| } |
| |
| static void bnxt_init_napi(struct bnxt *bp) |
| { |
| int i; |
| unsigned int cp_nr_rings = bp->cp_nr_rings; |
| struct bnxt_napi *bnapi; |
| |
| if (bp->flags & BNXT_FLAG_USING_MSIX) { |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| cp_nr_rings--; |
| for (i = 0; i < cp_nr_rings; i++) { |
| bnapi = bp->bnapi[i]; |
| netif_napi_add(bp->dev, &bnapi->napi, |
| bnxt_poll, 64); |
| } |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { |
| bnapi = bp->bnapi[cp_nr_rings]; |
| netif_napi_add(bp->dev, &bnapi->napi, |
| bnxt_poll_nitroa0, 64); |
| napi_hash_add(&bnapi->napi); |
| } |
| } else { |
| bnapi = bp->bnapi[0]; |
| netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); |
| } |
| } |
| |
| static void bnxt_disable_napi(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| napi_disable(&bp->bnapi[i]->napi); |
| bnxt_disable_poll(bp->bnapi[i]); |
| } |
| } |
| |
| static void bnxt_enable_napi(struct bnxt *bp) |
| { |
| int i; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| bp->bnapi[i]->in_reset = false; |
| bnxt_enable_poll(bp->bnapi[i]); |
| napi_enable(&bp->bnapi[i]->napi); |
| } |
| } |
| |
| static void bnxt_tx_disable(struct bnxt *bp) |
| { |
| int i; |
| struct bnxt_tx_ring_info *txr; |
| struct netdev_queue *txq; |
| |
| if (bp->tx_ring) { |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| txr = &bp->tx_ring[i]; |
| txq = netdev_get_tx_queue(bp->dev, i); |
| txr->dev_state = BNXT_DEV_STATE_CLOSING; |
| } |
| } |
| /* Stop all TX queues */ |
| netif_tx_disable(bp->dev); |
| netif_carrier_off(bp->dev); |
| } |
| |
| static void bnxt_tx_enable(struct bnxt *bp) |
| { |
| int i; |
| struct bnxt_tx_ring_info *txr; |
| struct netdev_queue *txq; |
| |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| txr = &bp->tx_ring[i]; |
| txq = netdev_get_tx_queue(bp->dev, i); |
| txr->dev_state = 0; |
| } |
| netif_tx_wake_all_queues(bp->dev); |
| if (bp->link_info.link_up) |
| netif_carrier_on(bp->dev); |
| } |
| |
| static void bnxt_report_link(struct bnxt *bp) |
| { |
| if (bp->link_info.link_up) { |
| const char *duplex; |
| const char *flow_ctrl; |
| u16 speed; |
| |
| netif_carrier_on(bp->dev); |
| if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) |
| duplex = "full"; |
| else |
| duplex = "half"; |
| if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) |
| flow_ctrl = "ON - receive & transmit"; |
| else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) |
| flow_ctrl = "ON - transmit"; |
| else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) |
| flow_ctrl = "ON - receive"; |
| else |
| flow_ctrl = "none"; |
| speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); |
| netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", |
| speed, duplex, flow_ctrl); |
| if (bp->flags & BNXT_FLAG_EEE_CAP) |
| netdev_info(bp->dev, "EEE is %s\n", |
| bp->eee.eee_active ? "active" : |
| "not active"); |
| } else { |
| netif_carrier_off(bp->dev); |
| netdev_err(bp->dev, "NIC Link is Down\n"); |
| } |
| } |
| |
| static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) |
| { |
| int rc = 0; |
| struct hwrm_port_phy_qcaps_input req = {0}; |
| struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr; |
| struct bnxt_link_info *link_info = &bp->link_info; |
| |
| if (bp->hwrm_spec_code < 0x10201) |
| return 0; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1); |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (rc) |
| goto hwrm_phy_qcaps_exit; |
| |
| if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) { |
| struct ethtool_eee *eee = &bp->eee; |
| u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); |
| |
| bp->flags |= BNXT_FLAG_EEE_CAP; |
| eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); |
| bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & |
| PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; |
| bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & |
| PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; |
| } |
| if (resp->supported_speeds_auto_mode) |
| link_info->support_auto_speeds = |
| le16_to_cpu(resp->supported_speeds_auto_mode); |
| |
| hwrm_phy_qcaps_exit: |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static int bnxt_update_link(struct bnxt *bp, bool chng_link_state) |
| { |
| int rc = 0; |
| struct bnxt_link_info *link_info = &bp->link_info; |
| struct hwrm_port_phy_qcfg_input req = {0}; |
| struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr; |
| u8 link_up = link_info->link_up; |
| u16 diff; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1); |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (rc) { |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); |
| link_info->phy_link_status = resp->link; |
| link_info->duplex = resp->duplex; |
| link_info->pause = resp->pause; |
| link_info->auto_mode = resp->auto_mode; |
| link_info->auto_pause_setting = resp->auto_pause; |
| link_info->lp_pause = resp->link_partner_adv_pause; |
| link_info->force_pause_setting = resp->force_pause; |
| link_info->duplex_setting = resp->duplex; |
| if (link_info->phy_link_status == BNXT_LINK_LINK) |
| link_info->link_speed = le16_to_cpu(resp->link_speed); |
| else |
| link_info->link_speed = 0; |
| link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); |
| link_info->support_speeds = le16_to_cpu(resp->support_speeds); |
| link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); |
| link_info->lp_auto_link_speeds = |
| le16_to_cpu(resp->link_partner_adv_speeds); |
| link_info->preemphasis = le32_to_cpu(resp->preemphasis); |
| link_info->phy_ver[0] = resp->phy_maj; |
| link_info->phy_ver[1] = resp->phy_min; |
| link_info->phy_ver[2] = resp->phy_bld; |
| link_info->media_type = resp->media_type; |
| link_info->phy_type = resp->phy_type; |
| link_info->transceiver = resp->xcvr_pkg_type; |
| link_info->phy_addr = resp->eee_config_phy_addr & |
| PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; |
| link_info->module_status = resp->module_status; |
| |
| if (bp->flags & BNXT_FLAG_EEE_CAP) { |
| struct ethtool_eee *eee = &bp->eee; |
| u16 fw_speeds; |
| |
| eee->eee_active = 0; |
| if (resp->eee_config_phy_addr & |
| PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { |
| eee->eee_active = 1; |
| fw_speeds = le16_to_cpu( |
| resp->link_partner_adv_eee_link_speed_mask); |
| eee->lp_advertised = |
| _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); |
| } |
| |
| /* Pull initial EEE config */ |
| if (!chng_link_state) { |
| if (resp->eee_config_phy_addr & |
| PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) |
| eee->eee_enabled = 1; |
| |
| fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); |
| eee->advertised = |
| _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); |
| |
| if (resp->eee_config_phy_addr & |
| PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { |
| __le32 tmr; |
| |
| eee->tx_lpi_enabled = 1; |
| tmr = resp->xcvr_identifier_type_tx_lpi_timer; |
| eee->tx_lpi_timer = le32_to_cpu(tmr) & |
| PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; |
| } |
| } |
| } |
| /* TODO: need to add more logic to report VF link */ |
| if (chng_link_state) { |
| if (link_info->phy_link_status == BNXT_LINK_LINK) |
| link_info->link_up = 1; |
| else |
| link_info->link_up = 0; |
| if (link_up != link_info->link_up) |
| bnxt_report_link(bp); |
| } else { |
| /* alwasy link down if not require to update link state */ |
| link_info->link_up = 0; |
| } |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| |
| if (!BNXT_SINGLE_PF(bp)) |
| return 0; |
| |
| diff = link_info->support_auto_speeds ^ link_info->advertising; |
| if ((link_info->support_auto_speeds | diff) != |
| link_info->support_auto_speeds) { |
| /* An advertised speed is no longer supported, so we need to |
| * update the advertisement settings. Caller holds RTNL |
| * so we can modify link settings. |
| */ |
| link_info->advertising = link_info->support_auto_speeds; |
| if (link_info->autoneg & BNXT_AUTONEG_SPEED) |
| bnxt_hwrm_set_link_setting(bp, true, false); |
| } |
| return 0; |
| } |
| |
| static void bnxt_get_port_module_status(struct bnxt *bp) |
| { |
| struct bnxt_link_info *link_info = &bp->link_info; |
| struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; |
| u8 module_status; |
| |
| if (bnxt_update_link(bp, true)) |
| return; |
| |
| module_status = link_info->module_status; |
| switch (module_status) { |
| case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: |
| case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: |
| case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: |
| netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", |
| bp->pf.port_id); |
| if (bp->hwrm_spec_code >= 0x10201) { |
| netdev_warn(bp->dev, "Module part number %s\n", |
| resp->phy_vendor_partnumber); |
| } |
| if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) |
| netdev_warn(bp->dev, "TX is disabled\n"); |
| if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) |
| netdev_warn(bp->dev, "SFP+ module is shutdown\n"); |
| } |
| } |
| |
| static void |
| bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) |
| { |
| if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { |
| if (bp->hwrm_spec_code >= 0x10201) |
| req->auto_pause = |
| PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; |
| if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) |
| req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; |
| if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) |
| req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; |
| req->enables |= |
| cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); |
| } else { |
| if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) |
| req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; |
| if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) |
| req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; |
| req->enables |= |
| cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); |
| if (bp->hwrm_spec_code >= 0x10201) { |
| req->auto_pause = req->force_pause; |
| req->enables |= cpu_to_le32( |
| PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); |
| } |
| } |
| } |
| |
| static void bnxt_hwrm_set_link_common(struct bnxt *bp, |
| struct hwrm_port_phy_cfg_input *req) |
| { |
| u8 autoneg = bp->link_info.autoneg; |
| u16 fw_link_speed = bp->link_info.req_link_speed; |
| u32 advertising = bp->link_info.advertising; |
| |
| if (autoneg & BNXT_AUTONEG_SPEED) { |
| req->auto_mode |= |
| PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; |
| |
| req->enables |= cpu_to_le32( |
| PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); |
| req->auto_link_speed_mask = cpu_to_le16(advertising); |
| |
| req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); |
| req->flags |= |
| cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); |
| } else { |
| req->force_link_speed = cpu_to_le16(fw_link_speed); |
| req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); |
| } |
| |
| /* tell chimp that the setting takes effect immediately */ |
| req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); |
| } |
| |
| int bnxt_hwrm_set_pause(struct bnxt *bp) |
| { |
| struct hwrm_port_phy_cfg_input req = {0}; |
| int rc; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); |
| bnxt_hwrm_set_pause_common(bp, &req); |
| |
| if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || |
| bp->link_info.force_link_chng) |
| bnxt_hwrm_set_link_common(bp, &req); |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { |
| /* since changing of pause setting doesn't trigger any link |
| * change event, the driver needs to update the current pause |
| * result upon successfully return of the phy_cfg command |
| */ |
| bp->link_info.pause = |
| bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; |
| bp->link_info.auto_pause_setting = 0; |
| if (!bp->link_info.force_link_chng) |
| bnxt_report_link(bp); |
| } |
| bp->link_info.force_link_chng = false; |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| return rc; |
| } |
| |
| static void bnxt_hwrm_set_eee(struct bnxt *bp, |
| struct hwrm_port_phy_cfg_input *req) |
| { |
| struct ethtool_eee *eee = &bp->eee; |
| |
| if (eee->eee_enabled) { |
| u16 eee_speeds; |
| u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; |
| |
| if (eee->tx_lpi_enabled) |
| flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; |
| else |
| flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; |
| |
| req->flags |= cpu_to_le32(flags); |
| eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); |
| req->eee_link_speed_mask = cpu_to_le16(eee_speeds); |
| req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); |
| } else { |
| req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); |
| } |
| } |
| |
| int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) |
| { |
| struct hwrm_port_phy_cfg_input req = {0}; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); |
| if (set_pause) |
| bnxt_hwrm_set_pause_common(bp, &req); |
| |
| bnxt_hwrm_set_link_common(bp, &req); |
| |
| if (set_eee) |
| bnxt_hwrm_set_eee(bp, &req); |
| return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| } |
| |
| static int bnxt_hwrm_shutdown_link(struct bnxt *bp) |
| { |
| struct hwrm_port_phy_cfg_input req = {0}; |
| |
| if (!BNXT_SINGLE_PF(bp)) |
| return 0; |
| |
| if (pci_num_vf(bp->pdev)) |
| return 0; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); |
| req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DOWN); |
| return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); |
| } |
| |
| static bool bnxt_eee_config_ok(struct bnxt *bp) |
| { |
| struct ethtool_eee *eee = &bp->eee; |
| struct bnxt_link_info *link_info = &bp->link_info; |
| |
| if (!(bp->flags & BNXT_FLAG_EEE_CAP)) |
| return true; |
| |
| if (eee->eee_enabled) { |
| u32 advertising = |
| _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); |
| |
| if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { |
| eee->eee_enabled = 0; |
| return false; |
| } |
| if (eee->advertised & ~advertising) { |
| eee->advertised = advertising & eee->supported; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static int bnxt_update_phy_setting(struct bnxt *bp) |
| { |
| int rc; |
| bool update_link = false; |
| bool update_pause = false; |
| bool update_eee = false; |
| struct bnxt_link_info *link_info = &bp->link_info; |
| |
| rc = bnxt_update_link(bp, true); |
| if (rc) { |
| netdev_err(bp->dev, "failed to update link (rc: %x)\n", |
| rc); |
| return rc; |
| } |
| if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && |
| (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != |
| link_info->req_flow_ctrl) |
| update_pause = true; |
| if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && |
| link_info->force_pause_setting != link_info->req_flow_ctrl) |
| update_pause = true; |
| if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { |
| if (BNXT_AUTO_MODE(link_info->auto_mode)) |
| update_link = true; |
| if (link_info->req_link_speed != link_info->force_link_speed) |
| update_link = true; |
| if (link_info->req_duplex != link_info->duplex_setting) |
| update_link = true; |
| } else { |
| if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) |
| update_link = true; |
| if (link_info->advertising != link_info->auto_link_speeds) |
| update_link = true; |
| } |
| |
| if (!bnxt_eee_config_ok(bp)) |
| update_eee = true; |
| |
| if (update_link) |
| rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); |
| else if (update_pause) |
| rc = bnxt_hwrm_set_pause(bp); |
| if (rc) { |
| netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", |
| rc); |
| return rc; |
| } |
| |
| return rc; |
| } |
| |
| /* Common routine to pre-map certain register block to different GRC window. |
| * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows |
| * in PF and 3 windows in VF that can be customized to map in different |
| * register blocks. |
| */ |
| static void bnxt_preset_reg_win(struct bnxt *bp) |
| { |
| if (BNXT_PF(bp)) { |
| /* CAG registers map to GRC window #4 */ |
| writel(BNXT_CAG_REG_BASE, |
| bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); |
| } |
| } |
| |
| static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) |
| { |
| int rc = 0; |
| |
| bnxt_preset_reg_win(bp); |
| netif_carrier_off(bp->dev); |
| if (irq_re_init) { |
| rc = bnxt_setup_int_mode(bp); |
| if (rc) { |
| netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", |
| rc); |
| return rc; |
| } |
| } |
| if ((bp->flags & BNXT_FLAG_RFS) && |
| !(bp->flags & BNXT_FLAG_USING_MSIX)) { |
| /* disable RFS if falling back to INTA */ |
| bp->dev->hw_features &= ~NETIF_F_NTUPLE; |
| bp->flags &= ~BNXT_FLAG_RFS; |
| } |
| |
| rc = bnxt_alloc_mem(bp, irq_re_init); |
| if (rc) { |
| netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); |
| goto open_err_free_mem; |
| } |
| |
| if (irq_re_init) { |
| bnxt_init_napi(bp); |
| rc = bnxt_request_irq(bp); |
| if (rc) { |
| netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); |
| goto open_err_irq; |
| } |
| } |
| |
| bnxt_enable_napi(bp); |
| |
| rc = bnxt_init_nic(bp, irq_re_init); |
| if (rc) { |
| netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); |
| goto open_err; |
| } |
| |
| if (link_re_init) { |
| mutex_lock(&bp->link_lock); |
| rc = bnxt_update_phy_setting(bp); |
| mutex_unlock(&bp->link_lock); |
| if (rc) |
| netdev_warn(bp->dev, "failed to update phy settings\n"); |
| } |
| |
| if (irq_re_init) |
| udp_tunnel_get_rx_info(bp->dev); |
| |
| set_bit(BNXT_STATE_OPEN, &bp->state); |
| bnxt_enable_int(bp); |
| /* Enable TX queues */ |
| bnxt_tx_enable(bp); |
| mod_timer(&bp->timer, jiffies + bp->current_interval); |
| /* Poll link status and check for SFP+ module status */ |
| bnxt_get_port_module_status(bp); |
| |
| return 0; |
| |
| open_err: |
| bnxt_disable_napi(bp); |
| |
| open_err_irq: |
| bnxt_del_napi(bp); |
| |
| open_err_free_mem: |
| bnxt_free_skbs(bp); |
| bnxt_free_irq(bp); |
| bnxt_free_mem(bp, true); |
| return rc; |
| } |
| |
| /* rtnl_lock held */ |
| int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) |
| { |
| int rc = 0; |
| |
| rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); |
| if (rc) { |
| netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); |
| dev_close(bp->dev); |
| } |
| return rc; |
| } |
| |
| static int bnxt_open(struct net_device *dev) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| int rc = 0; |
| |
| if (!test_bit(BNXT_STATE_FN_RST_DONE, &bp->state)) { |
| rc = bnxt_hwrm_func_reset(bp); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n", |
| rc); |
| rc = -EBUSY; |
| return rc; |
| } |
| /* Do func_reset during the 1st PF open only to prevent killing |
| * the VFs when the PF is brought down and up. |
| */ |
| if (BNXT_PF(bp)) |
| set_bit(BNXT_STATE_FN_RST_DONE, &bp->state); |
| } |
| return __bnxt_open_nic(bp, true, true); |
| } |
| |
| static void bnxt_disable_int_sync(struct bnxt *bp) |
| { |
| int i; |
| |
| atomic_inc(&bp->intr_sem); |
| if (!netif_running(bp->dev)) |
| return; |
| |
| bnxt_disable_int(bp); |
| for (i = 0; i < bp->cp_nr_rings; i++) |
| synchronize_irq(bp->irq_tbl[i].vector); |
| } |
| |
| int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) |
| { |
| int rc = 0; |
| |
| #ifdef CONFIG_BNXT_SRIOV |
| if (bp->sriov_cfg) { |
| rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, |
| !bp->sriov_cfg, |
| BNXT_SRIOV_CFG_WAIT_TMO); |
| if (rc) |
| netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); |
| } |
| #endif |
| /* Change device state to avoid TX queue wake up's */ |
| bnxt_tx_disable(bp); |
| |
| clear_bit(BNXT_STATE_OPEN, &bp->state); |
| smp_mb__after_atomic(); |
| while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state)) |
| msleep(20); |
| |
| /* Flush rings before disabling interrupts */ |
| bnxt_shutdown_nic(bp, irq_re_init); |
| |
| /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ |
| |
| bnxt_disable_napi(bp); |
| bnxt_disable_int_sync(bp); |
| del_timer_sync(&bp->timer); |
| bnxt_free_skbs(bp); |
| |
| if (irq_re_init) { |
| bnxt_free_irq(bp); |
| bnxt_del_napi(bp); |
| } |
| bnxt_free_mem(bp, irq_re_init); |
| return rc; |
| } |
| |
| static int bnxt_close(struct net_device *dev) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| bnxt_close_nic(bp, true, true); |
| bnxt_hwrm_shutdown_link(bp); |
| return 0; |
| } |
| |
| /* rtnl_lock held */ |
| static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| /* fallthru */ |
| case SIOCGMIIREG: { |
| if (!netif_running(dev)) |
| return -EAGAIN; |
| |
| return 0; |
| } |
| |
| case SIOCSMIIREG: |
| if (!netif_running(dev)) |
| return -EAGAIN; |
| |
| return 0; |
| |
| default: |
| /* do nothing */ |
| break; |
| } |
| return -EOPNOTSUPP; |
| } |
| |
| static struct rtnl_link_stats64 * |
| bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) |
| { |
| u32 i; |
| struct bnxt *bp = netdev_priv(dev); |
| |
| memset(stats, 0, sizeof(struct rtnl_link_stats64)); |
| |
| if (!bp->bnapi) |
| return stats; |
| |
| /* TODO check if we need to synchronize with bnxt_close path */ |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct ctx_hw_stats *hw_stats = cpr->hw_stats; |
| |
| stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts); |
| stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts); |
| stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts); |
| |
| stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts); |
| stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts); |
| stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts); |
| |
| stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes); |
| stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes); |
| stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes); |
| |
| stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes); |
| stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes); |
| stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes); |
| |
| stats->rx_missed_errors += |
| le64_to_cpu(hw_stats->rx_discard_pkts); |
| |
| stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts); |
| |
| stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts); |
| } |
| |
| if (bp->flags & BNXT_FLAG_PORT_STATS) { |
| struct rx_port_stats *rx = bp->hw_rx_port_stats; |
| struct tx_port_stats *tx = bp->hw_tx_port_stats; |
| |
| stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames); |
| stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames); |
| stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) + |
| le64_to_cpu(rx->rx_ovrsz_frames) + |
| le64_to_cpu(rx->rx_runt_frames); |
| stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) + |
| le64_to_cpu(rx->rx_jbr_frames); |
| stats->collisions = le64_to_cpu(tx->tx_total_collisions); |
| stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns); |
| stats->tx_errors = le64_to_cpu(tx->tx_err); |
| } |
| |
| return stats; |
| } |
| |
| static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) |
| { |
| struct net_device *dev = bp->dev; |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; |
| struct netdev_hw_addr *ha; |
| u8 *haddr; |
| int mc_count = 0; |
| bool update = false; |
| int off = 0; |
| |
| netdev_for_each_mc_addr(ha, dev) { |
| if (mc_count >= BNXT_MAX_MC_ADDRS) { |
| *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; |
| vnic->mc_list_count = 0; |
| return false; |
| } |
| haddr = ha->addr; |
| if (!ether_addr_equal(haddr, vnic->mc_list + off)) { |
| memcpy(vnic->mc_list + off, haddr, ETH_ALEN); |
| update = true; |
| } |
| off += ETH_ALEN; |
| mc_count++; |
| } |
| if (mc_count) |
| *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; |
| |
| if (mc_count != vnic->mc_list_count) { |
| vnic->mc_list_count = mc_count; |
| update = true; |
| } |
| return update; |
| } |
| |
| static bool bnxt_uc_list_updated(struct bnxt *bp) |
| { |
| struct net_device *dev = bp->dev; |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; |
| struct netdev_hw_addr *ha; |
| int off = 0; |
| |
| if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) |
| return true; |
| |
| netdev_for_each_uc_addr(ha, dev) { |
| if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) |
| return true; |
| |
| off += ETH_ALEN; |
| } |
| return false; |
| } |
| |
| static void bnxt_set_rx_mode(struct net_device *dev) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; |
| u32 mask = vnic->rx_mask; |
| bool mc_update = false; |
| bool uc_update; |
| |
| if (!netif_running(dev)) |
| return; |
| |
| mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | |
| CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | |
| CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST); |
| |
| if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp)) |
| mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; |
| |
| uc_update = bnxt_uc_list_updated(bp); |
| |
| if (dev->flags & IFF_ALLMULTI) { |
| mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; |
| vnic->mc_list_count = 0; |
| } else { |
| mc_update = bnxt_mc_list_updated(bp, &mask); |
| } |
| |
| if (mask != vnic->rx_mask || uc_update || mc_update) { |
| vnic->rx_mask = mask; |
| |
| set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); |
| schedule_work(&bp->sp_task); |
| } |
| } |
| |
| static int bnxt_cfg_rx_mode(struct bnxt *bp) |
| { |
| struct net_device *dev = bp->dev; |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; |
| struct netdev_hw_addr *ha; |
| int i, off = 0, rc; |
| bool uc_update; |
| |
| netif_addr_lock_bh(dev); |
| uc_update = bnxt_uc_list_updated(bp); |
| netif_addr_unlock_bh(dev); |
| |
| if (!uc_update) |
| goto skip_uc; |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| for (i = 1; i < vnic->uc_filter_count; i++) { |
| struct hwrm_cfa_l2_filter_free_input req = {0}; |
| |
| bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, |
| -1); |
| |
| req.l2_filter_id = vnic->fw_l2_filter_id[i]; |
| |
| rc = _hwrm_send_message(bp, &req, sizeof(req), |
| HWRM_CMD_TIMEOUT); |
| } |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| |
| vnic->uc_filter_count = 1; |
| |
| netif_addr_lock_bh(dev); |
| if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { |
| vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; |
| } else { |
| netdev_for_each_uc_addr(ha, dev) { |
| memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); |
| off += ETH_ALEN; |
| vnic->uc_filter_count++; |
| } |
| } |
| netif_addr_unlock_bh(dev); |
| |
| for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { |
| rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); |
| if (rc) { |
| netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", |
| rc); |
| vnic->uc_filter_count = i; |
| return rc; |
| } |
| } |
| |
| skip_uc: |
| rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); |
| if (rc && vnic->mc_list_count) { |
| netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", |
| rc); |
| vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; |
| vnic->mc_list_count = 0; |
| rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); |
| } |
| if (rc) |
| netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", |
| rc); |
| |
| return rc; |
| } |
| |
| static bool bnxt_rfs_capable(struct bnxt *bp) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| struct bnxt_pf_info *pf = &bp->pf; |
| int vnics; |
| |
| if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP)) |
| return false; |
| |
| vnics = 1 + bp->rx_nr_rings; |
| if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics) { |
| netdev_warn(bp->dev, |
| "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", |
| min(pf->max_rsscos_ctxs - 1, pf->max_vnics - 1)); |
| return false; |
| } |
| |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| static netdev_features_t bnxt_fix_features(struct net_device *dev, |
| netdev_features_t features) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| netdev_features_t vlan_features; |
| |
| if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) |
| features &= ~NETIF_F_NTUPLE; |
| |
| /* Both CTAG and STAG VLAN accelaration on the RX side have to be |
| * turned on or off together. |
| */ |
| vlan_features = features & (NETIF_F_HW_VLAN_CTAG_RX | |
| NETIF_F_HW_VLAN_STAG_RX); |
| if (vlan_features != (NETIF_F_HW_VLAN_CTAG_RX | |
| NETIF_F_HW_VLAN_STAG_RX)) { |
| if (dev->features & NETIF_F_HW_VLAN_CTAG_RX) |
| features &= ~(NETIF_F_HW_VLAN_CTAG_RX | |
| NETIF_F_HW_VLAN_STAG_RX); |
| else if (vlan_features) |
| features |= NETIF_F_HW_VLAN_CTAG_RX | |
| NETIF_F_HW_VLAN_STAG_RX; |
| } |
| #ifdef CONFIG_BNXT_SRIOV |
| if (BNXT_VF(bp)) { |
| if (bp->vf.vlan) { |
| features &= ~(NETIF_F_HW_VLAN_CTAG_RX | |
| NETIF_F_HW_VLAN_STAG_RX); |
| } |
| } |
| #endif |
| return features; |
| } |
| |
| static int bnxt_set_features(struct net_device *dev, netdev_features_t features) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| u32 flags = bp->flags; |
| u32 changes; |
| int rc = 0; |
| bool re_init = false; |
| bool update_tpa = false; |
| |
| flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; |
| if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| flags |= BNXT_FLAG_GRO; |
| if (features & NETIF_F_LRO) |
| flags |= BNXT_FLAG_LRO; |
| |
| if (features & NETIF_F_HW_VLAN_CTAG_RX) |
| flags |= BNXT_FLAG_STRIP_VLAN; |
| |
| if (features & NETIF_F_NTUPLE) |
| flags |= BNXT_FLAG_RFS; |
| |
| changes = flags ^ bp->flags; |
| if (changes & BNXT_FLAG_TPA) { |
| update_tpa = true; |
| if ((bp->flags & BNXT_FLAG_TPA) == 0 || |
| (flags & BNXT_FLAG_TPA) == 0) |
| re_init = true; |
| } |
| |
| if (changes & ~BNXT_FLAG_TPA) |
| re_init = true; |
| |
| if (flags != bp->flags) { |
| u32 old_flags = bp->flags; |
| |
| bp->flags = flags; |
| |
| if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { |
| if (update_tpa) |
| bnxt_set_ring_params(bp); |
| return rc; |
| } |
| |
| if (re_init) { |
| bnxt_close_nic(bp, false, false); |
| if (update_tpa) |
| bnxt_set_ring_params(bp); |
| |
| return bnxt_open_nic(bp, false, false); |
| } |
| if (update_tpa) { |
| rc = bnxt_set_tpa(bp, |
| (flags & BNXT_FLAG_TPA) ? |
| true : false); |
| if (rc) |
| bp->flags = old_flags; |
| } |
| } |
| return rc; |
| } |
| |
| static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) |
| { |
| struct bnxt_tx_ring_info *txr = bnapi->tx_ring; |
| int i = bnapi->index; |
| |
| if (!txr) |
| return; |
| |
| netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", |
| i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, |
| txr->tx_cons); |
| } |
| |
| static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) |
| { |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| int i = bnapi->index; |
| |
| if (!rxr) |
| return; |
| |
| netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", |
| i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, |
| rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, |
| rxr->rx_sw_agg_prod); |
| } |
| |
| static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) |
| { |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| int i = bnapi->index; |
| |
| netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", |
| i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); |
| } |
| |
| static void bnxt_dbg_dump_states(struct bnxt *bp) |
| { |
| int i; |
| struct bnxt_napi *bnapi; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| bnapi = bp->bnapi[i]; |
| if (netif_msg_drv(bp)) { |
| bnxt_dump_tx_sw_state(bnapi); |
| bnxt_dump_rx_sw_state(bnapi); |
| bnxt_dump_cp_sw_state(bnapi); |
| } |
| } |
| } |
| |
| static void bnxt_reset_task(struct bnxt *bp, bool silent) |
| { |
| if (!silent) |
| bnxt_dbg_dump_states(bp); |
| if (netif_running(bp->dev)) { |
| bnxt_close_nic(bp, false, false); |
| bnxt_open_nic(bp, false, false); |
| } |
| } |
| |
| static void bnxt_tx_timeout(struct net_device *dev) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); |
| set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); |
| schedule_work(&bp->sp_task); |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void bnxt_poll_controller(struct net_device *dev) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| int i; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_irq *irq = &bp->irq_tbl[i]; |
| |
| disable_irq(irq->vector); |
| irq->handler(irq->vector, bp->bnapi[i]); |
| enable_irq(irq->vector); |
| } |
| } |
| #endif |
| |
| static void bnxt_timer(unsigned long data) |
| { |
| struct bnxt *bp = (struct bnxt *)data; |
| struct net_device *dev = bp->dev; |
| |
| if (!netif_running(dev)) |
| return; |
| |
| if (atomic_read(&bp->intr_sem) != 0) |
| goto bnxt_restart_timer; |
| |
| if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) { |
| set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); |
| schedule_work(&bp->sp_task); |
| } |
| bnxt_restart_timer: |
| mod_timer(&bp->timer, jiffies + bp->current_interval); |
| } |
| |
| static void bnxt_rtnl_lock_sp(struct bnxt *bp) |
| { |
| /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK |
| * set. If the device is being closed, bnxt_close() may be holding |
| * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we |
| * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). |
| */ |
| clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); |
| rtnl_lock(); |
| } |
| |
| static void bnxt_rtnl_unlock_sp(struct bnxt *bp) |
| { |
| set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); |
| rtnl_unlock(); |
| } |
| |
| /* Only called from bnxt_sp_task() */ |
| static void bnxt_reset(struct bnxt *bp, bool silent) |
| { |
| bnxt_rtnl_lock_sp(bp); |
| if (test_bit(BNXT_STATE_OPEN, &bp->state)) |
| bnxt_reset_task(bp, silent); |
| bnxt_rtnl_unlock_sp(bp); |
| } |
| |
| static void bnxt_cfg_ntp_filters(struct bnxt *); |
| |
| static void bnxt_sp_task(struct work_struct *work) |
| { |
| struct bnxt *bp = container_of(work, struct bnxt, sp_task); |
| |
| set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); |
| smp_mb__after_atomic(); |
| if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { |
| clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); |
| return; |
| } |
| |
| if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) |
| bnxt_cfg_rx_mode(bp); |
| |
| if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) |
| bnxt_cfg_ntp_filters(bp); |
| if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) |
| bnxt_hwrm_exec_fwd_req(bp); |
| if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) { |
| bnxt_hwrm_tunnel_dst_port_alloc( |
| bp, bp->vxlan_port, |
| TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); |
| } |
| if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) { |
| bnxt_hwrm_tunnel_dst_port_free( |
| bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); |
| } |
| if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) { |
| bnxt_hwrm_tunnel_dst_port_alloc( |
| bp, bp->nge_port, |
| TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); |
| } |
| if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) { |
| bnxt_hwrm_tunnel_dst_port_free( |
| bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); |
| } |
| if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) |
| bnxt_hwrm_port_qstats(bp); |
| |
| if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { |
| int rc; |
| |
| mutex_lock(&bp->link_lock); |
| if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, |
| &bp->sp_event)) |
| bnxt_hwrm_phy_qcaps(bp); |
| |
| rc = bnxt_update_link(bp, true); |
| mutex_unlock(&bp->link_lock); |
| if (rc) |
| netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", |
| rc); |
| } |
| if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { |
| mutex_lock(&bp->link_lock); |
| bnxt_get_port_module_status(bp); |
| mutex_unlock(&bp->link_lock); |
| } |
| /* These functions below will clear BNXT_STATE_IN_SP_TASK. They |
| * must be the last functions to be called before exiting. |
| */ |
| if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) |
| bnxt_reset(bp, false); |
| |
| if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) |
| bnxt_reset(bp, true); |
| |
| smp_mb__before_atomic(); |
| clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); |
| } |
| |
| static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) |
| { |
| int rc; |
| struct bnxt *bp = netdev_priv(dev); |
| |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| /* enable device (incl. PCI PM wakeup), and bus-mastering */ |
| rc = pci_enable_device(pdev); |
| if (rc) { |
| dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); |
| goto init_err; |
| } |
| |
| if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { |
| dev_err(&pdev->dev, |
| "Cannot find PCI device base address, aborting\n"); |
| rc = -ENODEV; |
| goto init_err_disable; |
| } |
| |
| rc = pci_request_regions(pdev, DRV_MODULE_NAME); |
| if (rc) { |
| dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); |
| goto init_err_disable; |
| } |
| |
| if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && |
| dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { |
| dev_err(&pdev->dev, "System does not support DMA, aborting\n"); |
| goto init_err_disable; |
| } |
| |
| pci_set_master(pdev); |
| |
| bp->dev = dev; |
| bp->pdev = pdev; |
| |
| bp->bar0 = pci_ioremap_bar(pdev, 0); |
| if (!bp->bar0) { |
| dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); |
| rc = -ENOMEM; |
| goto init_err_release; |
| } |
| |
| bp->bar1 = pci_ioremap_bar(pdev, 2); |
| if (!bp->bar1) { |
| dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n"); |
| rc = -ENOMEM; |
| goto init_err_release; |
| } |
| |
| bp->bar2 = pci_ioremap_bar(pdev, 4); |
| if (!bp->bar2) { |
| dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); |
| rc = -ENOMEM; |
| goto init_err_release; |
| } |
| |
| pci_enable_pcie_error_reporting(pdev); |
| |
| INIT_WORK(&bp->sp_task, bnxt_sp_task); |
| |
| spin_lock_init(&bp->ntp_fltr_lock); |
| |
| bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; |
| bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; |
| |
| /* tick values in micro seconds */ |
| bp->rx_coal_ticks = 12; |
| bp->rx_coal_bufs = 30; |
| bp->rx_coal_ticks_irq = 1; |
| bp->rx_coal_bufs_irq = 2; |
| |
| bp->tx_coal_ticks = 25; |
| bp->tx_coal_bufs = 30; |
| bp->tx_coal_ticks_irq = 2; |
| bp->tx_coal_bufs_irq = 2; |
| |
| bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; |
| |
| init_timer(&bp->timer); |
| bp->timer.data = (unsigned long)bp; |
| bp->timer.function = bnxt_timer; |
| bp->current_interval = BNXT_TIMER_INTERVAL; |
| |
| clear_bit(BNXT_STATE_OPEN, &bp->state); |
| |
| return 0; |
| |
| init_err_release: |
| if (bp->bar2) { |
| pci_iounmap(pdev, bp->bar2); |
| bp->bar2 = NULL; |
| } |
| |
| if (bp->bar1) { |
| pci_iounmap(pdev, bp->bar1); |
| bp->bar1 = NULL; |
| } |
| |
| if (bp->bar0) { |
| pci_iounmap(pdev, bp->bar0); |
| bp->bar0 = NULL; |
| } |
| |
| pci_release_regions(pdev); |
| |
| init_err_disable: |
| pci_disable_device(pdev); |
| |
| init_err: |
| return rc; |
| } |
| |
| /* rtnl_lock held */ |
| static int bnxt_change_mac_addr(struct net_device *dev, void *p) |
| { |
| struct sockaddr *addr = p; |
| struct bnxt *bp = netdev_priv(dev); |
| int rc = 0; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| rc = bnxt_approve_mac(bp, addr->sa_data); |
| if (rc) |
| return rc; |
| |
| if (ether_addr_equal(addr->sa_data, dev->dev_addr)) |
| return 0; |
| |
| memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| if (netif_running(dev)) { |
| bnxt_close_nic(bp, false, false); |
| rc = bnxt_open_nic(bp, false, false); |
| } |
| |
| return rc; |
| } |
| |
| /* rtnl_lock held */ |
| static int bnxt_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| if (new_mtu < 60 || new_mtu > 9500) |
| return -EINVAL; |
| |
| if (netif_running(dev)) |
| bnxt_close_nic(bp, true, false); |
| |
| dev->mtu = new_mtu; |
| bnxt_set_ring_params(bp); |
| |
| if (netif_running(dev)) |
| return bnxt_open_nic(bp, true, false); |
| |
| return 0; |
| } |
| |
| static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto, |
| struct tc_to_netdev *ntc) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| bool sh = false; |
| u8 tc; |
| |
| if (ntc->type != TC_SETUP_MQPRIO) |
| return -EINVAL; |
| |
| tc = ntc->tc; |
| |
| if (tc > bp->max_tc) { |
| netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n", |
| tc, bp->max_tc); |
| return -EINVAL; |
| } |
| |
| if (netdev_get_num_tc(dev) == tc) |
| return 0; |
| |
| if (bp->flags & BNXT_FLAG_SHARED_RINGS) |
| sh = true; |
| |
| if (tc) { |
| int max_rx_rings, max_tx_rings, rc; |
| |
| rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh); |
| if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings) |
| return -ENOMEM; |
| } |
| |
| /* Needs to close the device and do hw resource re-allocations */ |
| if (netif_running(bp->dev)) |
| bnxt_close_nic(bp, true, false); |
| |
| if (tc) { |
| bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; |
| netdev_set_num_tc(dev, tc); |
| } else { |
| bp->tx_nr_rings = bp->tx_nr_rings_per_tc; |
| netdev_reset_tc(dev); |
| } |
| bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : |
| bp->tx_nr_rings + bp->rx_nr_rings; |
| bp->num_stat_ctxs = bp->cp_nr_rings; |
| |
| if (netif_running(bp->dev)) |
| return bnxt_open_nic(bp, true, false); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_RFS_ACCEL |
| static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, |
| struct bnxt_ntuple_filter *f2) |
| { |
| struct flow_keys *keys1 = &f1->fkeys; |
| struct flow_keys *keys2 = &f2->fkeys; |
| |
| if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src && |
| keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst && |
| keys1->ports.ports == keys2->ports.ports && |
| keys1->basic.ip_proto == keys2->basic.ip_proto && |
| keys1->basic.n_proto == keys2->basic.n_proto && |
| ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && |
| ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) |
| return true; |
| |
| return false; |
| } |
| |
| static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, |
| u16 rxq_index, u32 flow_id) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| struct bnxt_ntuple_filter *fltr, *new_fltr; |
| struct flow_keys *fkeys; |
| struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); |
| int rc = 0, idx, bit_id, l2_idx = 0; |
| struct hlist_head *head; |
| |
| if (skb->encapsulation) |
| return -EPROTONOSUPPORT; |
| |
| if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; |
| int off = 0, j; |
| |
| netif_addr_lock_bh(dev); |
| for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { |
| if (ether_addr_equal(eth->h_dest, |
| vnic->uc_list + off)) { |
| l2_idx = j + 1; |
| break; |
| } |
| } |
| netif_addr_unlock_bh(dev); |
| if (!l2_idx) |
| return -EINVAL; |
| } |
| new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); |
| if (!new_fltr) |
| return -ENOMEM; |
| |
| fkeys = &new_fltr->fkeys; |
| if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { |
| rc = -EPROTONOSUPPORT; |
| goto err_free; |
| } |
| |
| if ((fkeys->basic.n_proto != htons(ETH_P_IP)) || |
| ((fkeys->basic.ip_proto != IPPROTO_TCP) && |
| (fkeys->basic.ip_proto != IPPROTO_UDP))) { |
| rc = -EPROTONOSUPPORT; |
| goto err_free; |
| } |
| |
| memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); |
| memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); |
| |
| idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; |
| head = &bp->ntp_fltr_hash_tbl[idx]; |
| rcu_read_lock(); |
| hlist_for_each_entry_rcu(fltr, head, hash) { |
| if (bnxt_fltr_match(fltr, new_fltr)) { |
| rcu_read_unlock(); |
| rc = 0; |
| goto err_free; |
| } |
| } |
| rcu_read_unlock(); |
| |
| spin_lock_bh(&bp->ntp_fltr_lock); |
| bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, |
| BNXT_NTP_FLTR_MAX_FLTR, 0); |
| if (bit_id < 0) { |
| spin_unlock_bh(&bp->ntp_fltr_lock); |
| rc = -ENOMEM; |
| goto err_free; |
| } |
| |
| new_fltr->sw_id = (u16)bit_id; |
| new_fltr->flow_id = flow_id; |
| new_fltr->l2_fltr_idx = l2_idx; |
| new_fltr->rxq = rxq_index; |
| hlist_add_head_rcu(&new_fltr->hash, head); |
| bp->ntp_fltr_count++; |
| spin_unlock_bh(&bp->ntp_fltr_lock); |
| |
| set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); |
| schedule_work(&bp->sp_task); |
| |
| return new_fltr->sw_id; |
| |
| err_free: |
| kfree(new_fltr); |
| return rc; |
| } |
| |
| static void bnxt_cfg_ntp_filters(struct bnxt *bp) |
| { |
| int i; |
| |
| for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { |
| struct hlist_head *head; |
| struct hlist_node *tmp; |
| struct bnxt_ntuple_filter *fltr; |
| int rc; |
| |
| head = &bp->ntp_fltr_hash_tbl[i]; |
| hlist_for_each_entry_safe(fltr, tmp, head, hash) { |
| bool del = false; |
| |
| if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { |
| if (rps_may_expire_flow(bp->dev, fltr->rxq, |
| fltr->flow_id, |
| fltr->sw_id)) { |
| bnxt_hwrm_cfa_ntuple_filter_free(bp, |
| fltr); |
| del = true; |
| } |
| } else { |
| rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, |
| fltr); |
| if (rc) |
| del = true; |
| else |
| set_bit(BNXT_FLTR_VALID, &fltr->state); |
| } |
| |
| if (del) { |
| spin_lock_bh(&bp->ntp_fltr_lock); |
| hlist_del_rcu(&fltr->hash); |
| bp->ntp_fltr_count--; |
| spin_unlock_bh(&bp->ntp_fltr_lock); |
| synchronize_rcu(); |
| clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); |
| kfree(fltr); |
| } |
| } |
| } |
| if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) |
| netdev_info(bp->dev, "Receive PF driver unload event!"); |
| } |
| |
| #else |
| |
| static void bnxt_cfg_ntp_filters(struct bnxt *bp) |
| { |
| } |
| |
| #endif /* CONFIG_RFS_ACCEL */ |
| |
| static void bnxt_udp_tunnel_add(struct net_device *dev, |
| struct udp_tunnel_info *ti) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET) |
| return; |
| |
| if (!netif_running(dev)) |
| return; |
| |
| switch (ti->type) { |
| case UDP_TUNNEL_TYPE_VXLAN: |
| if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port) |
| return; |
| |
| bp->vxlan_port_cnt++; |
| if (bp->vxlan_port_cnt == 1) { |
| bp->vxlan_port = ti->port; |
| set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event); |
| schedule_work(&bp->sp_task); |
| } |
| break; |
| case UDP_TUNNEL_TYPE_GENEVE: |
| if (bp->nge_port_cnt && bp->nge_port != ti->port) |
| return; |
| |
| bp->nge_port_cnt++; |
| if (bp->nge_port_cnt == 1) { |
| bp->nge_port = ti->port; |
| set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event); |
| } |
| break; |
| default: |
| return; |
| } |
| |
| schedule_work(&bp->sp_task); |
| } |
| |
| static void bnxt_udp_tunnel_del(struct net_device *dev, |
| struct udp_tunnel_info *ti) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET) |
| return; |
| |
| if (!netif_running(dev)) |
| return; |
| |
| switch (ti->type) { |
| case UDP_TUNNEL_TYPE_VXLAN: |
| if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port) |
| return; |
| bp->vxlan_port_cnt--; |
| |
| if (bp->vxlan_port_cnt != 0) |
| return; |
| |
| set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event); |
| break; |
| case UDP_TUNNEL_TYPE_GENEVE: |
| if (!bp->nge_port_cnt || bp->nge_port != ti->port) |
| return; |
| bp->nge_port_cnt--; |
| |
| if (bp->nge_port_cnt != 0) |
| return; |
| |
| set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event); |
| break; |
| default: |
| return; |
| } |
| |
| schedule_work(&bp->sp_task); |
| } |
| |
| static const struct net_device_ops bnxt_netdev_ops = { |
| .ndo_open = bnxt_open, |
| .ndo_start_xmit = bnxt_start_xmit, |
| .ndo_stop = bnxt_close, |
| .ndo_get_stats64 = bnxt_get_stats64, |
| .ndo_set_rx_mode = bnxt_set_rx_mode, |
| .ndo_do_ioctl = bnxt_ioctl, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_mac_address = bnxt_change_mac_addr, |
| .ndo_change_mtu = bnxt_change_mtu, |
| .ndo_fix_features = bnxt_fix_features, |
| .ndo_set_features = bnxt_set_features, |
| .ndo_tx_timeout = bnxt_tx_timeout, |
| #ifdef CONFIG_BNXT_SRIOV |
| .ndo_get_vf_config = bnxt_get_vf_config, |
| .ndo_set_vf_mac = bnxt_set_vf_mac, |
| .ndo_set_vf_vlan = bnxt_set_vf_vlan, |
| .ndo_set_vf_rate = bnxt_set_vf_bw, |
| .ndo_set_vf_link_state = bnxt_set_vf_link_state, |
| .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, |
| #endif |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = bnxt_poll_controller, |
| #endif |
| .ndo_setup_tc = bnxt_setup_tc, |
| #ifdef CONFIG_RFS_ACCEL |
| .ndo_rx_flow_steer = bnxt_rx_flow_steer, |
| #endif |
| .ndo_udp_tunnel_add = bnxt_udp_tunnel_add, |
| .ndo_udp_tunnel_del = bnxt_udp_tunnel_del, |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| .ndo_busy_poll = bnxt_busy_poll, |
| #endif |
| }; |
| |
| static void bnxt_remove_one(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnxt *bp = netdev_priv(dev); |
| |
| if (BNXT_PF(bp)) |
| bnxt_sriov_disable(bp); |
| |
| pci_disable_pcie_error_reporting(pdev); |
| unregister_netdev(dev); |
| cancel_work_sync(&bp->sp_task); |
| bp->sp_event = 0; |
| |
| bnxt_hwrm_func_drv_unrgtr(bp); |
| bnxt_free_hwrm_resources(bp); |
| pci_iounmap(pdev, bp->bar2); |
| pci_iounmap(pdev, bp->bar1); |
| pci_iounmap(pdev, bp->bar0); |
| free_netdev(dev); |
| |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| } |
| |
| static int bnxt_probe_phy(struct bnxt *bp) |
| { |
| int rc = 0; |
| struct bnxt_link_info *link_info = &bp->link_info; |
| |
| rc = bnxt_hwrm_phy_qcaps(bp); |
| if (rc) { |
| netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", |
| rc); |
| return rc; |
| } |
| mutex_init(&bp->link_lock); |
| |
| rc = bnxt_update_link(bp, false); |
| if (rc) { |
| netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", |
| rc); |
| return rc; |
| } |
| |
| /* Older firmware does not have supported_auto_speeds, so assume |
| * that all supported speeds can be autonegotiated. |
| */ |
| if (link_info->auto_link_speeds && !link_info->support_auto_speeds) |
| link_info->support_auto_speeds = link_info->support_speeds; |
| |
| /*initialize the ethool setting copy with NVM settings */ |
| if (BNXT_AUTO_MODE(link_info->auto_mode)) { |
| link_info->autoneg = BNXT_AUTONEG_SPEED; |
| if (bp->hwrm_spec_code >= 0x10201) { |
| if (link_info->auto_pause_setting & |
| PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) |
| link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; |
| } else { |
| link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; |
| } |
| link_info->advertising = link_info->auto_link_speeds; |
| } else { |
| link_info->req_link_speed = link_info->force_link_speed; |
| link_info->req_duplex = link_info->duplex_setting; |
| } |
| if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) |
| link_info->req_flow_ctrl = |
| link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; |
| else |
| link_info->req_flow_ctrl = link_info->force_pause_setting; |
| return rc; |
| } |
| |
| static int bnxt_get_max_irq(struct pci_dev *pdev) |
| { |
| u16 ctrl; |
| |
| if (!pdev->msix_cap) |
| return 1; |
| |
| pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); |
| return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; |
| } |
| |
| static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, |
| int *max_cp) |
| { |
| int max_ring_grps = 0; |
| |
| #ifdef CONFIG_BNXT_SRIOV |
| if (!BNXT_PF(bp)) { |
| *max_tx = bp->vf.max_tx_rings; |
| *max_rx = bp->vf.max_rx_rings; |
| *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings); |
| *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs); |
| max_ring_grps = bp->vf.max_hw_ring_grps; |
| } else |
| #endif |
| { |
| *max_tx = bp->pf.max_tx_rings; |
| *max_rx = bp->pf.max_rx_rings; |
| *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings); |
| *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs); |
| max_ring_grps = bp->pf.max_hw_ring_grps; |
| } |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { |
| *max_cp -= 1; |
| *max_rx -= 2; |
| } |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) |
| *max_rx >>= 1; |
| *max_rx = min_t(int, *max_rx, max_ring_grps); |
| } |
| |
| int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) |
| { |
| int rx, tx, cp; |
| |
| _bnxt_get_max_rings(bp, &rx, &tx, &cp); |
| *max_rx = rx; |
| *max_tx = tx; |
| if (!rx || !tx || !cp) |
| return -ENOMEM; |
| |
| return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); |
| } |
| |
| static int bnxt_set_dflt_rings(struct bnxt *bp) |
| { |
| int dflt_rings, max_rx_rings, max_tx_rings, rc; |
| bool sh = true; |
| |
| if (sh) |
| bp->flags |= BNXT_FLAG_SHARED_RINGS; |
| dflt_rings = netif_get_num_default_rss_queues(); |
| rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh); |
| if (rc) |
| return rc; |
| bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); |
| bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); |
| bp->tx_nr_rings = bp->tx_nr_rings_per_tc; |
| bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : |
| bp->tx_nr_rings + bp->rx_nr_rings; |
| bp->num_stat_ctxs = bp->cp_nr_rings; |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { |
| bp->rx_nr_rings++; |
| bp->cp_nr_rings++; |
| } |
| return rc; |
| } |
| |
| static void bnxt_parse_log_pcie_link(struct bnxt *bp) |
| { |
| enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN; |
| enum pci_bus_speed speed = PCI_SPEED_UNKNOWN; |
| |
| if (pcie_get_minimum_link(bp->pdev, &speed, &width) || |
| speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) |
| netdev_info(bp->dev, "Failed to determine PCIe Link Info\n"); |
| else |
| netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n", |
| speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : |
| speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : |
| speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : |
| "Unknown", width); |
| } |
| |
| static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| static int version_printed; |
| struct net_device *dev; |
| struct bnxt *bp; |
| int rc, max_irqs; |
| |
| if (pdev->device == 0x16cd && pci_is_bridge(pdev)) |
| return -ENODEV; |
| |
| if (version_printed++ == 0) |
| pr_info("%s", version); |
| |
| max_irqs = bnxt_get_max_irq(pdev); |
| dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); |
| if (!dev) |
| return -ENOMEM; |
| |
| bp = netdev_priv(dev); |
| |
| if (bnxt_vf_pciid(ent->driver_data)) |
| bp->flags |= BNXT_FLAG_VF; |
| |
| if (pdev->msix_cap) |
| bp->flags |= BNXT_FLAG_MSIX_CAP; |
| |
| rc = bnxt_init_board(pdev, dev); |
| if (rc < 0) |
| goto init_err_free; |
| |
| dev->netdev_ops = &bnxt_netdev_ops; |
| dev->watchdog_timeo = BNXT_TX_TIMEOUT; |
| dev->ethtool_ops = &bnxt_ethtool_ops; |
| |
| pci_set_drvdata(pdev, dev); |
| |
| rc = bnxt_alloc_hwrm_resources(bp); |
| if (rc) |
| goto init_err; |
| |
| mutex_init(&bp->hwrm_cmd_lock); |
| rc = bnxt_hwrm_ver_get(bp); |
| if (rc) |
| goto init_err; |
| |
| bnxt_hwrm_fw_set_time(bp); |
| |
| dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | |
| NETIF_F_TSO | NETIF_F_TSO6 | |
| NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | |
| NETIF_F_GSO_IPXIP4 | |
| NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | |
| NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | |
| NETIF_F_RXCSUM | NETIF_F_GRO; |
| |
| if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| dev->hw_features |= NETIF_F_LRO; |
| |
| dev->hw_enc_features = |
| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | |
| NETIF_F_TSO | NETIF_F_TSO6 | |
| NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | |
| NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | |
| NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; |
| dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | |
| NETIF_F_GSO_GRE_CSUM; |
| dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; |
| dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | |
| NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX; |
| dev->features |= dev->hw_features | NETIF_F_HIGHDMA; |
| dev->priv_flags |= IFF_UNICAST_FLT; |
| |
| #ifdef CONFIG_BNXT_SRIOV |
| init_waitqueue_head(&bp->sriov_cfg_wait); |
| #endif |
| bp->gro_func = bnxt_gro_func_5730x; |
| if (BNXT_CHIP_NUM_57X1X(bp->chip_num)) |
| bp->gro_func = bnxt_gro_func_5731x; |
| |
| rc = bnxt_hwrm_func_drv_rgtr(bp); |
| if (rc) |
| goto init_err; |
| |
| /* Get the MAX capabilities for this function */ |
| rc = bnxt_hwrm_func_qcaps(bp); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", |
| rc); |
| rc = -1; |
| goto init_err; |
| } |
| |
| rc = bnxt_hwrm_queue_qportcfg(bp); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n", |
| rc); |
| rc = -1; |
| goto init_err; |
| } |
| |
| bnxt_hwrm_func_qcfg(bp); |
| |
| bnxt_set_tpa_flags(bp); |
| bnxt_set_ring_params(bp); |
| if (BNXT_PF(bp)) |
| bp->pf.max_irqs = max_irqs; |
| #if defined(CONFIG_BNXT_SRIOV) |
| else |
| bp->vf.max_irqs = max_irqs; |
| #endif |
| bnxt_set_dflt_rings(bp); |
| |
| if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) { |
| dev->hw_features |= NETIF_F_NTUPLE; |
| if (bnxt_rfs_capable(bp)) { |
| bp->flags |= BNXT_FLAG_RFS; |
| dev->features |= NETIF_F_NTUPLE; |
| } |
| } |
| |
| if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX) |
| bp->flags |= BNXT_FLAG_STRIP_VLAN; |
| |
| rc = bnxt_probe_phy(bp); |
| if (rc) |
| goto init_err; |
| |
| rc = register_netdev(dev); |
| if (rc) |
| goto init_err; |
| |
| netdev_info(dev, "%s found at mem %lx, node addr %pM\n", |
| board_info[ent->driver_data].name, |
| (long)pci_resource_start(pdev, 0), dev->dev_addr); |
| |
| bnxt_parse_log_pcie_link(bp); |
| |
| return 0; |
| |
| init_err: |
| pci_iounmap(pdev, bp->bar0); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| |
| init_err_free: |
| free_netdev(dev); |
| return rc; |
| } |
| |
| /** |
| * bnxt_io_error_detected - called when PCI error is detected |
| * @pdev: Pointer to PCI device |
| * @state: The current pci connection state |
| * |
| * This function is called after a PCI bus error affecting |
| * this device has been detected. |
| */ |
| static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct bnxt *bp = netdev_priv(netdev); |
| |
| netdev_info(netdev, "PCI I/O error detected\n"); |
| |
| rtnl_lock(); |
| netif_device_detach(netdev); |
| |
| if (state == pci_channel_io_perm_failure) { |
| rtnl_unlock(); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| |
| if (netif_running(netdev)) |
| bnxt_close(netdev); |
| |
| /* So that func_reset will be done during slot_reset */ |
| clear_bit(BNXT_STATE_FN_RST_DONE, &bp->state); |
| pci_disable_device(pdev); |
| rtnl_unlock(); |
| |
| /* Request a slot slot reset. */ |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * bnxt_io_slot_reset - called after the pci bus has been reset. |
| * @pdev: Pointer to PCI device |
| * |
| * Restart the card from scratch, as if from a cold-boot. |
| * At this point, the card has exprienced a hard reset, |
| * followed by fixups by BIOS, and has its config space |
| * set up identically to what it was at cold boot. |
| */ |
| static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct bnxt *bp = netdev_priv(netdev); |
| int err = 0; |
| pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; |
| |
| netdev_info(bp->dev, "PCI Slot Reset\n"); |
| |
| rtnl_lock(); |
| |
| if (pci_enable_device(pdev)) { |
| dev_err(&pdev->dev, |
| "Cannot re-enable PCI device after reset.\n"); |
| } else { |
| pci_set_master(pdev); |
| |
| if (netif_running(netdev)) |
| err = bnxt_open(netdev); |
| |
| if (!err) |
| result = PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| if (result != PCI_ERS_RESULT_RECOVERED) { |
| if (netif_running(netdev)) |
| dev_close(netdev); |
| pci_disable_device(pdev); |
| } |
| |
| rtnl_unlock(); |
| |
| err = pci_cleanup_aer_uncorrect_error_status(pdev); |
| if (err) { |
| dev_err(&pdev->dev, |
| "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", |
| err); /* non-fatal, continue */ |
| } |
| |
| return result; |
| } |
| |
| /** |
| * bnxt_io_resume - called when traffic can start flowing again. |
| * @pdev: Pointer to PCI device |
| * |
| * This callback is called when the error recovery driver tells |
| * us that its OK to resume normal operation. |
| */ |
| static void bnxt_io_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| |
| rtnl_lock(); |
| |
| netif_device_attach(netdev); |
| |
| rtnl_unlock(); |
| } |
| |
| static const struct pci_error_handlers bnxt_err_handler = { |
| .error_detected = bnxt_io_error_detected, |
| .slot_reset = bnxt_io_slot_reset, |
| .resume = bnxt_io_resume |
| }; |
| |
| static struct pci_driver bnxt_pci_driver = { |
| .name = DRV_MODULE_NAME, |
| .id_table = bnxt_pci_tbl, |
| .probe = bnxt_init_one, |
| .remove = bnxt_remove_one, |
| .err_handler = &bnxt_err_handler, |
| #if defined(CONFIG_BNXT_SRIOV) |
| .sriov_configure = bnxt_sriov_configure, |
| #endif |
| }; |
| |
| module_pci_driver(bnxt_pci_driver); |