| /* |
| * Universal Host Controller Interface driver for USB. |
| * |
| * Maintainer: Alan Stern <stern@rowland.harvard.edu> |
| * |
| * (C) Copyright 1999 Linus Torvalds |
| * (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com |
| * (C) Copyright 1999 Randy Dunlap |
| * (C) Copyright 1999 Georg Acher, acher@in.tum.de |
| * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de |
| * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch |
| * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at |
| * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface |
| * support from usb-ohci.c by Adam Richter, adam@yggdrasil.com). |
| * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c) |
| * (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu |
| */ |
| |
| |
| /* |
| * Technically, updating td->status here is a race, but it's not really a |
| * problem. The worst that can happen is that we set the IOC bit again |
| * generating a spurious interrupt. We could fix this by creating another |
| * QH and leaving the IOC bit always set, but then we would have to play |
| * games with the FSBR code to make sure we get the correct order in all |
| * the cases. I don't think it's worth the effort |
| */ |
| static void uhci_set_next_interrupt(struct uhci_hcd *uhci) |
| { |
| if (uhci->is_stopped) |
| mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies); |
| uhci->term_td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC); |
| } |
| |
| static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci) |
| { |
| uhci->term_td->status &= ~cpu_to_hc32(uhci, TD_CTRL_IOC); |
| } |
| |
| |
| /* |
| * Full-Speed Bandwidth Reclamation (FSBR). |
| * We turn on FSBR whenever a queue that wants it is advancing, |
| * and leave it on for a short time thereafter. |
| */ |
| static void uhci_fsbr_on(struct uhci_hcd *uhci) |
| { |
| struct uhci_qh *lqh; |
| |
| /* The terminating skeleton QH always points back to the first |
| * FSBR QH. Make the last async QH point to the terminating |
| * skeleton QH. */ |
| uhci->fsbr_is_on = 1; |
| lqh = list_entry(uhci->skel_async_qh->node.prev, |
| struct uhci_qh, node); |
| lqh->link = LINK_TO_QH(uhci, uhci->skel_term_qh); |
| } |
| |
| static void uhci_fsbr_off(struct uhci_hcd *uhci) |
| { |
| struct uhci_qh *lqh; |
| |
| /* Remove the link from the last async QH to the terminating |
| * skeleton QH. */ |
| uhci->fsbr_is_on = 0; |
| lqh = list_entry(uhci->skel_async_qh->node.prev, |
| struct uhci_qh, node); |
| lqh->link = UHCI_PTR_TERM(uhci); |
| } |
| |
| static void uhci_add_fsbr(struct uhci_hcd *uhci, struct urb *urb) |
| { |
| struct urb_priv *urbp = urb->hcpriv; |
| |
| if (!(urb->transfer_flags & URB_NO_FSBR)) |
| urbp->fsbr = 1; |
| } |
| |
| static void uhci_urbp_wants_fsbr(struct uhci_hcd *uhci, struct urb_priv *urbp) |
| { |
| if (urbp->fsbr) { |
| uhci->fsbr_is_wanted = 1; |
| if (!uhci->fsbr_is_on) |
| uhci_fsbr_on(uhci); |
| else if (uhci->fsbr_expiring) { |
| uhci->fsbr_expiring = 0; |
| del_timer(&uhci->fsbr_timer); |
| } |
| } |
| } |
| |
| static void uhci_fsbr_timeout(unsigned long _uhci) |
| { |
| struct uhci_hcd *uhci = (struct uhci_hcd *) _uhci; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&uhci->lock, flags); |
| if (uhci->fsbr_expiring) { |
| uhci->fsbr_expiring = 0; |
| uhci_fsbr_off(uhci); |
| } |
| spin_unlock_irqrestore(&uhci->lock, flags); |
| } |
| |
| |
| static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci) |
| { |
| dma_addr_t dma_handle; |
| struct uhci_td *td; |
| |
| td = dma_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle); |
| if (!td) |
| return NULL; |
| |
| td->dma_handle = dma_handle; |
| td->frame = -1; |
| |
| INIT_LIST_HEAD(&td->list); |
| INIT_LIST_HEAD(&td->fl_list); |
| |
| return td; |
| } |
| |
| static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td) |
| { |
| if (!list_empty(&td->list)) |
| dev_WARN(uhci_dev(uhci), "td %p still in list!\n", td); |
| if (!list_empty(&td->fl_list)) |
| dev_WARN(uhci_dev(uhci), "td %p still in fl_list!\n", td); |
| |
| dma_pool_free(uhci->td_pool, td, td->dma_handle); |
| } |
| |
| static inline void uhci_fill_td(struct uhci_hcd *uhci, struct uhci_td *td, |
| u32 status, u32 token, u32 buffer) |
| { |
| td->status = cpu_to_hc32(uhci, status); |
| td->token = cpu_to_hc32(uhci, token); |
| td->buffer = cpu_to_hc32(uhci, buffer); |
| } |
| |
| static void uhci_add_td_to_urbp(struct uhci_td *td, struct urb_priv *urbp) |
| { |
| list_add_tail(&td->list, &urbp->td_list); |
| } |
| |
| static void uhci_remove_td_from_urbp(struct uhci_td *td) |
| { |
| list_del_init(&td->list); |
| } |
| |
| /* |
| * We insert Isochronous URBs directly into the frame list at the beginning |
| */ |
| static inline void uhci_insert_td_in_frame_list(struct uhci_hcd *uhci, |
| struct uhci_td *td, unsigned framenum) |
| { |
| framenum &= (UHCI_NUMFRAMES - 1); |
| |
| td->frame = framenum; |
| |
| /* Is there a TD already mapped there? */ |
| if (uhci->frame_cpu[framenum]) { |
| struct uhci_td *ftd, *ltd; |
| |
| ftd = uhci->frame_cpu[framenum]; |
| ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list); |
| |
| list_add_tail(&td->fl_list, &ftd->fl_list); |
| |
| td->link = ltd->link; |
| wmb(); |
| ltd->link = LINK_TO_TD(uhci, td); |
| } else { |
| td->link = uhci->frame[framenum]; |
| wmb(); |
| uhci->frame[framenum] = LINK_TO_TD(uhci, td); |
| uhci->frame_cpu[framenum] = td; |
| } |
| } |
| |
| static inline void uhci_remove_td_from_frame_list(struct uhci_hcd *uhci, |
| struct uhci_td *td) |
| { |
| /* If it's not inserted, don't remove it */ |
| if (td->frame == -1) { |
| WARN_ON(!list_empty(&td->fl_list)); |
| return; |
| } |
| |
| if (uhci->frame_cpu[td->frame] == td) { |
| if (list_empty(&td->fl_list)) { |
| uhci->frame[td->frame] = td->link; |
| uhci->frame_cpu[td->frame] = NULL; |
| } else { |
| struct uhci_td *ntd; |
| |
| ntd = list_entry(td->fl_list.next, |
| struct uhci_td, |
| fl_list); |
| uhci->frame[td->frame] = LINK_TO_TD(uhci, ntd); |
| uhci->frame_cpu[td->frame] = ntd; |
| } |
| } else { |
| struct uhci_td *ptd; |
| |
| ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list); |
| ptd->link = td->link; |
| } |
| |
| list_del_init(&td->fl_list); |
| td->frame = -1; |
| } |
| |
| static inline void uhci_remove_tds_from_frame(struct uhci_hcd *uhci, |
| unsigned int framenum) |
| { |
| struct uhci_td *ftd, *ltd; |
| |
| framenum &= (UHCI_NUMFRAMES - 1); |
| |
| ftd = uhci->frame_cpu[framenum]; |
| if (ftd) { |
| ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list); |
| uhci->frame[framenum] = ltd->link; |
| uhci->frame_cpu[framenum] = NULL; |
| |
| while (!list_empty(&ftd->fl_list)) |
| list_del_init(ftd->fl_list.prev); |
| } |
| } |
| |
| /* |
| * Remove all the TDs for an Isochronous URB from the frame list |
| */ |
| static void uhci_unlink_isochronous_tds(struct uhci_hcd *uhci, struct urb *urb) |
| { |
| struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; |
| struct uhci_td *td; |
| |
| list_for_each_entry(td, &urbp->td_list, list) |
| uhci_remove_td_from_frame_list(uhci, td); |
| } |
| |
| static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci, |
| struct usb_device *udev, struct usb_host_endpoint *hep) |
| { |
| dma_addr_t dma_handle; |
| struct uhci_qh *qh; |
| |
| qh = dma_pool_alloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle); |
| if (!qh) |
| return NULL; |
| |
| memset(qh, 0, sizeof(*qh)); |
| qh->dma_handle = dma_handle; |
| |
| qh->element = UHCI_PTR_TERM(uhci); |
| qh->link = UHCI_PTR_TERM(uhci); |
| |
| INIT_LIST_HEAD(&qh->queue); |
| INIT_LIST_HEAD(&qh->node); |
| |
| if (udev) { /* Normal QH */ |
| qh->type = usb_endpoint_type(&hep->desc); |
| if (qh->type != USB_ENDPOINT_XFER_ISOC) { |
| qh->dummy_td = uhci_alloc_td(uhci); |
| if (!qh->dummy_td) { |
| dma_pool_free(uhci->qh_pool, qh, dma_handle); |
| return NULL; |
| } |
| } |
| qh->state = QH_STATE_IDLE; |
| qh->hep = hep; |
| qh->udev = udev; |
| hep->hcpriv = qh; |
| |
| if (qh->type == USB_ENDPOINT_XFER_INT || |
| qh->type == USB_ENDPOINT_XFER_ISOC) |
| qh->load = usb_calc_bus_time(udev->speed, |
| usb_endpoint_dir_in(&hep->desc), |
| qh->type == USB_ENDPOINT_XFER_ISOC, |
| usb_endpoint_maxp(&hep->desc)) |
| / 1000 + 1; |
| |
| } else { /* Skeleton QH */ |
| qh->state = QH_STATE_ACTIVE; |
| qh->type = -1; |
| } |
| return qh; |
| } |
| |
| static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| WARN_ON(qh->state != QH_STATE_IDLE && qh->udev); |
| if (!list_empty(&qh->queue)) |
| dev_WARN(uhci_dev(uhci), "qh %p list not empty!\n", qh); |
| |
| list_del(&qh->node); |
| if (qh->udev) { |
| qh->hep->hcpriv = NULL; |
| if (qh->dummy_td) |
| uhci_free_td(uhci, qh->dummy_td); |
| } |
| dma_pool_free(uhci->qh_pool, qh, qh->dma_handle); |
| } |
| |
| /* |
| * When a queue is stopped and a dequeued URB is given back, adjust |
| * the previous TD link (if the URB isn't first on the queue) or |
| * save its toggle value (if it is first and is currently executing). |
| * |
| * Returns 0 if the URB should not yet be given back, 1 otherwise. |
| */ |
| static int uhci_cleanup_queue(struct uhci_hcd *uhci, struct uhci_qh *qh, |
| struct urb *urb) |
| { |
| struct urb_priv *urbp = urb->hcpriv; |
| struct uhci_td *td; |
| int ret = 1; |
| |
| /* Isochronous pipes don't use toggles and their TD link pointers |
| * get adjusted during uhci_urb_dequeue(). But since their queues |
| * cannot truly be stopped, we have to watch out for dequeues |
| * occurring after the nominal unlink frame. */ |
| if (qh->type == USB_ENDPOINT_XFER_ISOC) { |
| ret = (uhci->frame_number + uhci->is_stopped != |
| qh->unlink_frame); |
| goto done; |
| } |
| |
| /* If the URB isn't first on its queue, adjust the link pointer |
| * of the last TD in the previous URB. The toggle doesn't need |
| * to be saved since this URB can't be executing yet. */ |
| if (qh->queue.next != &urbp->node) { |
| struct urb_priv *purbp; |
| struct uhci_td *ptd; |
| |
| purbp = list_entry(urbp->node.prev, struct urb_priv, node); |
| WARN_ON(list_empty(&purbp->td_list)); |
| ptd = list_entry(purbp->td_list.prev, struct uhci_td, |
| list); |
| td = list_entry(urbp->td_list.prev, struct uhci_td, |
| list); |
| ptd->link = td->link; |
| goto done; |
| } |
| |
| /* If the QH element pointer is UHCI_PTR_TERM then then currently |
| * executing URB has already been unlinked, so this one isn't it. */ |
| if (qh_element(qh) == UHCI_PTR_TERM(uhci)) |
| goto done; |
| qh->element = UHCI_PTR_TERM(uhci); |
| |
| /* Control pipes don't have to worry about toggles */ |
| if (qh->type == USB_ENDPOINT_XFER_CONTROL) |
| goto done; |
| |
| /* Save the next toggle value */ |
| WARN_ON(list_empty(&urbp->td_list)); |
| td = list_entry(urbp->td_list.next, struct uhci_td, list); |
| qh->needs_fixup = 1; |
| qh->initial_toggle = uhci_toggle(td_token(uhci, td)); |
| |
| done: |
| return ret; |
| } |
| |
| /* |
| * Fix up the data toggles for URBs in a queue, when one of them |
| * terminates early (short transfer, error, or dequeued). |
| */ |
| static void uhci_fixup_toggles(struct uhci_hcd *uhci, struct uhci_qh *qh, |
| int skip_first) |
| { |
| struct urb_priv *urbp = NULL; |
| struct uhci_td *td; |
| unsigned int toggle = qh->initial_toggle; |
| unsigned int pipe; |
| |
| /* Fixups for a short transfer start with the second URB in the |
| * queue (the short URB is the first). */ |
| if (skip_first) |
| urbp = list_entry(qh->queue.next, struct urb_priv, node); |
| |
| /* When starting with the first URB, if the QH element pointer is |
| * still valid then we know the URB's toggles are okay. */ |
| else if (qh_element(qh) != UHCI_PTR_TERM(uhci)) |
| toggle = 2; |
| |
| /* Fix up the toggle for the URBs in the queue. Normally this |
| * loop won't run more than once: When an error or short transfer |
| * occurs, the queue usually gets emptied. */ |
| urbp = list_prepare_entry(urbp, &qh->queue, node); |
| list_for_each_entry_continue(urbp, &qh->queue, node) { |
| |
| /* If the first TD has the right toggle value, we don't |
| * need to change any toggles in this URB */ |
| td = list_entry(urbp->td_list.next, struct uhci_td, list); |
| if (toggle > 1 || uhci_toggle(td_token(uhci, td)) == toggle) { |
| td = list_entry(urbp->td_list.prev, struct uhci_td, |
| list); |
| toggle = uhci_toggle(td_token(uhci, td)) ^ 1; |
| |
| /* Otherwise all the toggles in the URB have to be switched */ |
| } else { |
| list_for_each_entry(td, &urbp->td_list, list) { |
| td->token ^= cpu_to_hc32(uhci, |
| TD_TOKEN_TOGGLE); |
| toggle ^= 1; |
| } |
| } |
| } |
| |
| wmb(); |
| pipe = list_entry(qh->queue.next, struct urb_priv, node)->urb->pipe; |
| usb_settoggle(qh->udev, usb_pipeendpoint(pipe), |
| usb_pipeout(pipe), toggle); |
| qh->needs_fixup = 0; |
| } |
| |
| /* |
| * Link an Isochronous QH into its skeleton's list |
| */ |
| static inline void link_iso(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| list_add_tail(&qh->node, &uhci->skel_iso_qh->node); |
| |
| /* Isochronous QHs aren't linked by the hardware */ |
| } |
| |
| /* |
| * Link a high-period interrupt QH into the schedule at the end of its |
| * skeleton's list |
| */ |
| static void link_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| struct uhci_qh *pqh; |
| |
| list_add_tail(&qh->node, &uhci->skelqh[qh->skel]->node); |
| |
| pqh = list_entry(qh->node.prev, struct uhci_qh, node); |
| qh->link = pqh->link; |
| wmb(); |
| pqh->link = LINK_TO_QH(uhci, qh); |
| } |
| |
| /* |
| * Link a period-1 interrupt or async QH into the schedule at the |
| * correct spot in the async skeleton's list, and update the FSBR link |
| */ |
| static void link_async(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| struct uhci_qh *pqh; |
| __hc32 link_to_new_qh; |
| |
| /* Find the predecessor QH for our new one and insert it in the list. |
| * The list of QHs is expected to be short, so linear search won't |
| * take too long. */ |
| list_for_each_entry_reverse(pqh, &uhci->skel_async_qh->node, node) { |
| if (pqh->skel <= qh->skel) |
| break; |
| } |
| list_add(&qh->node, &pqh->node); |
| |
| /* Link it into the schedule */ |
| qh->link = pqh->link; |
| wmb(); |
| link_to_new_qh = LINK_TO_QH(uhci, qh); |
| pqh->link = link_to_new_qh; |
| |
| /* If this is now the first FSBR QH, link the terminating skeleton |
| * QH to it. */ |
| if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR) |
| uhci->skel_term_qh->link = link_to_new_qh; |
| } |
| |
| /* |
| * Put a QH on the schedule in both hardware and software |
| */ |
| static void uhci_activate_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| WARN_ON(list_empty(&qh->queue)); |
| |
| /* Set the element pointer if it isn't set already. |
| * This isn't needed for Isochronous queues, but it doesn't hurt. */ |
| if (qh_element(qh) == UHCI_PTR_TERM(uhci)) { |
| struct urb_priv *urbp = list_entry(qh->queue.next, |
| struct urb_priv, node); |
| struct uhci_td *td = list_entry(urbp->td_list.next, |
| struct uhci_td, list); |
| |
| qh->element = LINK_TO_TD(uhci, td); |
| } |
| |
| /* Treat the queue as if it has just advanced */ |
| qh->wait_expired = 0; |
| qh->advance_jiffies = jiffies; |
| |
| if (qh->state == QH_STATE_ACTIVE) |
| return; |
| qh->state = QH_STATE_ACTIVE; |
| |
| /* Move the QH from its old list to the correct spot in the appropriate |
| * skeleton's list */ |
| if (qh == uhci->next_qh) |
| uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, |
| node); |
| list_del(&qh->node); |
| |
| if (qh->skel == SKEL_ISO) |
| link_iso(uhci, qh); |
| else if (qh->skel < SKEL_ASYNC) |
| link_interrupt(uhci, qh); |
| else |
| link_async(uhci, qh); |
| } |
| |
| /* |
| * Unlink a high-period interrupt QH from the schedule |
| */ |
| static void unlink_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| struct uhci_qh *pqh; |
| |
| pqh = list_entry(qh->node.prev, struct uhci_qh, node); |
| pqh->link = qh->link; |
| mb(); |
| } |
| |
| /* |
| * Unlink a period-1 interrupt or async QH from the schedule |
| */ |
| static void unlink_async(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| struct uhci_qh *pqh; |
| __hc32 link_to_next_qh = qh->link; |
| |
| pqh = list_entry(qh->node.prev, struct uhci_qh, node); |
| pqh->link = link_to_next_qh; |
| |
| /* If this was the old first FSBR QH, link the terminating skeleton |
| * QH to the next (new first FSBR) QH. */ |
| if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR) |
| uhci->skel_term_qh->link = link_to_next_qh; |
| mb(); |
| } |
| |
| /* |
| * Take a QH off the hardware schedule |
| */ |
| static void uhci_unlink_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| if (qh->state == QH_STATE_UNLINKING) |
| return; |
| WARN_ON(qh->state != QH_STATE_ACTIVE || !qh->udev); |
| qh->state = QH_STATE_UNLINKING; |
| |
| /* Unlink the QH from the schedule and record when we did it */ |
| if (qh->skel == SKEL_ISO) |
| ; |
| else if (qh->skel < SKEL_ASYNC) |
| unlink_interrupt(uhci, qh); |
| else |
| unlink_async(uhci, qh); |
| |
| uhci_get_current_frame_number(uhci); |
| qh->unlink_frame = uhci->frame_number; |
| |
| /* Force an interrupt so we know when the QH is fully unlinked */ |
| if (list_empty(&uhci->skel_unlink_qh->node) || uhci->is_stopped) |
| uhci_set_next_interrupt(uhci); |
| |
| /* Move the QH from its old list to the end of the unlinking list */ |
| if (qh == uhci->next_qh) |
| uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, |
| node); |
| list_move_tail(&qh->node, &uhci->skel_unlink_qh->node); |
| } |
| |
| /* |
| * When we and the controller are through with a QH, it becomes IDLE. |
| * This happens when a QH has been off the schedule (on the unlinking |
| * list) for more than one frame, or when an error occurs while adding |
| * the first URB onto a new QH. |
| */ |
| static void uhci_make_qh_idle(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| WARN_ON(qh->state == QH_STATE_ACTIVE); |
| |
| if (qh == uhci->next_qh) |
| uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, |
| node); |
| list_move(&qh->node, &uhci->idle_qh_list); |
| qh->state = QH_STATE_IDLE; |
| |
| /* Now that the QH is idle, its post_td isn't being used */ |
| if (qh->post_td) { |
| uhci_free_td(uhci, qh->post_td); |
| qh->post_td = NULL; |
| } |
| |
| /* If anyone is waiting for a QH to become idle, wake them up */ |
| if (uhci->num_waiting) |
| wake_up_all(&uhci->waitqh); |
| } |
| |
| /* |
| * Find the highest existing bandwidth load for a given phase and period. |
| */ |
| static int uhci_highest_load(struct uhci_hcd *uhci, int phase, int period) |
| { |
| int highest_load = uhci->load[phase]; |
| |
| for (phase += period; phase < MAX_PHASE; phase += period) |
| highest_load = max_t(int, highest_load, uhci->load[phase]); |
| return highest_load; |
| } |
| |
| /* |
| * Set qh->phase to the optimal phase for a periodic transfer and |
| * check whether the bandwidth requirement is acceptable. |
| */ |
| static int uhci_check_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| int minimax_load; |
| |
| /* Find the optimal phase (unless it is already set) and get |
| * its load value. */ |
| if (qh->phase >= 0) |
| minimax_load = uhci_highest_load(uhci, qh->phase, qh->period); |
| else { |
| int phase, load; |
| int max_phase = min_t(int, MAX_PHASE, qh->period); |
| |
| qh->phase = 0; |
| minimax_load = uhci_highest_load(uhci, qh->phase, qh->period); |
| for (phase = 1; phase < max_phase; ++phase) { |
| load = uhci_highest_load(uhci, phase, qh->period); |
| if (load < minimax_load) { |
| minimax_load = load; |
| qh->phase = phase; |
| } |
| } |
| } |
| |
| /* Maximum allowable periodic bandwidth is 90%, or 900 us per frame */ |
| if (minimax_load + qh->load > 900) { |
| dev_dbg(uhci_dev(uhci), "bandwidth allocation failed: " |
| "period %d, phase %d, %d + %d us\n", |
| qh->period, qh->phase, minimax_load, qh->load); |
| return -ENOSPC; |
| } |
| return 0; |
| } |
| |
| /* |
| * Reserve a periodic QH's bandwidth in the schedule |
| */ |
| static void uhci_reserve_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| int i; |
| int load = qh->load; |
| char *p = "??"; |
| |
| for (i = qh->phase; i < MAX_PHASE; i += qh->period) { |
| uhci->load[i] += load; |
| uhci->total_load += load; |
| } |
| uhci_to_hcd(uhci)->self.bandwidth_allocated = |
| uhci->total_load / MAX_PHASE; |
| switch (qh->type) { |
| case USB_ENDPOINT_XFER_INT: |
| ++uhci_to_hcd(uhci)->self.bandwidth_int_reqs; |
| p = "INT"; |
| break; |
| case USB_ENDPOINT_XFER_ISOC: |
| ++uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs; |
| p = "ISO"; |
| break; |
| } |
| qh->bandwidth_reserved = 1; |
| dev_dbg(uhci_dev(uhci), |
| "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n", |
| "reserve", qh->udev->devnum, |
| qh->hep->desc.bEndpointAddress, p, |
| qh->period, qh->phase, load); |
| } |
| |
| /* |
| * Release a periodic QH's bandwidth reservation |
| */ |
| static void uhci_release_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| int i; |
| int load = qh->load; |
| char *p = "??"; |
| |
| for (i = qh->phase; i < MAX_PHASE; i += qh->period) { |
| uhci->load[i] -= load; |
| uhci->total_load -= load; |
| } |
| uhci_to_hcd(uhci)->self.bandwidth_allocated = |
| uhci->total_load / MAX_PHASE; |
| switch (qh->type) { |
| case USB_ENDPOINT_XFER_INT: |
| --uhci_to_hcd(uhci)->self.bandwidth_int_reqs; |
| p = "INT"; |
| break; |
| case USB_ENDPOINT_XFER_ISOC: |
| --uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs; |
| p = "ISO"; |
| break; |
| } |
| qh->bandwidth_reserved = 0; |
| dev_dbg(uhci_dev(uhci), |
| "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n", |
| "release", qh->udev->devnum, |
| qh->hep->desc.bEndpointAddress, p, |
| qh->period, qh->phase, load); |
| } |
| |
| static inline struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci, |
| struct urb *urb) |
| { |
| struct urb_priv *urbp; |
| |
| urbp = kmem_cache_zalloc(uhci_up_cachep, GFP_ATOMIC); |
| if (!urbp) |
| return NULL; |
| |
| urbp->urb = urb; |
| urb->hcpriv = urbp; |
| |
| INIT_LIST_HEAD(&urbp->node); |
| INIT_LIST_HEAD(&urbp->td_list); |
| |
| return urbp; |
| } |
| |
| static void uhci_free_urb_priv(struct uhci_hcd *uhci, |
| struct urb_priv *urbp) |
| { |
| struct uhci_td *td, *tmp; |
| |
| if (!list_empty(&urbp->node)) |
| dev_WARN(uhci_dev(uhci), "urb %p still on QH's list!\n", |
| urbp->urb); |
| |
| list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { |
| uhci_remove_td_from_urbp(td); |
| uhci_free_td(uhci, td); |
| } |
| |
| kmem_cache_free(uhci_up_cachep, urbp); |
| } |
| |
| /* |
| * Map status to standard result codes |
| * |
| * <status> is (td_status(uhci, td) & 0xF60000), a.k.a. |
| * uhci_status_bits(td_status(uhci, td)). |
| * Note: <status> does not include the TD_CTRL_NAK bit. |
| * <dir_out> is True for output TDs and False for input TDs. |
| */ |
| static int uhci_map_status(int status, int dir_out) |
| { |
| if (!status) |
| return 0; |
| if (status & TD_CTRL_BITSTUFF) /* Bitstuff error */ |
| return -EPROTO; |
| if (status & TD_CTRL_CRCTIMEO) { /* CRC/Timeout */ |
| if (dir_out) |
| return -EPROTO; |
| else |
| return -EILSEQ; |
| } |
| if (status & TD_CTRL_BABBLE) /* Babble */ |
| return -EOVERFLOW; |
| if (status & TD_CTRL_DBUFERR) /* Buffer error */ |
| return -ENOSR; |
| if (status & TD_CTRL_STALLED) /* Stalled */ |
| return -EPIPE; |
| return 0; |
| } |
| |
| /* |
| * Control transfers |
| */ |
| static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb, |
| struct uhci_qh *qh) |
| { |
| struct uhci_td *td; |
| unsigned long destination, status; |
| int maxsze = usb_endpoint_maxp(&qh->hep->desc); |
| int len = urb->transfer_buffer_length; |
| dma_addr_t data = urb->transfer_dma; |
| __hc32 *plink; |
| struct urb_priv *urbp = urb->hcpriv; |
| int skel; |
| |
| /* The "pipe" thing contains the destination in bits 8--18 */ |
| destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP; |
| |
| /* 3 errors, dummy TD remains inactive */ |
| status = uhci_maxerr(3); |
| if (urb->dev->speed == USB_SPEED_LOW) |
| status |= TD_CTRL_LS; |
| |
| /* |
| * Build the TD for the control request setup packet |
| */ |
| td = qh->dummy_td; |
| uhci_add_td_to_urbp(td, urbp); |
| uhci_fill_td(uhci, td, status, destination | uhci_explen(8), |
| urb->setup_dma); |
| plink = &td->link; |
| status |= TD_CTRL_ACTIVE; |
| |
| /* |
| * If direction is "send", change the packet ID from SETUP (0x2D) |
| * to OUT (0xE1). Else change it from SETUP to IN (0x69) and |
| * set Short Packet Detect (SPD) for all data packets. |
| * |
| * 0-length transfers always get treated as "send". |
| */ |
| if (usb_pipeout(urb->pipe) || len == 0) |
| destination ^= (USB_PID_SETUP ^ USB_PID_OUT); |
| else { |
| destination ^= (USB_PID_SETUP ^ USB_PID_IN); |
| status |= TD_CTRL_SPD; |
| } |
| |
| /* |
| * Build the DATA TDs |
| */ |
| while (len > 0) { |
| int pktsze = maxsze; |
| |
| if (len <= pktsze) { /* The last data packet */ |
| pktsze = len; |
| status &= ~TD_CTRL_SPD; |
| } |
| |
| td = uhci_alloc_td(uhci); |
| if (!td) |
| goto nomem; |
| *plink = LINK_TO_TD(uhci, td); |
| |
| /* Alternate Data0/1 (start with Data1) */ |
| destination ^= TD_TOKEN_TOGGLE; |
| |
| uhci_add_td_to_urbp(td, urbp); |
| uhci_fill_td(uhci, td, status, |
| destination | uhci_explen(pktsze), data); |
| plink = &td->link; |
| |
| data += pktsze; |
| len -= pktsze; |
| } |
| |
| /* |
| * Build the final TD for control status |
| */ |
| td = uhci_alloc_td(uhci); |
| if (!td) |
| goto nomem; |
| *plink = LINK_TO_TD(uhci, td); |
| |
| /* Change direction for the status transaction */ |
| destination ^= (USB_PID_IN ^ USB_PID_OUT); |
| destination |= TD_TOKEN_TOGGLE; /* End in Data1 */ |
| |
| uhci_add_td_to_urbp(td, urbp); |
| uhci_fill_td(uhci, td, status | TD_CTRL_IOC, |
| destination | uhci_explen(0), 0); |
| plink = &td->link; |
| |
| /* |
| * Build the new dummy TD and activate the old one |
| */ |
| td = uhci_alloc_td(uhci); |
| if (!td) |
| goto nomem; |
| *plink = LINK_TO_TD(uhci, td); |
| |
| uhci_fill_td(uhci, td, 0, USB_PID_OUT | uhci_explen(0), 0); |
| wmb(); |
| qh->dummy_td->status |= cpu_to_hc32(uhci, TD_CTRL_ACTIVE); |
| qh->dummy_td = td; |
| |
| /* Low-speed transfers get a different queue, and won't hog the bus. |
| * Also, some devices enumerate better without FSBR; the easiest way |
| * to do that is to put URBs on the low-speed queue while the device |
| * isn't in the CONFIGURED state. */ |
| if (urb->dev->speed == USB_SPEED_LOW || |
| urb->dev->state != USB_STATE_CONFIGURED) |
| skel = SKEL_LS_CONTROL; |
| else { |
| skel = SKEL_FS_CONTROL; |
| uhci_add_fsbr(uhci, urb); |
| } |
| if (qh->state != QH_STATE_ACTIVE) |
| qh->skel = skel; |
| return 0; |
| |
| nomem: |
| /* Remove the dummy TD from the td_list so it doesn't get freed */ |
| uhci_remove_td_from_urbp(qh->dummy_td); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Common submit for bulk and interrupt |
| */ |
| static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb, |
| struct uhci_qh *qh) |
| { |
| struct uhci_td *td; |
| unsigned long destination, status; |
| int maxsze = usb_endpoint_maxp(&qh->hep->desc); |
| int len = urb->transfer_buffer_length; |
| int this_sg_len; |
| dma_addr_t data; |
| __hc32 *plink; |
| struct urb_priv *urbp = urb->hcpriv; |
| unsigned int toggle; |
| struct scatterlist *sg; |
| int i; |
| |
| if (len < 0) |
| return -EINVAL; |
| |
| /* The "pipe" thing contains the destination in bits 8--18 */ |
| destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); |
| toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), |
| usb_pipeout(urb->pipe)); |
| |
| /* 3 errors, dummy TD remains inactive */ |
| status = uhci_maxerr(3); |
| if (urb->dev->speed == USB_SPEED_LOW) |
| status |= TD_CTRL_LS; |
| if (usb_pipein(urb->pipe)) |
| status |= TD_CTRL_SPD; |
| |
| i = urb->num_mapped_sgs; |
| if (len > 0 && i > 0) { |
| sg = urb->sg; |
| data = sg_dma_address(sg); |
| |
| /* urb->transfer_buffer_length may be smaller than the |
| * size of the scatterlist (or vice versa) |
| */ |
| this_sg_len = min_t(int, sg_dma_len(sg), len); |
| } else { |
| sg = NULL; |
| data = urb->transfer_dma; |
| this_sg_len = len; |
| } |
| /* |
| * Build the DATA TDs |
| */ |
| plink = NULL; |
| td = qh->dummy_td; |
| for (;;) { /* Allow zero length packets */ |
| int pktsze = maxsze; |
| |
| if (len <= pktsze) { /* The last packet */ |
| pktsze = len; |
| if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) |
| status &= ~TD_CTRL_SPD; |
| } |
| |
| if (plink) { |
| td = uhci_alloc_td(uhci); |
| if (!td) |
| goto nomem; |
| *plink = LINK_TO_TD(uhci, td); |
| } |
| uhci_add_td_to_urbp(td, urbp); |
| uhci_fill_td(uhci, td, status, |
| destination | uhci_explen(pktsze) | |
| (toggle << TD_TOKEN_TOGGLE_SHIFT), |
| data); |
| plink = &td->link; |
| status |= TD_CTRL_ACTIVE; |
| |
| toggle ^= 1; |
| data += pktsze; |
| this_sg_len -= pktsze; |
| len -= maxsze; |
| if (this_sg_len <= 0) { |
| if (--i <= 0 || len <= 0) |
| break; |
| sg = sg_next(sg); |
| data = sg_dma_address(sg); |
| this_sg_len = min_t(int, sg_dma_len(sg), len); |
| } |
| } |
| |
| /* |
| * URB_ZERO_PACKET means adding a 0-length packet, if direction |
| * is OUT and the transfer_length was an exact multiple of maxsze, |
| * hence (len = transfer_length - N * maxsze) == 0 |
| * however, if transfer_length == 0, the zero packet was already |
| * prepared above. |
| */ |
| if ((urb->transfer_flags & URB_ZERO_PACKET) && |
| usb_pipeout(urb->pipe) && len == 0 && |
| urb->transfer_buffer_length > 0) { |
| td = uhci_alloc_td(uhci); |
| if (!td) |
| goto nomem; |
| *plink = LINK_TO_TD(uhci, td); |
| |
| uhci_add_td_to_urbp(td, urbp); |
| uhci_fill_td(uhci, td, status, |
| destination | uhci_explen(0) | |
| (toggle << TD_TOKEN_TOGGLE_SHIFT), |
| data); |
| plink = &td->link; |
| |
| toggle ^= 1; |
| } |
| |
| /* Set the interrupt-on-completion flag on the last packet. |
| * A more-or-less typical 4 KB URB (= size of one memory page) |
| * will require about 3 ms to transfer; that's a little on the |
| * fast side but not enough to justify delaying an interrupt |
| * more than 2 or 3 URBs, so we will ignore the URB_NO_INTERRUPT |
| * flag setting. */ |
| td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC); |
| |
| /* |
| * Build the new dummy TD and activate the old one |
| */ |
| td = uhci_alloc_td(uhci); |
| if (!td) |
| goto nomem; |
| *plink = LINK_TO_TD(uhci, td); |
| |
| uhci_fill_td(uhci, td, 0, USB_PID_OUT | uhci_explen(0), 0); |
| wmb(); |
| qh->dummy_td->status |= cpu_to_hc32(uhci, TD_CTRL_ACTIVE); |
| qh->dummy_td = td; |
| |
| usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), |
| usb_pipeout(urb->pipe), toggle); |
| return 0; |
| |
| nomem: |
| /* Remove the dummy TD from the td_list so it doesn't get freed */ |
| uhci_remove_td_from_urbp(qh->dummy_td); |
| return -ENOMEM; |
| } |
| |
| static int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb, |
| struct uhci_qh *qh) |
| { |
| int ret; |
| |
| /* Can't have low-speed bulk transfers */ |
| if (urb->dev->speed == USB_SPEED_LOW) |
| return -EINVAL; |
| |
| if (qh->state != QH_STATE_ACTIVE) |
| qh->skel = SKEL_BULK; |
| ret = uhci_submit_common(uhci, urb, qh); |
| if (ret == 0) |
| uhci_add_fsbr(uhci, urb); |
| return ret; |
| } |
| |
| static int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb, |
| struct uhci_qh *qh) |
| { |
| int ret; |
| |
| /* USB 1.1 interrupt transfers only involve one packet per interval. |
| * Drivers can submit URBs of any length, but longer ones will need |
| * multiple intervals to complete. |
| */ |
| |
| if (!qh->bandwidth_reserved) { |
| int exponent; |
| |
| /* Figure out which power-of-two queue to use */ |
| for (exponent = 7; exponent >= 0; --exponent) { |
| if ((1 << exponent) <= urb->interval) |
| break; |
| } |
| if (exponent < 0) |
| return -EINVAL; |
| |
| /* If the slot is full, try a lower period */ |
| do { |
| qh->period = 1 << exponent; |
| qh->skel = SKEL_INDEX(exponent); |
| |
| /* For now, interrupt phase is fixed by the layout |
| * of the QH lists. |
| */ |
| qh->phase = (qh->period / 2) & (MAX_PHASE - 1); |
| ret = uhci_check_bandwidth(uhci, qh); |
| } while (ret != 0 && --exponent >= 0); |
| if (ret) |
| return ret; |
| } else if (qh->period > urb->interval) |
| return -EINVAL; /* Can't decrease the period */ |
| |
| ret = uhci_submit_common(uhci, urb, qh); |
| if (ret == 0) { |
| urb->interval = qh->period; |
| if (!qh->bandwidth_reserved) |
| uhci_reserve_bandwidth(uhci, qh); |
| } |
| return ret; |
| } |
| |
| /* |
| * Fix up the data structures following a short transfer |
| */ |
| static int uhci_fixup_short_transfer(struct uhci_hcd *uhci, |
| struct uhci_qh *qh, struct urb_priv *urbp) |
| { |
| struct uhci_td *td; |
| struct list_head *tmp; |
| int ret; |
| |
| td = list_entry(urbp->td_list.prev, struct uhci_td, list); |
| if (qh->type == USB_ENDPOINT_XFER_CONTROL) { |
| |
| /* When a control transfer is short, we have to restart |
| * the queue at the status stage transaction, which is |
| * the last TD. */ |
| WARN_ON(list_empty(&urbp->td_list)); |
| qh->element = LINK_TO_TD(uhci, td); |
| tmp = td->list.prev; |
| ret = -EINPROGRESS; |
| |
| } else { |
| |
| /* When a bulk/interrupt transfer is short, we have to |
| * fix up the toggles of the following URBs on the queue |
| * before restarting the queue at the next URB. */ |
| qh->initial_toggle = |
| uhci_toggle(td_token(uhci, qh->post_td)) ^ 1; |
| uhci_fixup_toggles(uhci, qh, 1); |
| |
| if (list_empty(&urbp->td_list)) |
| td = qh->post_td; |
| qh->element = td->link; |
| tmp = urbp->td_list.prev; |
| ret = 0; |
| } |
| |
| /* Remove all the TDs we skipped over, from tmp back to the start */ |
| while (tmp != &urbp->td_list) { |
| td = list_entry(tmp, struct uhci_td, list); |
| tmp = tmp->prev; |
| |
| uhci_remove_td_from_urbp(td); |
| uhci_free_td(uhci, td); |
| } |
| return ret; |
| } |
| |
| /* |
| * Common result for control, bulk, and interrupt |
| */ |
| static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb) |
| { |
| struct urb_priv *urbp = urb->hcpriv; |
| struct uhci_qh *qh = urbp->qh; |
| struct uhci_td *td, *tmp; |
| unsigned status; |
| int ret = 0; |
| |
| list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { |
| unsigned int ctrlstat; |
| int len; |
| |
| ctrlstat = td_status(uhci, td); |
| status = uhci_status_bits(ctrlstat); |
| if (status & TD_CTRL_ACTIVE) |
| return -EINPROGRESS; |
| |
| len = uhci_actual_length(ctrlstat); |
| urb->actual_length += len; |
| |
| if (status) { |
| ret = uhci_map_status(status, |
| uhci_packetout(td_token(uhci, td))); |
| if ((debug == 1 && ret != -EPIPE) || debug > 1) { |
| /* Some debugging code */ |
| dev_dbg(&urb->dev->dev, |
| "%s: failed with status %x\n", |
| __func__, status); |
| |
| if (debug > 1 && errbuf) { |
| /* Print the chain for debugging */ |
| uhci_show_qh(uhci, urbp->qh, errbuf, |
| ERRBUF_LEN - EXTRA_SPACE, 0); |
| lprintk(errbuf); |
| } |
| } |
| |
| /* Did we receive a short packet? */ |
| } else if (len < uhci_expected_length(td_token(uhci, td))) { |
| |
| /* For control transfers, go to the status TD if |
| * this isn't already the last data TD */ |
| if (qh->type == USB_ENDPOINT_XFER_CONTROL) { |
| if (td->list.next != urbp->td_list.prev) |
| ret = 1; |
| } |
| |
| /* For bulk and interrupt, this may be an error */ |
| else if (urb->transfer_flags & URB_SHORT_NOT_OK) |
| ret = -EREMOTEIO; |
| |
| /* Fixup needed only if this isn't the URB's last TD */ |
| else if (&td->list != urbp->td_list.prev) |
| ret = 1; |
| } |
| |
| uhci_remove_td_from_urbp(td); |
| if (qh->post_td) |
| uhci_free_td(uhci, qh->post_td); |
| qh->post_td = td; |
| |
| if (ret != 0) |
| goto err; |
| } |
| return ret; |
| |
| err: |
| if (ret < 0) { |
| /* Note that the queue has stopped and save |
| * the next toggle value */ |
| qh->element = UHCI_PTR_TERM(uhci); |
| qh->is_stopped = 1; |
| qh->needs_fixup = (qh->type != USB_ENDPOINT_XFER_CONTROL); |
| qh->initial_toggle = uhci_toggle(td_token(uhci, td)) ^ |
| (ret == -EREMOTEIO); |
| |
| } else /* Short packet received */ |
| ret = uhci_fixup_short_transfer(uhci, qh, urbp); |
| return ret; |
| } |
| |
| /* |
| * Isochronous transfers |
| */ |
| static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb, |
| struct uhci_qh *qh) |
| { |
| struct uhci_td *td = NULL; /* Since urb->number_of_packets > 0 */ |
| int i; |
| unsigned frame, next; |
| unsigned long destination, status; |
| struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; |
| |
| /* Values must not be too big (could overflow below) */ |
| if (urb->interval >= UHCI_NUMFRAMES || |
| urb->number_of_packets >= UHCI_NUMFRAMES) |
| return -EFBIG; |
| |
| uhci_get_current_frame_number(uhci); |
| |
| /* Check the period and figure out the starting frame number */ |
| if (!qh->bandwidth_reserved) { |
| qh->period = urb->interval; |
| qh->phase = -1; /* Find the best phase */ |
| i = uhci_check_bandwidth(uhci, qh); |
| if (i) |
| return i; |
| |
| /* Allow a little time to allocate the TDs */ |
| next = uhci->frame_number + 10; |
| frame = qh->phase; |
| |
| /* Round up to the first available slot */ |
| frame += (next - frame + qh->period - 1) & -qh->period; |
| |
| } else if (qh->period != urb->interval) { |
| return -EINVAL; /* Can't change the period */ |
| |
| } else { |
| next = uhci->frame_number + 1; |
| |
| /* Find the next unused frame */ |
| if (list_empty(&qh->queue)) { |
| frame = qh->iso_frame; |
| } else { |
| struct urb *lurb; |
| |
| lurb = list_entry(qh->queue.prev, |
| struct urb_priv, node)->urb; |
| frame = lurb->start_frame + |
| lurb->number_of_packets * |
| lurb->interval; |
| } |
| |
| /* Fell behind? */ |
| if (!uhci_frame_before_eq(next, frame)) { |
| |
| /* USB_ISO_ASAP: Round up to the first available slot */ |
| if (urb->transfer_flags & URB_ISO_ASAP) |
| frame += (next - frame + qh->period - 1) & |
| -qh->period; |
| |
| /* |
| * Not ASAP: Use the next slot in the stream, |
| * no matter what. |
| */ |
| else if (!uhci_frame_before_eq(next, |
| frame + (urb->number_of_packets - 1) * |
| qh->period)) |
| dev_dbg(uhci_dev(uhci), "iso underrun %p (%u+%u < %u)\n", |
| urb, frame, |
| (urb->number_of_packets - 1) * |
| qh->period, |
| next); |
| } |
| } |
| |
| /* Make sure we won't have to go too far into the future */ |
| if (uhci_frame_before_eq(uhci->last_iso_frame + UHCI_NUMFRAMES, |
| frame + urb->number_of_packets * urb->interval)) |
| return -EFBIG; |
| urb->start_frame = frame; |
| |
| status = TD_CTRL_ACTIVE | TD_CTRL_IOS; |
| destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); |
| |
| for (i = 0; i < urb->number_of_packets; i++) { |
| td = uhci_alloc_td(uhci); |
| if (!td) |
| return -ENOMEM; |
| |
| uhci_add_td_to_urbp(td, urbp); |
| uhci_fill_td(uhci, td, status, destination | |
| uhci_explen(urb->iso_frame_desc[i].length), |
| urb->transfer_dma + |
| urb->iso_frame_desc[i].offset); |
| } |
| |
| /* Set the interrupt-on-completion flag on the last packet. */ |
| td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC); |
| |
| /* Add the TDs to the frame list */ |
| frame = urb->start_frame; |
| list_for_each_entry(td, &urbp->td_list, list) { |
| uhci_insert_td_in_frame_list(uhci, td, frame); |
| frame += qh->period; |
| } |
| |
| if (list_empty(&qh->queue)) { |
| qh->iso_packet_desc = &urb->iso_frame_desc[0]; |
| qh->iso_frame = urb->start_frame; |
| } |
| |
| qh->skel = SKEL_ISO; |
| if (!qh->bandwidth_reserved) |
| uhci_reserve_bandwidth(uhci, qh); |
| return 0; |
| } |
| |
| static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb) |
| { |
| struct uhci_td *td, *tmp; |
| struct urb_priv *urbp = urb->hcpriv; |
| struct uhci_qh *qh = urbp->qh; |
| |
| list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { |
| unsigned int ctrlstat; |
| int status; |
| int actlength; |
| |
| if (uhci_frame_before_eq(uhci->cur_iso_frame, qh->iso_frame)) |
| return -EINPROGRESS; |
| |
| uhci_remove_tds_from_frame(uhci, qh->iso_frame); |
| |
| ctrlstat = td_status(uhci, td); |
| if (ctrlstat & TD_CTRL_ACTIVE) { |
| status = -EXDEV; /* TD was added too late? */ |
| } else { |
| status = uhci_map_status(uhci_status_bits(ctrlstat), |
| usb_pipeout(urb->pipe)); |
| actlength = uhci_actual_length(ctrlstat); |
| |
| urb->actual_length += actlength; |
| qh->iso_packet_desc->actual_length = actlength; |
| qh->iso_packet_desc->status = status; |
| } |
| if (status) |
| urb->error_count++; |
| |
| uhci_remove_td_from_urbp(td); |
| uhci_free_td(uhci, td); |
| qh->iso_frame += qh->period; |
| ++qh->iso_packet_desc; |
| } |
| return 0; |
| } |
| |
| static int uhci_urb_enqueue(struct usb_hcd *hcd, |
| struct urb *urb, gfp_t mem_flags) |
| { |
| int ret; |
| struct uhci_hcd *uhci = hcd_to_uhci(hcd); |
| unsigned long flags; |
| struct urb_priv *urbp; |
| struct uhci_qh *qh; |
| |
| spin_lock_irqsave(&uhci->lock, flags); |
| |
| ret = usb_hcd_link_urb_to_ep(hcd, urb); |
| if (ret) |
| goto done_not_linked; |
| |
| ret = -ENOMEM; |
| urbp = uhci_alloc_urb_priv(uhci, urb); |
| if (!urbp) |
| goto done; |
| |
| if (urb->ep->hcpriv) |
| qh = urb->ep->hcpriv; |
| else { |
| qh = uhci_alloc_qh(uhci, urb->dev, urb->ep); |
| if (!qh) |
| goto err_no_qh; |
| } |
| urbp->qh = qh; |
| |
| switch (qh->type) { |
| case USB_ENDPOINT_XFER_CONTROL: |
| ret = uhci_submit_control(uhci, urb, qh); |
| break; |
| case USB_ENDPOINT_XFER_BULK: |
| ret = uhci_submit_bulk(uhci, urb, qh); |
| break; |
| case USB_ENDPOINT_XFER_INT: |
| ret = uhci_submit_interrupt(uhci, urb, qh); |
| break; |
| case USB_ENDPOINT_XFER_ISOC: |
| urb->error_count = 0; |
| ret = uhci_submit_isochronous(uhci, urb, qh); |
| break; |
| } |
| if (ret != 0) |
| goto err_submit_failed; |
| |
| /* Add this URB to the QH */ |
| list_add_tail(&urbp->node, &qh->queue); |
| |
| /* If the new URB is the first and only one on this QH then either |
| * the QH is new and idle or else it's unlinked and waiting to |
| * become idle, so we can activate it right away. But only if the |
| * queue isn't stopped. */ |
| if (qh->queue.next == &urbp->node && !qh->is_stopped) { |
| uhci_activate_qh(uhci, qh); |
| uhci_urbp_wants_fsbr(uhci, urbp); |
| } |
| goto done; |
| |
| err_submit_failed: |
| if (qh->state == QH_STATE_IDLE) |
| uhci_make_qh_idle(uhci, qh); /* Reclaim unused QH */ |
| err_no_qh: |
| uhci_free_urb_priv(uhci, urbp); |
| done: |
| if (ret) |
| usb_hcd_unlink_urb_from_ep(hcd, urb); |
| done_not_linked: |
| spin_unlock_irqrestore(&uhci->lock, flags); |
| return ret; |
| } |
| |
| static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) |
| { |
| struct uhci_hcd *uhci = hcd_to_uhci(hcd); |
| unsigned long flags; |
| struct uhci_qh *qh; |
| int rc; |
| |
| spin_lock_irqsave(&uhci->lock, flags); |
| rc = usb_hcd_check_unlink_urb(hcd, urb, status); |
| if (rc) |
| goto done; |
| |
| qh = ((struct urb_priv *) urb->hcpriv)->qh; |
| |
| /* Remove Isochronous TDs from the frame list ASAP */ |
| if (qh->type == USB_ENDPOINT_XFER_ISOC) { |
| uhci_unlink_isochronous_tds(uhci, urb); |
| mb(); |
| |
| /* If the URB has already started, update the QH unlink time */ |
| uhci_get_current_frame_number(uhci); |
| if (uhci_frame_before_eq(urb->start_frame, uhci->frame_number)) |
| qh->unlink_frame = uhci->frame_number; |
| } |
| |
| uhci_unlink_qh(uhci, qh); |
| |
| done: |
| spin_unlock_irqrestore(&uhci->lock, flags); |
| return rc; |
| } |
| |
| /* |
| * Finish unlinking an URB and give it back |
| */ |
| static void uhci_giveback_urb(struct uhci_hcd *uhci, struct uhci_qh *qh, |
| struct urb *urb, int status) |
| __releases(uhci->lock) |
| __acquires(uhci->lock) |
| { |
| struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; |
| |
| if (qh->type == USB_ENDPOINT_XFER_CONTROL) { |
| |
| /* Subtract off the length of the SETUP packet from |
| * urb->actual_length. |
| */ |
| urb->actual_length -= min_t(u32, 8, urb->actual_length); |
| } |
| |
| /* When giving back the first URB in an Isochronous queue, |
| * reinitialize the QH's iso-related members for the next URB. */ |
| else if (qh->type == USB_ENDPOINT_XFER_ISOC && |
| urbp->node.prev == &qh->queue && |
| urbp->node.next != &qh->queue) { |
| struct urb *nurb = list_entry(urbp->node.next, |
| struct urb_priv, node)->urb; |
| |
| qh->iso_packet_desc = &nurb->iso_frame_desc[0]; |
| qh->iso_frame = nurb->start_frame; |
| } |
| |
| /* Take the URB off the QH's queue. If the queue is now empty, |
| * this is a perfect time for a toggle fixup. */ |
| list_del_init(&urbp->node); |
| if (list_empty(&qh->queue) && qh->needs_fixup) { |
| usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), |
| usb_pipeout(urb->pipe), qh->initial_toggle); |
| qh->needs_fixup = 0; |
| } |
| |
| uhci_free_urb_priv(uhci, urbp); |
| usb_hcd_unlink_urb_from_ep(uhci_to_hcd(uhci), urb); |
| |
| spin_unlock(&uhci->lock); |
| usb_hcd_giveback_urb(uhci_to_hcd(uhci), urb, status); |
| spin_lock(&uhci->lock); |
| |
| /* If the queue is now empty, we can unlink the QH and give up its |
| * reserved bandwidth. */ |
| if (list_empty(&qh->queue)) { |
| uhci_unlink_qh(uhci, qh); |
| if (qh->bandwidth_reserved) |
| uhci_release_bandwidth(uhci, qh); |
| } |
| } |
| |
| /* |
| * Scan the URBs in a QH's queue |
| */ |
| #define QH_FINISHED_UNLINKING(qh) \ |
| (qh->state == QH_STATE_UNLINKING && \ |
| uhci->frame_number + uhci->is_stopped != qh->unlink_frame) |
| |
| static void uhci_scan_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| struct urb_priv *urbp; |
| struct urb *urb; |
| int status; |
| |
| while (!list_empty(&qh->queue)) { |
| urbp = list_entry(qh->queue.next, struct urb_priv, node); |
| urb = urbp->urb; |
| |
| if (qh->type == USB_ENDPOINT_XFER_ISOC) |
| status = uhci_result_isochronous(uhci, urb); |
| else |
| status = uhci_result_common(uhci, urb); |
| if (status == -EINPROGRESS) |
| break; |
| |
| /* Dequeued but completed URBs can't be given back unless |
| * the QH is stopped or has finished unlinking. */ |
| if (urb->unlinked) { |
| if (QH_FINISHED_UNLINKING(qh)) |
| qh->is_stopped = 1; |
| else if (!qh->is_stopped) |
| return; |
| } |
| |
| uhci_giveback_urb(uhci, qh, urb, status); |
| if (status < 0) |
| break; |
| } |
| |
| /* If the QH is neither stopped nor finished unlinking (normal case), |
| * our work here is done. */ |
| if (QH_FINISHED_UNLINKING(qh)) |
| qh->is_stopped = 1; |
| else if (!qh->is_stopped) |
| return; |
| |
| /* Otherwise give back each of the dequeued URBs */ |
| restart: |
| list_for_each_entry(urbp, &qh->queue, node) { |
| urb = urbp->urb; |
| if (urb->unlinked) { |
| |
| /* Fix up the TD links and save the toggles for |
| * non-Isochronous queues. For Isochronous queues, |
| * test for too-recent dequeues. */ |
| if (!uhci_cleanup_queue(uhci, qh, urb)) { |
| qh->is_stopped = 0; |
| return; |
| } |
| uhci_giveback_urb(uhci, qh, urb, 0); |
| goto restart; |
| } |
| } |
| qh->is_stopped = 0; |
| |
| /* There are no more dequeued URBs. If there are still URBs on the |
| * queue, the QH can now be re-activated. */ |
| if (!list_empty(&qh->queue)) { |
| if (qh->needs_fixup) |
| uhci_fixup_toggles(uhci, qh, 0); |
| |
| /* If the first URB on the queue wants FSBR but its time |
| * limit has expired, set the next TD to interrupt on |
| * completion before reactivating the QH. */ |
| urbp = list_entry(qh->queue.next, struct urb_priv, node); |
| if (urbp->fsbr && qh->wait_expired) { |
| struct uhci_td *td = list_entry(urbp->td_list.next, |
| struct uhci_td, list); |
| |
| td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC); |
| } |
| |
| uhci_activate_qh(uhci, qh); |
| } |
| |
| /* The queue is empty. The QH can become idle if it is fully |
| * unlinked. */ |
| else if (QH_FINISHED_UNLINKING(qh)) |
| uhci_make_qh_idle(uhci, qh); |
| } |
| |
| /* |
| * Check for queues that have made some forward progress. |
| * Returns 0 if the queue is not Isochronous, is ACTIVE, and |
| * has not advanced since last examined; 1 otherwise. |
| * |
| * Early Intel controllers have a bug which causes qh->element sometimes |
| * not to advance when a TD completes successfully. The queue remains |
| * stuck on the inactive completed TD. We detect such cases and advance |
| * the element pointer by hand. |
| */ |
| static int uhci_advance_check(struct uhci_hcd *uhci, struct uhci_qh *qh) |
| { |
| struct urb_priv *urbp = NULL; |
| struct uhci_td *td; |
| int ret = 1; |
| unsigned status; |
| |
| if (qh->type == USB_ENDPOINT_XFER_ISOC) |
| goto done; |
| |
| /* Treat an UNLINKING queue as though it hasn't advanced. |
| * This is okay because reactivation will treat it as though |
| * it has advanced, and if it is going to become IDLE then |
| * this doesn't matter anyway. Furthermore it's possible |
| * for an UNLINKING queue not to have any URBs at all, or |
| * for its first URB not to have any TDs (if it was dequeued |
| * just as it completed). So it's not easy in any case to |
| * test whether such queues have advanced. */ |
| if (qh->state != QH_STATE_ACTIVE) { |
| urbp = NULL; |
| status = 0; |
| |
| } else { |
| urbp = list_entry(qh->queue.next, struct urb_priv, node); |
| td = list_entry(urbp->td_list.next, struct uhci_td, list); |
| status = td_status(uhci, td); |
| if (!(status & TD_CTRL_ACTIVE)) { |
| |
| /* We're okay, the queue has advanced */ |
| qh->wait_expired = 0; |
| qh->advance_jiffies = jiffies; |
| goto done; |
| } |
| ret = uhci->is_stopped; |
| } |
| |
| /* The queue hasn't advanced; check for timeout */ |
| if (qh->wait_expired) |
| goto done; |
| |
| if (time_after(jiffies, qh->advance_jiffies + QH_WAIT_TIMEOUT)) { |
| |
| /* Detect the Intel bug and work around it */ |
| if (qh->post_td && qh_element(qh) == |
| LINK_TO_TD(uhci, qh->post_td)) { |
| qh->element = qh->post_td->link; |
| qh->advance_jiffies = jiffies; |
| ret = 1; |
| goto done; |
| } |
| |
| qh->wait_expired = 1; |
| |
| /* If the current URB wants FSBR, unlink it temporarily |
| * so that we can safely set the next TD to interrupt on |
| * completion. That way we'll know as soon as the queue |
| * starts moving again. */ |
| if (urbp && urbp->fsbr && !(status & TD_CTRL_IOC)) |
| uhci_unlink_qh(uhci, qh); |
| |
| } else { |
| /* Unmoving but not-yet-expired queues keep FSBR alive */ |
| if (urbp) |
| uhci_urbp_wants_fsbr(uhci, urbp); |
| } |
| |
| done: |
| return ret; |
| } |
| |
| /* |
| * Process events in the schedule, but only in one thread at a time |
| */ |
| static void uhci_scan_schedule(struct uhci_hcd *uhci) |
| { |
| int i; |
| struct uhci_qh *qh; |
| |
| /* Don't allow re-entrant calls */ |
| if (uhci->scan_in_progress) { |
| uhci->need_rescan = 1; |
| return; |
| } |
| uhci->scan_in_progress = 1; |
| rescan: |
| uhci->need_rescan = 0; |
| uhci->fsbr_is_wanted = 0; |
| |
| uhci_clear_next_interrupt(uhci); |
| uhci_get_current_frame_number(uhci); |
| uhci->cur_iso_frame = uhci->frame_number; |
| |
| /* Go through all the QH queues and process the URBs in each one */ |
| for (i = 0; i < UHCI_NUM_SKELQH - 1; ++i) { |
| uhci->next_qh = list_entry(uhci->skelqh[i]->node.next, |
| struct uhci_qh, node); |
| while ((qh = uhci->next_qh) != uhci->skelqh[i]) { |
| uhci->next_qh = list_entry(qh->node.next, |
| struct uhci_qh, node); |
| |
| if (uhci_advance_check(uhci, qh)) { |
| uhci_scan_qh(uhci, qh); |
| if (qh->state == QH_STATE_ACTIVE) { |
| uhci_urbp_wants_fsbr(uhci, |
| list_entry(qh->queue.next, struct urb_priv, node)); |
| } |
| } |
| } |
| } |
| |
| uhci->last_iso_frame = uhci->cur_iso_frame; |
| if (uhci->need_rescan) |
| goto rescan; |
| uhci->scan_in_progress = 0; |
| |
| if (uhci->fsbr_is_on && !uhci->fsbr_is_wanted && |
| !uhci->fsbr_expiring) { |
| uhci->fsbr_expiring = 1; |
| mod_timer(&uhci->fsbr_timer, jiffies + FSBR_OFF_DELAY); |
| } |
| |
| if (list_empty(&uhci->skel_unlink_qh->node)) |
| uhci_clear_next_interrupt(uhci); |
| else |
| uhci_set_next_interrupt(uhci); |
| } |