blob: f603a3fd7d98c0e02e89aeb5671c50ccc3df32c6 [file] [log] [blame]
/*
* Copyright (c) 2013, 2016-2018, 2020,
*
* The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "clk: %s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/bug.h>
#include <linux/export.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/regmap.h>
#include <linux/rational.h>
#include <linux/math64.h>
#include <linux/clk.h>
#include <asm/div64.h>
#include "clk-rcg.h"
#include "common.h"
#define CMD_REG 0x0
#define CMD_UPDATE BIT(0)
#define CMD_ROOT_EN BIT(1)
#define CMD_DIRTY_CFG BIT(4)
#define CMD_DIRTY_N BIT(5)
#define CMD_DIRTY_M BIT(6)
#define CMD_DIRTY_D BIT(7)
#define CMD_ROOT_OFF BIT(31)
#define CFG_REG 0x4
#define CFG_SRC_DIV_SHIFT 0
#define CFG_SRC_SEL_SHIFT 8
#define CFG_SRC_SEL_MASK (0x7 << CFG_SRC_SEL_SHIFT)
#define CFG_MODE_SHIFT 12
#define CFG_MODE_MASK (0x3 << CFG_MODE_SHIFT)
#define CFG_MODE_DUAL_EDGE (0x2 << CFG_MODE_SHIFT)
#define CFG_HW_CLK_CTRL_MASK BIT(20)
#define M_REG 0x8
#define N_REG 0xc
#define D_REG 0x10
/* Dynamic Frequency Scaling */
#define MAX_PERF_LEVEL 16
#define SE_CMD_DFSR_OFFSET 0x14
#define SE_CMD_DFS_EN BIT(0)
#define SE_PERF_DFSR(level) (0x1c + 0x4 * (level))
#define SE_PERF_M_DFSR(level) (0x5c + 0x4 * (level))
#define SE_PERF_N_DFSR(level) (0x9c + 0x4 * (level))
static struct freq_tbl cxo_f = {
.freq = 19200000,
.src = 0,
.pre_div = 1,
.m = 0,
.n = 0,
};
static int clk_rcg2_is_enabled(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
u32 cmd;
int ret;
ret = regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG, &cmd);
if (ret)
return ret;
return (cmd & CMD_ROOT_OFF) == 0;
}
static u8 clk_rcg2_get_parent(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int num_parents = clk_hw_get_num_parents(hw);
u32 cfg;
int i, ret;
ret = regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg);
if (ret)
goto err;
cfg &= CFG_SRC_SEL_MASK;
cfg >>= CFG_SRC_SEL_SHIFT;
for (i = 0; i < num_parents; i++)
if (cfg == rcg->parent_map[i].cfg)
return i;
err:
pr_debug("Clock %s has invalid parent, using default.\n",
clk_hw_get_name(hw));
return 0;
}
static int update_config(struct clk_rcg2 *rcg)
{
int count, ret;
u32 cmd;
struct clk_hw *hw = &rcg->clkr.hw;
const char *name = clk_hw_get_name(hw);
ret = regmap_update_bits(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG,
CMD_UPDATE, CMD_UPDATE);
if (ret)
return ret;
/* Wait for update to take effect */
for (count = 500; count > 0; count--) {
ret = regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG, &cmd);
if (ret)
return ret;
if (!(cmd & CMD_UPDATE))
return 0;
udelay(1);
}
WARN(1, "clk: %s: rcg didn't update its configuration.", name);
return 0;
}
static int clk_rcg2_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int ret;
u32 cfg = rcg->parent_map[index].cfg << CFG_SRC_SEL_SHIFT;
ret = regmap_update_bits(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG,
CFG_SRC_SEL_MASK, cfg);
if (ret)
return ret;
return update_config(rcg);
}
static int clk_rcg2_set_force_enable(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int ret = 0, count = 500;
ret = regmap_update_bits(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG,
CMD_ROOT_EN, CMD_ROOT_EN);
if (ret)
return ret;
for (; count > 0; count--) {
if (clk_rcg2_is_enabled(hw))
return ret;
/* Delay for 1usec and retry polling the status bit */
udelay(1);
}
WARN(1, "clk: %s: rcg didn't turn on.", clk_hw_get_name(hw));
return ret;
}
static void clk_rcg2_clear_force_enable(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
regmap_update_bits(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG,
CMD_ROOT_EN, 0);
}
static int prepare_enable_rcg_srcs(struct clk *curr, struct clk *new)
{
int rc = 0;
rc = clk_prepare(curr);
if (rc)
return rc;
rc = clk_prepare(new);
if (rc)
goto err_new_src_prepare;
rc = clk_enable(curr);
if (rc)
goto err_curr_src_enable;
rc = clk_enable(new);
if (rc)
goto err_new_src_enable;
return rc;
err_new_src_enable:
clk_disable(curr);
err_curr_src_enable:
clk_unprepare(new);
err_new_src_prepare:
clk_unprepare(curr);
return rc;
}
static void disable_unprepare_rcg_srcs(struct clk *curr, struct clk *new)
{
clk_disable(new);
clk_disable(curr);
clk_unprepare(new);
clk_unprepare(curr);
}
/*
* Calculate m/n:d rate
*
* parent_rate m
* rate = ----------- x ---
* hid_div n
*/
unsigned long
clk_rcg2_calc_rate(unsigned long rate, u32 m, u32 n, u32 mode, u32 hid_div)
{
if (hid_div) {
rate *= 2;
rate /= hid_div + 1;
}
if (mode) {
u64 tmp = rate;
tmp *= m;
do_div(tmp, n);
rate = tmp;
}
return rate;
}
EXPORT_SYMBOL(clk_rcg2_calc_rate);
static unsigned long
clk_rcg2_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
const struct freq_tbl *f_curr;
u32 cfg, hid_div, m = 0, n = 0, mode = 0, mask;
unsigned long recalc_rate;
if (rcg->flags & DFS_ENABLE_RCG)
return rcg->current_freq;
if (rcg->enable_safe_config && (!clk_hw_is_prepared(hw)
|| !clk_hw_is_enabled(hw))) {
if (!rcg->current_freq)
rcg->current_freq = cxo_f.freq;
return rcg->current_freq;
}
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg);
if (rcg->mnd_width) {
mask = BIT(rcg->mnd_width) - 1;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + M_REG, &m);
m &= mask;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + N_REG, &n);
n = ~n;
n &= mask;
n += m;
mode = cfg & CFG_MODE_MASK;
mode >>= CFG_MODE_SHIFT;
}
if (rcg->enable_safe_config) {
f_curr = qcom_find_freq(rcg->freq_tbl, rcg->current_freq);
if (!f_curr)
return -EINVAL;
hid_div = f_curr->pre_div;
} else {
mask = BIT(rcg->hid_width) - 1;
hid_div = cfg >> CFG_SRC_DIV_SHIFT;
hid_div &= mask;
}
recalc_rate = clk_rcg2_calc_rate(parent_rate, m, n, mode, hid_div);
/*
* Check the case when the RCG has been initialized to a non-CXO
* frequency.
*/
if (rcg->enable_safe_config && !rcg->current_freq)
rcg->current_freq = recalc_rate;
return recalc_rate;
}
static int _freq_tbl_determine_rate(struct clk_hw *hw,
const struct freq_tbl *f, struct clk_rate_request *req)
{
unsigned long clk_flags, rate = req->rate;
struct clk_hw *p;
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int index;
f = qcom_find_freq(f, rate);
if (!f)
return -EINVAL;
index = qcom_find_src_index(hw, rcg->parent_map, f->src);
if (index < 0)
return index;
clk_flags = clk_hw_get_flags(hw);
p = clk_hw_get_parent_by_index(hw, index);
if (!p)
return -EINVAL;
if (clk_flags & CLK_SET_RATE_PARENT) {
if (f->pre_div) {
if (!rate)
rate = req->rate;
rate /= 2;
rate *= f->pre_div + 1;
}
if (f->n) {
u64 tmp = rate;
tmp = tmp * f->n;
do_div(tmp, f->m);
rate = tmp;
}
} else {
rate = clk_hw_get_rate(p);
}
req->best_parent_hw = p;
req->best_parent_rate = rate;
req->rate = f->freq;
return 0;
}
static int clk_rcg2_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
return _freq_tbl_determine_rate(hw, rcg->freq_tbl, req);
}
static bool clk_rcg2_current_config(struct clk_rcg2 *rcg,
const struct freq_tbl *f)
{
struct clk_hw *hw = &rcg->clkr.hw;
u32 cfg, mask, new_cfg;
int index;
if (rcg->mnd_width) {
mask = BIT(rcg->mnd_width) - 1;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + M_REG, &cfg);
if ((cfg & mask) != (f->m & mask))
return false;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + N_REG, &cfg);
if ((cfg & mask) != (~(f->n - f->m) & mask))
return false;
}
mask = (BIT(rcg->hid_width) - 1) | CFG_SRC_SEL_MASK;
index = qcom_find_src_index(hw, rcg->parent_map, f->src);
new_cfg = ((f->pre_div << CFG_SRC_DIV_SHIFT) |
(rcg->parent_map[index].cfg << CFG_SRC_SEL_SHIFT)) & mask;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg);
if (new_cfg != (cfg & mask))
return false;
return true;
}
static int clk_rcg2_configure(struct clk_rcg2 *rcg, const struct freq_tbl *f)
{
u32 cfg, mask;
struct clk_hw *hw = &rcg->clkr.hw;
int ret, index = qcom_find_src_index(hw, rcg->parent_map, f->src);
/* Skip configuration if DFS control has been enabled for the RCG. */
if (rcg->flags & DFS_ENABLE_RCG)
return 0;
if (index < 0)
return index;
if (rcg->mnd_width && f->n) {
mask = BIT(rcg->mnd_width) - 1;
ret = regmap_update_bits(rcg->clkr.regmap,
rcg->cmd_rcgr + M_REG, mask, f->m);
if (ret)
return ret;
ret = regmap_update_bits(rcg->clkr.regmap,
rcg->cmd_rcgr + N_REG, mask, ~(f->n - f->m));
if (ret)
return ret;
ret = regmap_update_bits(rcg->clkr.regmap,
rcg->cmd_rcgr + D_REG, mask, ~f->n);
if (ret)
return ret;
}
mask = BIT(rcg->hid_width) - 1;
mask |= CFG_SRC_SEL_MASK | CFG_MODE_MASK | CFG_HW_CLK_CTRL_MASK;
cfg = f->pre_div << CFG_SRC_DIV_SHIFT;
cfg |= rcg->parent_map[index].cfg << CFG_SRC_SEL_SHIFT;
if (rcg->mnd_width && f->n && (f->m != f->n))
cfg |= CFG_MODE_DUAL_EDGE;
ret = regmap_update_bits(rcg->clkr.regmap,
rcg->cmd_rcgr + CFG_REG, mask, cfg);
if (ret)
return ret;
return update_config(rcg);
}
static void clk_rcg2_list_registers(struct seq_file *f, struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int i = 0, size = 0, val;
static struct clk_register_data data[] = {
{"CMD_RCGR", 0x0},
{"CFG_RCGR", 0x4},
};
static struct clk_register_data data1[] = {
{"CMD_RCGR", 0x0},
{"CFG_RCGR", 0x4},
{"M_VAL", 0x8},
{"N_VAL", 0xC},
{"D_VAL", 0x10},
};
if (rcg->mnd_width) {
size = ARRAY_SIZE(data1);
for (i = 0; i < size; i++) {
regmap_read(rcg->clkr.regmap, (rcg->cmd_rcgr +
data1[i].offset), &val);
seq_printf(f, "%20s: 0x%.8x\n", data1[i].name, val);
}
} else {
size = ARRAY_SIZE(data);
for (i = 0; i < size; i++) {
regmap_read(rcg->clkr.regmap, (rcg->cmd_rcgr +
data[i].offset), &val);
seq_printf(f, "%20s: 0x%.8x\n", data[i].name, val);
}
}
}
/* Return the nth supported frequency for a given clock. */
static long clk_rcg2_list_rate(struct clk_hw *hw, unsigned int n,
unsigned long fmax)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
if (!rcg->freq_tbl)
return -ENXIO;
return (rcg->freq_tbl + n)->freq;
}
static int __clk_rcg2_set_rate(struct clk_hw *hw, unsigned long rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
const struct freq_tbl *f, *f_curr;
int ret, curr_src_index, new_src_index;
struct clk_hw *curr_src = NULL, *new_src = NULL;
f = qcom_find_freq(rcg->freq_tbl, rate);
if (!f)
return -EINVAL;
/*
* Return if the RCG is currently disabled. This configuration update
* will happen as part of the RCG enable sequence.
*/
if (rcg->enable_safe_config && !clk_hw_is_prepared(hw)) {
rcg->current_freq = rate;
return 0;
}
if (rcg->flags & FORCE_ENABLE_RCG) {
rcg->current_freq = clk_get_rate(hw->clk);
if (rcg->current_freq == cxo_f.freq)
curr_src_index = 0;
else {
f_curr = qcom_find_freq(rcg->freq_tbl,
rcg->current_freq);
if (!f_curr)
return -EINVAL;
curr_src_index = qcom_find_src_index(hw,
rcg->parent_map, f_curr->src);
}
new_src_index = qcom_find_src_index(hw, rcg->parent_map,
f->src);
curr_src = clk_hw_get_parent_by_index(hw, curr_src_index);
new_src = clk_hw_get_parent_by_index(hw, new_src_index);
/* The RCG could currently be disabled. Enable its parents. */
ret = prepare_enable_rcg_srcs(curr_src->clk, new_src->clk);
clk_rcg2_set_force_enable(hw);
}
ret = clk_rcg2_configure(rcg, f);
if (ret)
return ret;
if (rcg->flags & FORCE_ENABLE_RCG) {
clk_rcg2_clear_force_enable(hw);
disable_unprepare_rcg_srcs(curr_src->clk, new_src->clk);
}
/* Update current frequency with the requested frequency. */
rcg->current_freq = rate;
return ret;
}
static int clk_rcg2_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
return __clk_rcg2_set_rate(hw, rate);
}
static int clk_rcg2_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate, u8 index)
{
return __clk_rcg2_set_rate(hw, rate);
}
static int clk_rcg2_enable(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
unsigned long rate;
const struct freq_tbl *f;
if (rcg->flags & FORCE_ENABLE_RCG) {
clk_rcg2_set_force_enable(hw);
return 0;
}
if (!rcg->enable_safe_config)
return 0;
/*
* Switch from CXO to the stashed mux selection. Force enable and
* disable the RCG while configuring it to safeguard against any update
* signal coming from the downstream clock. The current parent has
* already been prepared and enabled at this point, and the CXO source
* is always on while APPS is online. Therefore, the RCG can safely be
* switched.
*/
rate = rcg->current_freq;
f = qcom_find_freq(rcg->freq_tbl, rate);
if (!f)
return -EINVAL;
/*
* If CXO is not listed as a supported frequency in the frequency
* table, the above API would return the lowest supported frequency
* instead. This will lead to incorrect configuration of the RCG.
* Check if the RCG rate is CXO and configure it accordingly.
*/
if (rate == cxo_f.freq)
f = &cxo_f;
clk_rcg2_set_force_enable(hw);
clk_rcg2_configure(rcg, f);
clk_rcg2_clear_force_enable(hw);
return 0;
}
static void clk_rcg2_disable(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
if (rcg->flags & FORCE_ENABLE_RCG) {
clk_rcg2_clear_force_enable(hw);
return;
}
if (!rcg->enable_safe_config)
return;
/*
* Park the RCG at a safe configuration - sourced off the CXO. This is
* needed for 2 reasons: In the case of RCGs sourcing PSCBCs, due to a
* default HW behavior, the RCG will turn on when its corresponding
* GDSC is enabled. We might also have cases when the RCG might be left
* enabled without the overlying SW knowing about it. This results from
* hard to track cases of downstream clocks being left enabled. In both
* these cases, scaling the RCG will fail since it's enabled but with
* its sources cut off.
*
* Save mux select and switch to CXO. Force enable and disable the RCG
* while configuring it to safeguard against any update signal coming
* from the downstream clock. The current parent is still prepared and
* enabled at this point, and the CXO source is always on while APPS is
* online. Therefore, the RCG can safely be switched.
*/
clk_rcg2_set_force_enable(hw);
clk_rcg2_configure(rcg, &cxo_f);
clk_rcg2_clear_force_enable(hw);
}
const struct clk_ops clk_rcg2_ops = {
.is_enabled = clk_rcg2_is_enabled,
.enable = clk_rcg2_enable,
.disable = clk_rcg2_disable,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.determine_rate = clk_rcg2_determine_rate,
.set_rate = clk_rcg2_set_rate,
.set_rate_and_parent = clk_rcg2_set_rate_and_parent,
.list_rate = clk_rcg2_list_rate,
.list_registers = clk_rcg2_list_registers,
};
EXPORT_SYMBOL_GPL(clk_rcg2_ops);
static int clk_rcg2_shared_force_enable(struct clk_hw *hw, unsigned long rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
const char *name = clk_hw_get_name(hw);
int ret, count;
/* force enable RCG */
ret = regmap_update_bits(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG,
CMD_ROOT_EN, CMD_ROOT_EN);
if (ret)
return ret;
/* wait for RCG to turn ON */
for (count = 500; count > 0; count--) {
ret = clk_rcg2_is_enabled(hw);
if (ret)
break;
udelay(1);
}
if (!count)
pr_err("%s: RCG did not turn on\n", name);
/* set clock rate */
ret = __clk_rcg2_set_rate(hw, rate);
if (ret)
return ret;
/* clear force enable RCG */
return regmap_update_bits(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG,
CMD_ROOT_EN, 0);
}
static int clk_rcg2_shared_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
/* cache the rate */
rcg->current_freq = rate;
if (!__clk_is_enabled(hw->clk))
return 0;
return clk_rcg2_shared_force_enable(hw, rcg->current_freq);
}
static unsigned long
clk_rcg2_shared_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
return rcg->current_freq = clk_rcg2_recalc_rate(hw, parent_rate);
}
static int clk_rcg2_shared_enable(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
return clk_rcg2_shared_force_enable(hw, rcg->current_freq);
}
static void clk_rcg2_shared_disable(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
/* switch to XO, which is the lowest entry in the freq table */
clk_rcg2_shared_set_rate(hw, rcg->freq_tbl[0].freq, 0);
}
const struct clk_ops clk_rcg2_shared_ops = {
.enable = clk_rcg2_shared_enable,
.disable = clk_rcg2_shared_disable,
.get_parent = clk_rcg2_get_parent,
.recalc_rate = clk_rcg2_shared_recalc_rate,
.determine_rate = clk_rcg2_determine_rate,
.set_rate = clk_rcg2_shared_set_rate,
};
EXPORT_SYMBOL_GPL(clk_rcg2_shared_ops);
struct frac_entry {
int num;
int den;
};
static const struct frac_entry frac_table_675m[] = { /* link rate of 270M */
{ 52, 295 }, /* 119 M */
{ 11, 57 }, /* 130.25 M */
{ 63, 307 }, /* 138.50 M */
{ 11, 50 }, /* 148.50 M */
{ 47, 206 }, /* 154 M */
{ 31, 100 }, /* 205.25 M */
{ 107, 269 }, /* 268.50 M */
{ },
};
static struct frac_entry frac_table_810m[] = { /* Link rate of 162M */
{ 31, 211 }, /* 119 M */
{ 32, 199 }, /* 130.25 M */
{ 63, 307 }, /* 138.50 M */
{ 11, 60 }, /* 148.50 M */
{ 50, 263 }, /* 154 M */
{ 31, 120 }, /* 205.25 M */
{ 119, 359 }, /* 268.50 M */
{ },
};
static int clk_edp_pixel_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct freq_tbl f = *rcg->freq_tbl;
const struct frac_entry *frac;
int delta = 100000;
s64 src_rate = parent_rate;
s64 request;
u32 mask = BIT(rcg->hid_width) - 1;
u32 hid_div;
if (src_rate == 810000000)
frac = frac_table_810m;
else
frac = frac_table_675m;
for (; frac->num; frac++) {
request = rate;
request *= frac->den;
request = div_s64(request, frac->num);
if ((src_rate < (request - delta)) ||
(src_rate > (request + delta)))
continue;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG,
&hid_div);
f.pre_div = hid_div;
f.pre_div >>= CFG_SRC_DIV_SHIFT;
f.pre_div &= mask;
f.m = frac->num;
f.n = frac->den;
return clk_rcg2_configure(rcg, &f);
}
return -EINVAL;
}
static int clk_edp_pixel_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate, u8 index)
{
/* Parent index is set statically in frequency table */
return clk_edp_pixel_set_rate(hw, rate, parent_rate);
}
static int clk_edp_pixel_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
const struct freq_tbl *f = rcg->freq_tbl;
const struct frac_entry *frac;
int delta = 100000;
s64 request;
u32 mask = BIT(rcg->hid_width) - 1;
u32 hid_div;
int index = qcom_find_src_index(hw, rcg->parent_map, f->src);
/* Force the correct parent */
req->best_parent_hw = clk_hw_get_parent_by_index(hw, index);
req->best_parent_rate = clk_hw_get_rate(req->best_parent_hw);
if (req->best_parent_rate == 810000000)
frac = frac_table_810m;
else
frac = frac_table_675m;
for (; frac->num; frac++) {
request = req->rate;
request *= frac->den;
request = div_s64(request, frac->num);
if ((req->best_parent_rate < (request - delta)) ||
(req->best_parent_rate > (request + delta)))
continue;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG,
&hid_div);
hid_div >>= CFG_SRC_DIV_SHIFT;
hid_div &= mask;
req->rate = clk_rcg2_calc_rate(req->best_parent_rate,
frac->num, frac->den,
!!frac->den, hid_div);
return 0;
}
return -EINVAL;
}
const struct clk_ops clk_edp_pixel_ops = {
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.set_rate = clk_edp_pixel_set_rate,
.set_rate_and_parent = clk_edp_pixel_set_rate_and_parent,
.determine_rate = clk_edp_pixel_determine_rate,
.list_registers = clk_rcg2_list_registers,
};
EXPORT_SYMBOL_GPL(clk_edp_pixel_ops);
static int clk_byte_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
const struct freq_tbl *f = rcg->freq_tbl;
int index = qcom_find_src_index(hw, rcg->parent_map, f->src);
unsigned long parent_rate, div;
u32 mask = BIT(rcg->hid_width) - 1;
struct clk_hw *p;
if (req->rate == 0)
return -EINVAL;
req->best_parent_hw = p = clk_hw_get_parent_by_index(hw, index);
req->best_parent_rate = parent_rate = clk_hw_round_rate(p, req->rate);
div = DIV_ROUND_UP((2 * parent_rate), req->rate) - 1;
div = min_t(u32, div, mask);
req->rate = clk_rcg2_calc_rate(parent_rate, 0, 0, 0, div);
return 0;
}
static int clk_byte_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct freq_tbl f = *rcg->freq_tbl;
unsigned long div;
u32 mask = BIT(rcg->hid_width) - 1;
div = DIV_ROUND_UP((2 * parent_rate), rate) - 1;
div = min_t(u32, div, mask);
f.pre_div = div;
return clk_rcg2_configure(rcg, &f);
}
static int clk_byte_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate, u8 index)
{
/* Parent index is set statically in frequency table */
return clk_byte_set_rate(hw, rate, parent_rate);
}
const struct clk_ops clk_byte_ops = {
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.set_rate = clk_byte_set_rate,
.set_rate_and_parent = clk_byte_set_rate_and_parent,
.determine_rate = clk_byte_determine_rate,
.list_registers = clk_rcg2_list_registers,
};
EXPORT_SYMBOL_GPL(clk_byte_ops);
static int clk_byte2_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
unsigned long parent_rate, div;
u32 mask = BIT(rcg->hid_width) - 1;
struct clk_hw *p;
unsigned long rate = req->rate;
if (rate == 0)
return -EINVAL;
p = req->best_parent_hw;
req->best_parent_rate = parent_rate = clk_hw_round_rate(p, rate);
div = DIV_ROUND_UP((2 * parent_rate), rate) - 1;
div = min_t(u32, div, mask);
req->rate = clk_rcg2_calc_rate(parent_rate, 0, 0, 0, div);
return 0;
}
static int clk_byte2_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct freq_tbl f = { 0 };
unsigned long div;
int i, num_parents = clk_hw_get_num_parents(hw);
u32 mask = BIT(rcg->hid_width) - 1;
u32 cfg;
div = DIV_ROUND_UP((2 * parent_rate), rate) - 1;
div = min_t(u32, div, mask);
f.pre_div = div;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg);
cfg &= CFG_SRC_SEL_MASK;
cfg >>= CFG_SRC_SEL_SHIFT;
for (i = 0; i < num_parents; i++) {
if (cfg == rcg->parent_map[i].cfg) {
f.src = rcg->parent_map[i].src;
if (clk_rcg2_current_config(rcg, &f))
return 0;
return clk_rcg2_configure(rcg, &f);
}
}
return -EINVAL;
}
static int clk_byte2_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate, u8 index)
{
/* Read the hardware to determine parent during set_rate */
return clk_byte2_set_rate(hw, rate, parent_rate);
}
const struct clk_ops clk_byte2_ops = {
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.set_rate = clk_byte2_set_rate,
.set_rate_and_parent = clk_byte2_set_rate_and_parent,
.determine_rate = clk_byte2_determine_rate,
.list_registers = clk_rcg2_list_registers,
};
EXPORT_SYMBOL_GPL(clk_byte2_ops);
static const struct frac_entry frac_table_pixel[] = {
{ 1, 1 },
{ 2, 3 },
{ 4, 9 },
{ 3, 8 },
{ 2, 9 },
{ }
};
static int clk_pixel_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
unsigned long request, src_rate;
int delta = 100000;
const struct frac_entry *frac = frac_table_pixel;
for (; frac->num; frac++) {
request = (req->rate * frac->den) / frac->num;
src_rate = clk_hw_round_rate(req->best_parent_hw, request);
if ((src_rate < (request - delta)) ||
(src_rate > (request + delta)))
continue;
req->best_parent_rate = src_rate;
req->rate = (src_rate * frac->num) / frac->den;
return 0;
}
return -EINVAL;
}
static int clk_pixel_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct freq_tbl f = { 0 };
const struct frac_entry *frac = frac_table_pixel;
unsigned long request;
int delta = 100000;
u32 mask = BIT(rcg->hid_width) - 1;
u32 hid_div, cfg;
int i, num_parents = clk_hw_get_num_parents(hw);
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg);
cfg &= CFG_SRC_SEL_MASK;
cfg >>= CFG_SRC_SEL_SHIFT;
for (i = 0; i < num_parents; i++)
if (cfg == rcg->parent_map[i].cfg) {
f.src = rcg->parent_map[i].src;
break;
}
for (; frac->num; frac++) {
request = (rate * frac->den) / frac->num;
if ((parent_rate < (request - delta)) ||
(parent_rate > (request + delta)))
continue;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG,
&hid_div);
f.pre_div = hid_div;
f.pre_div >>= CFG_SRC_DIV_SHIFT;
f.pre_div &= mask;
f.m = frac->num;
f.n = frac->den;
return clk_rcg2_configure(rcg, &f);
}
return -EINVAL;
}
static int clk_pixel_set_rate_and_parent(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate, u8 index)
{
return clk_pixel_set_rate(hw, rate, parent_rate);
}
const struct clk_ops clk_pixel_ops = {
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.set_rate = clk_pixel_set_rate,
.set_rate_and_parent = clk_pixel_set_rate_and_parent,
.determine_rate = clk_pixel_determine_rate,
.list_registers = clk_rcg2_list_registers,
};
EXPORT_SYMBOL_GPL(clk_pixel_ops);
static int clk_dp_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct clk_hw *parent = clk_hw_get_parent(hw);
struct freq_tbl f = { 0 };
unsigned long src_rate;
unsigned long num, den;
u32 mask = BIT(rcg->hid_width) - 1;
u32 hid_div, cfg;
int i, num_parents = clk_hw_get_num_parents(hw);
if (!parent) {
pr_err("RCG parent isn't initialized\n");
return -EINVAL;
}
src_rate = clk_get_rate(parent->clk);
if (src_rate <= 0) {
pr_err("Invalid RCG parent rate\n");
return -EINVAL;
}
rational_best_approximation(src_rate, rate,
(unsigned long)(1 << 16) - 1,
(unsigned long)(1 << 16) - 1, &den, &num);
if (!num || !den) {
pr_err("Invalid MN values derived for requested rate %lu\n",
rate);
return -EINVAL;
}
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg);
hid_div = cfg;
cfg &= CFG_SRC_SEL_MASK;
cfg >>= CFG_SRC_SEL_SHIFT;
for (i = 0; i < num_parents; i++)
if (cfg == rcg->parent_map[i].cfg) {
f.src = rcg->parent_map[i].src;
break;
}
f.pre_div = hid_div;
f.pre_div >>= CFG_SRC_DIV_SHIFT;
f.pre_div &= mask;
if (num == den) {
f.m = 0;
f.n = 0;
} else {
f.m = num;
f.n = den;
}
return clk_rcg2_configure(rcg, &f);
}
static int clk_dp_set_rate_and_parent(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate, u8 index)
{
return clk_dp_set_rate(hw, rate, parent_rate);
}
static int clk_dp_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
req->best_parent_rate = clk_hw_round_rate(req->best_parent_hw,
req->best_parent_rate);
return 0;
}
const struct clk_ops clk_dp_ops = {
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.set_rate = clk_dp_set_rate,
.set_rate_and_parent = clk_dp_set_rate_and_parent,
.determine_rate = clk_dp_determine_rate,
.list_registers = clk_rcg2_list_registers,
};
EXPORT_SYMBOL_GPL(clk_dp_ops);
static int clk_gfx3d_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rate_request parent_req = { };
struct clk_hw *p2, *p8, *p9, *xo;
unsigned long p9_rate;
int ret;
xo = clk_hw_get_parent_by_index(hw, 0);
if (req->rate == clk_hw_get_rate(xo)) {
req->best_parent_hw = xo;
return 0;
}
p9 = clk_hw_get_parent_by_index(hw, 2);
p2 = clk_hw_get_parent_by_index(hw, 3);
p8 = clk_hw_get_parent_by_index(hw, 4);
/* PLL9 is a fixed rate PLL */
p9_rate = clk_hw_get_rate(p9);
parent_req.rate = req->rate = min(req->rate, p9_rate);
if (req->rate == p9_rate) {
req->rate = req->best_parent_rate = p9_rate;
req->best_parent_hw = p9;
return 0;
}
if (req->best_parent_hw == p9) {
/* Are we going back to a previously used rate? */
if (clk_hw_get_rate(p8) == req->rate)
req->best_parent_hw = p8;
else
req->best_parent_hw = p2;
} else if (req->best_parent_hw == p8) {
req->best_parent_hw = p2;
} else {
req->best_parent_hw = p8;
}
ret = __clk_determine_rate(req->best_parent_hw, &parent_req);
if (ret)
return ret;
req->rate = req->best_parent_rate = parent_req.rate;
return 0;
}
static int clk_gfx3d_set_rate_and_parent(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate, u8 index)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
u32 cfg;
int ret;
/* Just mux it, we don't use the division or m/n hardware */
cfg = rcg->parent_map[index].cfg << CFG_SRC_SEL_SHIFT;
ret = regmap_write(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, cfg);
if (ret)
return ret;
return update_config(rcg);
}
static int clk_gfx3d_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
/*
* We should never get here; clk_gfx3d_determine_rate() should always
* make us use a different parent than what we're currently using, so
* clk_gfx3d_set_rate_and_parent() should always be called.
*/
return 0;
}
const struct clk_ops clk_gfx3d_ops = {
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.set_rate = clk_gfx3d_set_rate,
.set_rate_and_parent = clk_gfx3d_set_rate_and_parent,
.determine_rate = clk_gfx3d_determine_rate,
.list_registers = clk_rcg2_list_registers,
};
EXPORT_SYMBOL_GPL(clk_gfx3d_ops);
static int clk_esc_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
unsigned long parent_rate, div;
u32 mask = BIT(rcg->hid_width) - 1;
struct clk_hw *p;
unsigned long rate = req->rate;
if (rate == 0)
return -EINVAL;
p = req->best_parent_hw;
req->best_parent_rate = parent_rate = clk_hw_round_rate(p, rate);
div = ((2 * parent_rate) / rate) - 1;
div = min_t(u32, div, mask);
req->rate = clk_rcg2_calc_rate(parent_rate, 0, 0, 0, div);
return 0;
}
static int clk_esc_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct freq_tbl f = { 0 };
unsigned long div;
int i, num_parents = clk_hw_get_num_parents(hw);
u32 mask = BIT(rcg->hid_width) - 1;
u32 cfg;
div = ((2 * parent_rate) / rate) - 1;
div = min_t(u32, div, mask);
f.pre_div = div;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg);
cfg &= CFG_SRC_SEL_MASK;
cfg >>= CFG_SRC_SEL_SHIFT;
for (i = 0; i < num_parents; i++) {
if (cfg == rcg->parent_map[i].cfg) {
f.src = rcg->parent_map[i].src;
return clk_rcg2_configure(rcg, &f);
}
}
return -EINVAL;
}
static int clk_esc_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate, u8 index)
{
return clk_esc_set_rate(hw, rate, parent_rate);
}
const struct clk_ops clk_esc_ops = {
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.determine_rate = clk_esc_determine_rate,
.set_rate = clk_esc_set_rate,
.set_rate_and_parent = clk_esc_set_rate_and_parent,
.list_registers = clk_rcg2_list_registers,
};
EXPORT_SYMBOL(clk_esc_ops);
/* Common APIs to be used for DFS based RCGR */
static u8 clk_parent_index_pre_div_and_mode(struct clk_hw *hw, u32 offset,
u32 *mode, u32 *pre_div)
{
struct clk_rcg2 *rcg;
int num_parents;
u32 cfg, mask;
int i, ret;
if (!hw)
return -EINVAL;
num_parents = clk_hw_get_num_parents(hw);
rcg = to_clk_rcg2(hw);
ret = regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + offset, &cfg);
if (ret)
goto err;
mask = BIT(rcg->hid_width) - 1;
*pre_div = cfg & mask ? (cfg & mask) : 1;
*mode = cfg & CFG_MODE_MASK;
*mode >>= CFG_MODE_SHIFT;
cfg &= CFG_SRC_SEL_MASK;
cfg >>= CFG_SRC_SEL_SHIFT;
for (i = 0; i < num_parents; i++)
if (cfg == rcg->parent_map[i].cfg)
return i;
err:
pr_debug("Clock %s has invalid parent, using default.\n",
clk_hw_get_name(hw));
return 0;
}
static int calculate_m_and_n(struct clk_hw *hw, u32 m_offset, u32 n_offset,
u32 mode, u32 *m, u32 *n)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
u32 val, mask;
int ret = 0;
if (!hw)
return -EINVAL;
*m = *n = 0;
if (mode) {
/* Calculate M & N values */
mask = BIT(rcg->mnd_width) - 1;
ret = regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + m_offset,
&val);
if (ret) {
pr_err("Failed to read M offset register\n");
goto err;
}
val &= mask;
*m = val;
ret = regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + n_offset,
&val);
if (ret) {
pr_err("Failed to read N offset register\n");
goto err;
}
/* val ~(N-M) */
val = ~val;
val &= mask;
val += *m;
*n = val;
}
err:
return ret;
}
int clk_rcg2_get_dfs_clock_rate(struct clk_rcg2 *clk, struct device *dev,
u8 rcg_flags)
{
int i, j, index, ret = 0;
unsigned long calc_freq, prate;
u32 val, pre_div = 0, mode = 0, m = 0, n = 0;
struct freq_tbl *dfs_freq_tbl;
struct clk_hw *phw;
if (!clk)
return -EINVAL;
/* Check for DFS_EN */
ret = regmap_read(clk->clkr.regmap, clk->cmd_rcgr + SE_CMD_DFSR_OFFSET,
&val);
if (ret) {
dev_err(dev, "Failed to read DFS enable register\n");
return -EINVAL;
}
if (!(val & SE_CMD_DFS_EN))
return ret;
dfs_freq_tbl = devm_kzalloc(dev, MAX_PERF_LEVEL *
sizeof(struct freq_tbl), GFP_KERNEL);
if (!dfs_freq_tbl)
return -ENOMEM;
/* Populate the Perf Level */
for (i = 0; i < MAX_PERF_LEVEL; i++) {
/* Get parent index and mode */
index = clk_parent_index_pre_div_and_mode(&clk->clkr.hw,
SE_PERF_DFSR(i), &mode,
&pre_div);
if (index < 0) {
pr_err("Failed to get parent index & mode %d\n", index);
return index;
}
/* clock pre_div */
dfs_freq_tbl[i].pre_div = pre_div;
/* Fill the parent src */
dfs_freq_tbl[i].src = clk->parent_map[index].src;
/* Get the parent clock and parent rate */
phw = clk_hw_get_parent_by_index(&clk->clkr.hw, index);
prate = clk_hw_get_rate(phw);
ret = calculate_m_and_n(&clk->clkr.hw, SE_PERF_M_DFSR(i),
SE_PERF_N_DFSR(i), mode, &m, &n);
if (ret)
goto err;
dfs_freq_tbl[i].m = m;
dfs_freq_tbl[i].n = n;
/* calculate the final frequency */
calc_freq = clk_rcg2_calc_rate(prate, dfs_freq_tbl[i].m,
dfs_freq_tbl[i].n, mode,
dfs_freq_tbl[i].pre_div);
/* Check for duplicate frequencies */
for (j = 0; j < i; j++) {
if (dfs_freq_tbl[j].freq == calc_freq)
goto done;
}
dfs_freq_tbl[i].freq = calc_freq;
}
done:
j = i;
for (i = 0; i < j; i++)
pr_debug("Index[%d]\tfreq_table.freq %ld\tfreq_table.src %d\t"
"freq_table.pre_div %d\tfreq_table.m %d\tfreq_table.n %d\t"
"RCG flags %x\n", i, dfs_freq_tbl[i].freq, dfs_freq_tbl[i].src,
dfs_freq_tbl[i].pre_div, dfs_freq_tbl[i].m,
dfs_freq_tbl[i].n, rcg_flags);
/* Skip the safe configuration if DFS has been enabled for the RCG. */
if (clk->enable_safe_config)
clk->enable_safe_config = false;
clk->flags |= rcg_flags;
clk->freq_tbl = dfs_freq_tbl;
err:
return ret;
}