blob: 3e625fe2f6efa5fc2ae2ada07a3e74f7a039d801 [file] [log] [blame]
/*
* Copyright (c) 2014-2020, The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include <linux/kthread.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/sde_rsc.h>
#include "msm_drv.h"
#include "sde_kms.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "sde_hwio.h"
#include "sde_hw_catalog.h"
#include "sde_hw_intf.h"
#include "sde_hw_ctl.h"
#include "sde_formats.h"
#include "sde_encoder_phys.h"
#include "sde_power_handle.h"
#include "sde_hw_dsc.h"
#include "sde_crtc.h"
#include "sde_trace.h"
#include "sde_core_irq.h"
#define SDE_DEBUG_ENC(e, fmt, ...) SDE_DEBUG("enc%d " fmt,\
(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
#define SDE_ERROR_ENC(e, fmt, ...) SDE_ERROR("enc%d " fmt,\
(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
#define SDE_DEBUG_PHYS(p, fmt, ...) SDE_DEBUG("enc%d intf%d pp%d " fmt,\
(p) ? (p)->parent->base.id : -1, \
(p) ? (p)->intf_idx - INTF_0 : -1, \
(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
##__VA_ARGS__)
#define SDE_ERROR_PHYS(p, fmt, ...) SDE_ERROR("enc%d intf%d pp%d " fmt,\
(p) ? (p)->parent->base.id : -1, \
(p) ? (p)->intf_idx - INTF_0 : -1, \
(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
##__VA_ARGS__)
/*
* Two to anticipate panels that can do cmd/vid dynamic switching
* plan is to create all possible physical encoder types, and switch between
* them at runtime
*/
#define NUM_PHYS_ENCODER_TYPES 2
#define MAX_PHYS_ENCODERS_PER_VIRTUAL \
(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
#define MAX_CHANNELS_PER_ENC 4
#define MISR_BUFF_SIZE 256
#define IDLE_SHORT_TIMEOUT 1
#define FAULT_TOLERENCE_DELTA_IN_MS 2
#define FAULT_TOLERENCE_WAIT_IN_MS 5
/* Maximum number of VSYNC wait attempts for RSC state transition */
#define MAX_RSC_WAIT 5
#define TOPOLOGY_DUALPIPE_MERGE_MODE(x) \
(((x) == SDE_RM_TOPOLOGY_DUALPIPE_DSCMERGE) || \
((x) == SDE_RM_TOPOLOGY_DUALPIPE_3DMERGE) || \
((x) == SDE_RM_TOPOLOGY_DUALPIPE_3DMERGE_DSC))
/**
* enum sde_enc_rc_events - events for resource control state machine
* @SDE_ENC_RC_EVENT_KICKOFF:
* This event happens at NORMAL priority.
* Event that signals the start of the transfer. When this event is
* received, enable MDP/DSI core clocks and request RSC with CMD state.
* Regardless of the previous state, the resource should be in ON state
* at the end of this event.
* @SDE_ENC_RC_EVENT_FRAME_DONE:
* This event happens at INTERRUPT level.
* Event signals the end of the data transfer after the PP FRAME_DONE
* event. At the end of this event, a delayed work is scheduled to go to
* IDLE_PC state after IDLE_POWERCOLLAPSE_DURATION time.
* @SDE_ENC_RC_EVENT_PRE_STOP:
* This event happens at NORMAL priority.
* This event, when received during the ON state, set RSC to IDLE, and
* and leave the RC STATE in the PRE_OFF state.
* It should be followed by the STOP event as part of encoder disable.
* If received during IDLE or OFF states, it will do nothing.
* @SDE_ENC_RC_EVENT_STOP:
* This event happens at NORMAL priority.
* When this event is received, disable all the MDP/DSI core clocks, and
* disable IRQs. It should be called from the PRE_OFF or IDLE states.
* IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
* PRE_OFF is expected when PRE_STOP was executed during the ON state.
* Resource state should be in OFF at the end of the event.
* @SDE_ENC_RC_EVENT_PRE_MODESET:
* This event happens at NORMAL priority from a work item.
* Event signals that there is a seamless mode switch is in prgoress. A
* client needs to turn of only irq - leave clocks ON to reduce the mode
* switch latency.
* @SDE_ENC_RC_EVENT_POST_MODESET:
* This event happens at NORMAL priority from a work item.
* Event signals that seamless mode switch is complete and resources are
* acquired. Clients wants to turn on the irq again and update the rsc
* with new vtotal.
* @SDE_ENC_RC_EVENT_ENTER_IDLE:
* This event happens at NORMAL priority from a work item.
* Event signals that there were no frame updates for
* IDLE_POWERCOLLAPSE_DURATION time. This would disable MDP/DSI core clocks
* and request RSC with IDLE state and change the resource state to IDLE.
* @SDE_ENC_RC_EVENT_EARLY_WAKEUP:
* This event is triggered from the input event thread when touch event is
* received from the input device. On receiving this event,
* - If the device is in SDE_ENC_RC_STATE_IDLE state, it turns ON the
clocks and enable RSC.
* - If the device is in SDE_ENC_RC_STATE_ON state, it resets the delayed
* off work since a new commit is imminent.
*/
enum sde_enc_rc_events {
SDE_ENC_RC_EVENT_KICKOFF = 1,
SDE_ENC_RC_EVENT_FRAME_DONE,
SDE_ENC_RC_EVENT_PRE_STOP,
SDE_ENC_RC_EVENT_STOP,
SDE_ENC_RC_EVENT_PRE_MODESET,
SDE_ENC_RC_EVENT_POST_MODESET,
SDE_ENC_RC_EVENT_ENTER_IDLE,
SDE_ENC_RC_EVENT_EARLY_WAKEUP,
};
/*
* enum sde_enc_rc_states - states that the resource control maintains
* @SDE_ENC_RC_STATE_OFF: Resource is in OFF state
* @SDE_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
* @SDE_ENC_RC_STATE_ON: Resource is in ON state
* @SDE_ENC_RC_STATE_MODESET: Resource is in modeset state
* @SDE_ENC_RC_STATE_IDLE: Resource is in IDLE state
*/
enum sde_enc_rc_states {
SDE_ENC_RC_STATE_OFF,
SDE_ENC_RC_STATE_PRE_OFF,
SDE_ENC_RC_STATE_ON,
SDE_ENC_RC_STATE_MODESET,
SDE_ENC_RC_STATE_IDLE
};
/* rgb to yuv color space conversion matrix */
static struct sde_csc_cfg sde_csc_10bit_convert[SDE_MAX_CSC] = {
[SDE_CSC_RGB2YUV_601L] = {
{
TO_S15D16(0x0083), TO_S15D16(0x0102), TO_S15D16(0x0032),
TO_S15D16(0xffb4), TO_S15D16(0xff6b), TO_S15D16(0x00e1),
TO_S15D16(0x00e1), TO_S15D16(0xff44), TO_S15D16(0xffdb),
},
{ 0x0, 0x0, 0x0,},
{ 0x0040, 0x0200, 0x0200,},
{ 0x0, 0x3ff, 0x0, 0x3ff, 0x0, 0x3ff,},
{ 0x0040, 0x03ac, 0x0040, 0x03c0, 0x0040, 0x03c0,},
},
[SDE_CSC_RGB2YUV_601FR] = {
{
TO_S15D16(0x0099), TO_S15D16(0x012d), TO_S15D16(0x003a),
TO_S15D16(0xffaa), TO_S15D16(0xff56), TO_S15D16(0x0100),
TO_S15D16(0x0100), TO_S15D16(0xff2a), TO_S15D16(0xffd6),
},
{ 0x0, 0x0, 0x0,},
{ 0x0000, 0x0200, 0x0200,},
{ 0x0, 0x3ff, 0x0, 0x3ff, 0x0, 0x3ff,},
{ 0x0, 0x3ff, 0x0, 0x3ff, 0x0, 0x3ff,},
},
[SDE_CSC_RGB2YUV_709L] = {
{
TO_S15D16(0x005d), TO_S15D16(0x013a), TO_S15D16(0x0020),
TO_S15D16(0xffcc), TO_S15D16(0xff53), TO_S15D16(0x00e1),
TO_S15D16(0x00e1), TO_S15D16(0xff34), TO_S15D16(0xffeb),
},
{ 0x0, 0x0, 0x0,},
{ 0x0040, 0x0200, 0x0200,},
{ 0x0, 0x3ff, 0x0, 0x3ff, 0x0, 0x3ff,},
{ 0x0040, 0x03ac, 0x0040, 0x03c0, 0x0040, 0x03c0,},
},
[SDE_CSC_RGB2YUV_709FR] = {
{
TO_S15D16(0x006d), TO_S15D16(0x016e), TO_S15D16(0x0025),
TO_S15D16(0xffc5), TO_S15D16(0xff3b), TO_S15D16(0x0100),
TO_S15D16(0x0100), TO_S15D16(0xff17), TO_S15D16(0xffe9),
},
{ 0x0, 0x0, 0x0,},
{ 0x0040, 0x0200, 0x0200,},
{ 0x0, 0x3ff, 0x0, 0x3ff, 0x0, 0x3ff,},
{ 0x0, 0x3ff, 0x0, 0x3ff, 0x0, 0x3ff,},
},
[SDE_CSC_RGB2YUV_2020L] = {
{
TO_S15D16(0x0073), TO_S15D16(0x0129), TO_S15D16(0x001a),
TO_S15D16(0xffc1), TO_S15D16(0xff5e), TO_S15D16(0x00e0),
TO_S15D16(0x00e0), TO_S15D16(0xff32), TO_S15D16(0xffee),
},
{ 0x0, 0x0, 0x0,},
{ 0x0040, 0x0200, 0x0200,},
{ 0x0, 0x3ff, 0x0, 0x3ff, 0x0, 0x3ff,},
{ 0x0040, 0x03ac, 0x0040, 0x03c0, 0x0040, 0x03c0,},
},
[SDE_CSC_RGB2YUV_2020FR] = {
{
TO_S15D16(0x0086), TO_S15D16(0x015b), TO_S15D16(0x001e),
TO_S15D16(0xffb9), TO_S15D16(0xff47), TO_S15D16(0x0100),
TO_S15D16(0x0100), TO_S15D16(0xff15), TO_S15D16(0xffeb),
},
{ 0x0, 0x0, 0x0,},
{ 0x0, 0x0200, 0x0200,},
{ 0x0, 0x3ff, 0x0, 0x3ff, 0x0, 0x3ff,},
{ 0x0, 0x3ff, 0x0, 0x3ff, 0x0, 0x3ff,},
},
[SDE_CSC_RGB2RGB_L] = {
{
TO_S15D16(0x01b7), TO_S15D16(0x0000), TO_S15D16(0x0000),
TO_S15D16(0x0000), TO_S15D16(0x01b7), TO_S15D16(0x0000),
TO_S15D16(0x0000), TO_S15D16(0x0000), TO_S15D16(0x01b7),
},
{ 0x0, 0x0, 0x0,},
{ 0x0040, 0x0040, 0x0040,},
{ 0x0, 0x3ff, 0x0, 0x3ff, 0x0, 0x3ff,},
{ 0x40, 0x3ac, 0x40, 0x3ac, 0x40, 0x3ac,},
},
[SDE_CSC_RGB2RGB_FR] = {
{
TO_S15D16(0x0200), TO_S15D16(0x0000), TO_S15D16(0x0000),
TO_S15D16(0x0000), TO_S15D16(0x0200), TO_S15D16(0x0000),
TO_S15D16(0x0000), TO_S15D16(0x0000), TO_S15D16(0x0200),
},
{ 0x0, 0x0, 0x0,},
{ 0x0, 0x0, 0x0,},
{ 0x0, 0x3ff, 0x0, 0x3ff, 0x0, 0x3ff,},
{ 0x0, 0x3ff, 0x0, 0x3ff, 0x0, 0x3ff,},
}
};
/**
* struct sde_encoder_virt - virtual encoder. Container of one or more physical
* encoders. Virtual encoder manages one "logical" display. Physical
* encoders manage one intf block, tied to a specific panel/sub-panel.
* Virtual encoder defers as much as possible to the physical encoders.
* Virtual encoder registers itself with the DRM Framework as the encoder.
* @base: drm_encoder base class for registration with DRM
* @enc_spin_lock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
* @bus_scaling_client: Client handle to the bus scaling interface
* @num_phys_encs: Actual number of physical encoders contained.
* @phys_encs: Container of physical encoders managed.
* @cur_master: Pointer to the current master in this mode. Optimization
* Only valid after enable. Cleared as disable.
* @hw_pp Handle to the pingpong blocks used for the display. No.
* pingpong blocks can be different than num_phys_encs.
* @hw_dsc: Array of DSC block handles used for the display.
* @intfs_swapped Whether or not the phys_enc interfaces have been swapped
* for partial update right-only cases, such as pingpong
* split where virtual pingpong does not generate IRQs
* @crtc_vblank_cb: Callback into the upper layer / CRTC for
* notification of the VBLANK
* @crtc_vblank_cb_data: Data from upper layer for VBLANK notification
* @crtc_kickoff_cb: Callback into CRTC that will flush & start
* all CTL paths
* @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb
* @debugfs_root: Debug file system root file node
* @enc_lock: Lock around physical encoder create/destroy and
access.
* @frame_busy_mask: Bitmask tracking which phys_enc we are still
* busy processing current command.
* Bit0 = phys_encs[0] etc.
* @crtc_frame_event_cb: callback handler for frame event
* @crtc_frame_event_cb_data: callback handler private data
* @vsync_event_timer: vsync timer
* @rsc_client: rsc client pointer
* @rsc_state_init: boolean to indicate rsc config init
* @disp_info: local copy of msm_display_info struct
* @misr_enable: misr enable/disable status
* @misr_frame_count: misr frame count before start capturing the data
* @idle_pc_enabled: indicate if idle power collapse is enabled
* currently. This can be controlled by user-mode
* @rc_lock: resource control mutex lock to protect
* virt encoder over various state changes
* @rc_state: resource controller state
* @delayed_off_work: delayed worker to schedule disabling of
* clks and resources after IDLE_TIMEOUT time.
* @vsync_event_work: worker to handle vsync event for autorefresh
* @input_event_work: worker to handle input device touch events
* @esd_trigger_work: worker to handle esd trigger events
* @input_handler: handler for input device events
* @topology: topology of the display
* @vblank_enabled: boolean to track userspace vblank vote
* @rsc_config: rsc configuration for display vtotal, fps, etc.
* @cur_conn_roi: current connector roi
* @prv_conn_roi: previous connector roi to optimize if unchanged
* @crtc pointer to drm_crtc
*/
struct sde_encoder_virt {
struct drm_encoder base;
spinlock_t enc_spinlock;
struct mutex vblank_ctl_lock;
uint32_t bus_scaling_client;
uint32_t display_num_of_h_tiles;
unsigned int num_phys_encs;
struct sde_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
struct sde_encoder_phys *cur_master;
struct sde_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
struct sde_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
bool intfs_swapped;
void (*crtc_vblank_cb)(void *);
void *crtc_vblank_cb_data;
struct dentry *debugfs_root;
struct mutex enc_lock;
DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
void (*crtc_frame_event_cb)(void *, u32 event);
struct sde_crtc_frame_event_cb_data crtc_frame_event_cb_data;
struct timer_list vsync_event_timer;
struct sde_rsc_client *rsc_client;
bool rsc_state_init;
struct msm_display_info disp_info;
bool misr_enable;
u32 misr_frame_count;
bool idle_pc_enabled;
struct mutex rc_lock;
enum sde_enc_rc_states rc_state;
struct kthread_delayed_work delayed_off_work;
struct kthread_work vsync_event_work;
struct kthread_work input_event_work;
struct kthread_work esd_trigger_work;
struct input_handler *input_handler;
bool input_handler_registered;
struct msm_display_topology topology;
bool vblank_enabled;
struct sde_rsc_cmd_config rsc_config;
struct sde_rect cur_conn_roi;
struct sde_rect prv_conn_roi;
struct drm_crtc *crtc;
bool elevated_ahb_vote;
};
#define to_sde_encoder_virt(x) container_of(x, struct sde_encoder_virt, base)
static void _sde_encoder_pm_qos_add_request(struct drm_encoder *drm_enc)
{
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct pm_qos_request *req;
u32 cpu_mask;
u32 cpu_dma_latency;
int cpu;
if (!drm_enc->dev || !drm_enc->dev->dev_private) {
SDE_ERROR("drm device invalid\n");
return;
}
priv = drm_enc->dev->dev_private;
if (!priv->kms) {
SDE_ERROR("invalid kms\n");
return;
}
sde_kms = to_sde_kms(priv->kms);
if (!sde_kms || !sde_kms->catalog)
return;
cpu_mask = sde_kms->catalog->perf.cpu_mask;
cpu_dma_latency = sde_kms->catalog->perf.cpu_dma_latency;
if (!cpu_mask)
return;
req = &sde_kms->pm_qos_cpu_req;
req->type = PM_QOS_REQ_AFFINE_CORES;
cpumask_empty(&req->cpus_affine);
for_each_possible_cpu(cpu) {
if ((1 << cpu) & cpu_mask)
cpumask_set_cpu(cpu, &req->cpus_affine);
}
pm_qos_add_request(req, PM_QOS_CPU_DMA_LATENCY, cpu_dma_latency);
SDE_EVT32_VERBOSE(DRMID(drm_enc), cpu_mask, cpu_dma_latency);
}
static void _sde_encoder_pm_qos_remove_request(struct drm_encoder *drm_enc)
{
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
if (!drm_enc->dev || !drm_enc->dev->dev_private) {
SDE_ERROR("drm device invalid\n");
return;
}
priv = drm_enc->dev->dev_private;
if (!priv->kms) {
SDE_ERROR("invalid kms\n");
return;
}
sde_kms = to_sde_kms(priv->kms);
if (!sde_kms || !sde_kms->catalog || !sde_kms->catalog->perf.cpu_mask)
return;
pm_qos_remove_request(&sde_kms->pm_qos_cpu_req);
}
static struct drm_connector_state *_sde_encoder_get_conn_state(
struct drm_encoder *drm_enc)
{
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct list_head *connector_list;
struct drm_connector *conn_iter;
if (!drm_enc) {
SDE_ERROR("invalid argument\n");
return NULL;
}
priv = drm_enc->dev->dev_private;
sde_kms = to_sde_kms(priv->kms);
connector_list = &sde_kms->dev->mode_config.connector_list;
list_for_each_entry(conn_iter, connector_list, head)
if (conn_iter->encoder == drm_enc)
return conn_iter->state;
return NULL;
}
static int _sde_encoder_get_mode_info(struct drm_encoder *drm_enc,
struct msm_mode_info *mode_info)
{
struct drm_connector_state *conn_state;
if (!drm_enc || !mode_info) {
SDE_ERROR("invalid arguments\n");
return -EINVAL;
}
conn_state = _sde_encoder_get_conn_state(drm_enc);
if (!conn_state) {
SDE_ERROR("invalid connector state for the encoder: %d\n",
drm_enc->base.id);
return -EINVAL;
}
return sde_connector_get_mode_info(conn_state, mode_info);
}
static bool _sde_encoder_is_dsc_enabled(struct drm_encoder *drm_enc)
{
struct msm_compression_info *comp_info;
struct msm_mode_info mode_info;
int rc = 0;
if (!drm_enc)
return false;
rc = _sde_encoder_get_mode_info(drm_enc, &mode_info);
if (rc) {
SDE_ERROR("failed to get mode info, enc: %d\n",
drm_enc->base.id);
return false;
}
comp_info = &mode_info.comp_info;
return (comp_info->comp_type == MSM_DISPLAY_COMPRESSION_DSC);
}
bool sde_encoder_is_dsc_merge(struct drm_encoder *drm_enc)
{
enum sde_rm_topology_name topology;
struct sde_encoder_virt *sde_enc;
struct drm_connector *drm_conn;
if (!drm_enc)
return false;
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc->cur_master)
return false;
drm_conn = sde_enc->cur_master->connector;
if (!drm_conn)
return false;
topology = sde_connector_get_topology_name(drm_conn);
if (topology == SDE_RM_TOPOLOGY_DUALPIPE_DSCMERGE ||
topology == SDE_RM_TOPOLOGY_QUADPIPE_DSCMERGE)
return true;
return false;
}
int sde_encoder_in_clone_mode(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
return sde_enc && sde_enc->cur_master &&
sde_enc->cur_master->in_clone_mode;
}
static inline int _sde_encoder_power_enable(struct sde_encoder_virt *sde_enc,
bool enable)
{
struct drm_encoder *drm_enc;
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
if (!sde_enc) {
SDE_ERROR("invalid sde enc\n");
return -EINVAL;
}
drm_enc = &sde_enc->base;
if (!drm_enc->dev || !drm_enc->dev->dev_private) {
SDE_ERROR("drm device invalid\n");
return -EINVAL;
}
priv = drm_enc->dev->dev_private;
if (!priv->kms) {
SDE_ERROR("invalid kms\n");
return -EINVAL;
}
sde_kms = to_sde_kms(priv->kms);
return sde_power_resource_enable(&priv->phandle, sde_kms->core_client,
enable);
}
void sde_encoder_helper_report_irq_timeout(struct sde_encoder_phys *phys_enc,
enum sde_intr_idx intr_idx)
{
SDE_EVT32(DRMID(phys_enc->parent),
phys_enc->intf_idx - INTF_0,
phys_enc->hw_pp->idx - PINGPONG_0,
intr_idx);
SDE_ERROR_PHYS(phys_enc, "irq %d timeout\n", intr_idx);
if (phys_enc->parent_ops.handle_frame_done)
phys_enc->parent_ops.handle_frame_done(
phys_enc->parent, phys_enc,
SDE_ENCODER_FRAME_EVENT_ERROR);
}
int sde_encoder_helper_wait_for_irq(struct sde_encoder_phys *phys_enc,
enum sde_intr_idx intr_idx,
struct sde_encoder_wait_info *wait_info)
{
struct sde_encoder_irq *irq;
u32 irq_status;
int ret;
if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) {
SDE_ERROR("invalid params\n");
return -EINVAL;
}
irq = &phys_enc->irq[intr_idx];
/* note: do master / slave checking outside */
/* return EWOULDBLOCK since we know the wait isn't necessary */
if (phys_enc->enable_state == SDE_ENC_DISABLED) {
SDE_ERROR_PHYS(phys_enc, "encoder is disabled\n");
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, intr_idx, SDE_EVTLOG_ERROR);
return -EWOULDBLOCK;
}
if (irq->irq_idx < 0) {
SDE_DEBUG_PHYS(phys_enc, "irq %s hw %d disabled, skip wait\n",
irq->name, irq->hw_idx);
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx);
return 0;
}
SDE_DEBUG_PHYS(phys_enc, "pending_cnt %d\n",
atomic_read(wait_info->atomic_cnt));
SDE_EVT32_VERBOSE(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt), SDE_EVTLOG_FUNC_ENTRY);
ret = sde_encoder_helper_wait_event_timeout(
DRMID(phys_enc->parent),
irq->hw_idx,
wait_info);
if (ret <= 0) {
irq_status = sde_core_irq_read(phys_enc->sde_kms,
irq->irq_idx, true);
if (irq_status) {
unsigned long flags;
SDE_EVT32(DRMID(phys_enc->parent), intr_idx,
irq->hw_idx, irq->irq_idx,
phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt));
SDE_DEBUG_PHYS(phys_enc,
"done but irq %d not triggered\n",
irq->irq_idx);
local_irq_save(flags);
irq->cb.func(phys_enc, irq->irq_idx);
local_irq_restore(flags);
ret = 0;
} else {
ret = -ETIMEDOUT;
SDE_EVT32(DRMID(phys_enc->parent), intr_idx,
irq->hw_idx, irq->irq_idx,
phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt), irq_status,
SDE_EVTLOG_ERROR);
}
} else {
ret = 0;
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt));
}
SDE_EVT32_VERBOSE(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, ret, phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt), SDE_EVTLOG_FUNC_EXIT);
return ret;
}
int sde_encoder_helper_register_irq(struct sde_encoder_phys *phys_enc,
enum sde_intr_idx intr_idx)
{
struct sde_encoder_irq *irq;
int ret = 0;
if (!phys_enc || intr_idx >= INTR_IDX_MAX) {
SDE_ERROR("invalid params\n");
return -EINVAL;
}
irq = &phys_enc->irq[intr_idx];
if (irq->irq_idx >= 0) {
SDE_DEBUG_PHYS(phys_enc,
"skipping already registered irq %s type %d\n",
irq->name, irq->intr_type);
return 0;
}
irq->irq_idx = sde_core_irq_idx_lookup(phys_enc->sde_kms,
irq->intr_type, irq->hw_idx);
if (irq->irq_idx < 0) {
SDE_ERROR_PHYS(phys_enc,
"failed to lookup IRQ index for %s type:%d\n",
irq->name, irq->intr_type);
return -EINVAL;
}
ret = sde_core_irq_register_callback(phys_enc->sde_kms, irq->irq_idx,
&irq->cb);
if (ret) {
SDE_ERROR_PHYS(phys_enc,
"failed to register IRQ callback for %s\n",
irq->name);
irq->irq_idx = -EINVAL;
return ret;
}
ret = sde_core_irq_enable(phys_enc->sde_kms, &irq->irq_idx, 1);
if (ret) {
SDE_ERROR_PHYS(phys_enc,
"enable IRQ for intr:%s failed, irq_idx %d\n",
irq->name, irq->irq_idx);
sde_core_irq_unregister_callback(phys_enc->sde_kms,
irq->irq_idx, &irq->cb);
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, SDE_EVTLOG_ERROR);
irq->irq_idx = -EINVAL;
return ret;
}
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx);
SDE_DEBUG_PHYS(phys_enc, "registered irq %s idx: %d\n",
irq->name, irq->irq_idx);
return ret;
}
int sde_encoder_helper_unregister_irq(struct sde_encoder_phys *phys_enc,
enum sde_intr_idx intr_idx)
{
struct sde_encoder_irq *irq;
int ret;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
irq = &phys_enc->irq[intr_idx];
/* silently skip irqs that weren't registered */
if (irq->irq_idx < 0) {
SDE_ERROR(
"extra unregister irq, enc%d intr_idx:0x%x hw_idx:0x%x irq_idx:0x%x\n",
DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx);
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, SDE_EVTLOG_ERROR);
return 0;
}
ret = sde_core_irq_disable(phys_enc->sde_kms, &irq->irq_idx, 1);
if (ret)
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, ret, SDE_EVTLOG_ERROR);
ret = sde_core_irq_unregister_callback(phys_enc->sde_kms, irq->irq_idx,
&irq->cb);
if (ret)
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, ret, SDE_EVTLOG_ERROR);
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx);
SDE_DEBUG_PHYS(phys_enc, "unregistered %d\n", irq->irq_idx);
irq->irq_idx = -EINVAL;
return 0;
}
void sde_encoder_get_hw_resources(struct drm_encoder *drm_enc,
struct sde_encoder_hw_resources *hw_res,
struct drm_connector_state *conn_state)
{
struct sde_encoder_virt *sde_enc = NULL;
struct msm_mode_info mode_info;
int rc, i = 0;
if (!hw_res || !drm_enc || !conn_state) {
SDE_ERROR("invalid argument(s), drm_enc %d, res %d, state %d\n",
drm_enc != 0, hw_res != 0, conn_state != 0);
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
/* Query resources used by phys encs, expected to be without overlap */
memset(hw_res, 0, sizeof(*hw_res));
hw_res->display_num_of_h_tiles = sde_enc->display_num_of_h_tiles;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.get_hw_resources)
phys->ops.get_hw_resources(phys, hw_res, conn_state);
}
/**
* NOTE: Do not use sde_encoder_get_mode_info here as this function is
* called from atomic_check phase. Use the below API to get mode
* information of the temporary conn_state passed.
*/
rc = sde_connector_get_mode_info(conn_state, &mode_info);
if (rc) {
SDE_ERROR_ENC(sde_enc, "failed to get mode info\n");
return;
}
hw_res->topology = mode_info.topology;
hw_res->is_primary = sde_enc->disp_info.is_primary;
}
void sde_encoder_destroy(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
int i = 0;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
mutex_lock(&sde_enc->enc_lock);
sde_rsc_client_destroy(sde_enc->rsc_client);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.destroy) {
phys->ops.destroy(phys);
--sde_enc->num_phys_encs;
sde_enc->phys_encs[i] = NULL;
}
}
if (sde_enc->num_phys_encs)
SDE_ERROR_ENC(sde_enc, "expected 0 num_phys_encs not %d\n",
sde_enc->num_phys_encs);
sde_enc->num_phys_encs = 0;
mutex_unlock(&sde_enc->enc_lock);
drm_encoder_cleanup(drm_enc);
mutex_destroy(&sde_enc->enc_lock);
if (sde_enc->input_handler) {
kfree(sde_enc->input_handler);
sde_enc->input_handler = NULL;
sde_enc->input_handler_registered = false;
}
kfree(sde_enc);
}
void sde_encoder_helper_split_config(
struct sde_encoder_phys *phys_enc,
enum sde_intf interface)
{
struct sde_encoder_virt *sde_enc;
struct split_pipe_cfg cfg = { 0 };
struct sde_hw_mdp *hw_mdptop;
enum sde_rm_topology_name topology;
struct msm_display_info *disp_info;
if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) {
SDE_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0);
return;
}
sde_enc = to_sde_encoder_virt(phys_enc->parent);
hw_mdptop = phys_enc->hw_mdptop;
disp_info = &sde_enc->disp_info;
if (disp_info->intf_type != DRM_MODE_CONNECTOR_DSI)
return;
/**
* disable split modes since encoder will be operating in as the only
* encoder, either for the entire use case in the case of, for example,
* single DSI, or for this frame in the case of left/right only partial
* update.
*/
if (phys_enc->split_role == ENC_ROLE_SOLO) {
if (hw_mdptop->ops.setup_split_pipe)
hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
if (hw_mdptop->ops.setup_pp_split)
hw_mdptop->ops.setup_pp_split(hw_mdptop, &cfg);
return;
}
cfg.en = true;
cfg.mode = phys_enc->intf_mode;
cfg.intf = interface;
if (cfg.en && phys_enc->ops.needs_single_flush &&
phys_enc->ops.needs_single_flush(phys_enc))
cfg.split_flush_en = true;
topology = sde_connector_get_topology_name(phys_enc->connector);
if (topology == SDE_RM_TOPOLOGY_PPSPLIT)
cfg.pp_split_slave = cfg.intf;
else
cfg.pp_split_slave = INTF_MAX;
if (phys_enc->split_role == ENC_ROLE_MASTER) {
SDE_DEBUG_ENC(sde_enc, "enable %d\n", cfg.en);
if (hw_mdptop->ops.setup_split_pipe)
hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
} else if (sde_enc->hw_pp[0]) {
/*
* slave encoder
* - determine split index from master index,
* assume master is first pp
*/
cfg.pp_split_index = sde_enc->hw_pp[0]->idx - PINGPONG_0;
SDE_DEBUG_ENC(sde_enc, "master using pp%d\n",
cfg.pp_split_index);
if (hw_mdptop->ops.setup_pp_split)
hw_mdptop->ops.setup_pp_split(hw_mdptop, &cfg);
}
}
static int sde_encoder_virt_atomic_check(
struct drm_encoder *drm_enc,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct sde_encoder_virt *sde_enc;
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
const struct drm_display_mode *mode;
struct drm_display_mode *adj_mode;
struct sde_connector *sde_conn = NULL;
struct sde_connector_state *sde_conn_state = NULL;
struct sde_crtc_state *sde_crtc_state = NULL;
int i = 0;
int ret = 0;
if (!drm_enc || !crtc_state || !conn_state) {
SDE_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
drm_enc != 0, crtc_state != 0, conn_state != 0);
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
priv = drm_enc->dev->dev_private;
sde_kms = to_sde_kms(priv->kms);
mode = &crtc_state->mode;
adj_mode = &crtc_state->adjusted_mode;
sde_conn = to_sde_connector(conn_state->connector);
sde_conn_state = to_sde_connector_state(conn_state);
sde_crtc_state = to_sde_crtc_state(crtc_state);
SDE_EVT32(DRMID(drm_enc), drm_atomic_crtc_needs_modeset(crtc_state));
/* perform atomic check on the first physical encoder (master) */
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.atomic_check)
ret = phys->ops.atomic_check(phys, crtc_state,
conn_state);
else if (phys && phys->ops.mode_fixup)
if (!phys->ops.mode_fixup(phys, mode, adj_mode))
ret = -EINVAL;
if (ret) {
SDE_ERROR_ENC(sde_enc,
"mode unsupported, phys idx %d\n", i);
break;
}
}
if (!ret && drm_atomic_crtc_needs_modeset(crtc_state)) {
struct sde_rect mode_roi, roi;
mode_roi.x = 0;
mode_roi.y = 0;
mode_roi.w = crtc_state->adjusted_mode.hdisplay;
mode_roi.h = crtc_state->adjusted_mode.vdisplay;
if (sde_conn_state->rois.num_rects) {
sde_kms_rect_merge_rectangles(
&sde_conn_state->rois, &roi);
if (!sde_kms_rect_is_equal(&mode_roi, &roi)) {
SDE_ERROR_ENC(sde_enc,
"roi (%d,%d,%d,%d) on connector invalid during modeset\n",
roi.x, roi.y, roi.w, roi.h);
ret = -EINVAL;
}
}
if (sde_crtc_state->user_roi_list.num_rects) {
sde_kms_rect_merge_rectangles(
&sde_crtc_state->user_roi_list, &roi);
if (!sde_kms_rect_is_equal(&mode_roi, &roi)) {
SDE_ERROR_ENC(sde_enc,
"roi (%d,%d,%d,%d) on crtc invalid during modeset\n",
roi.x, roi.y, roi.w, roi.h);
ret = -EINVAL;
}
}
if (ret)
return ret;
}
if (!ret) {
/**
* record topology in previous atomic state to be able to handle
* topology transitions correctly.
*/
enum sde_rm_topology_name old_top;
old_top = sde_connector_get_property(conn_state,
CONNECTOR_PROP_TOPOLOGY_NAME);
ret = sde_connector_set_old_topology_name(conn_state, old_top);
if (ret)
return ret;
}
if (!ret && sde_conn && drm_atomic_crtc_needs_modeset(crtc_state)) {
struct msm_display_topology *topology = NULL;
ret = sde_conn->ops.get_mode_info(adj_mode,
&sde_conn_state->mode_info,
sde_kms->catalog->max_mixer_width,
sde_conn->display);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"failed to get mode info, rc = %d\n", ret);
return ret;
}
/* Reserve dynamic resources, indicating atomic_check phase */
ret = sde_rm_reserve(&sde_kms->rm, drm_enc, crtc_state,
conn_state, true);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"RM failed to reserve resources, rc = %d\n",
ret);
return ret;
}
/**
* Update connector state with the topology selected for the
* resource set validated. Reset the topology if we are
* de-activating crtc.
*/
if (crtc_state->active)
topology = &sde_conn_state->mode_info.topology;
ret = sde_rm_update_topology(conn_state, topology);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"RM failed to update topology, rc: %d\n", ret);
return ret;
}
ret = sde_connector_set_blob_data(conn_state->connector,
conn_state,
CONNECTOR_PROP_SDE_INFO);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"connector failed to update info, rc: %d\n",
ret);
return ret;
}
}
ret = sde_connector_roi_v1_check_roi(conn_state);
if (ret) {
SDE_ERROR_ENC(sde_enc, "connector roi check failed, rc: %d",
ret);
return ret;
}
if (!ret)
drm_mode_set_crtcinfo(adj_mode, 0);
SDE_EVT32(DRMID(drm_enc), adj_mode->flags, adj_mode->private_flags);
return ret;
}
static int _sde_encoder_dsc_update_pic_dim(struct msm_display_dsc_info *dsc,
int pic_width, int pic_height)
{
if (!dsc || !pic_width || !pic_height) {
SDE_ERROR("invalid input: pic_width=%d pic_height=%d\n",
pic_width, pic_height);
return -EINVAL;
}
if ((pic_width % dsc->slice_width) ||
(pic_height % dsc->slice_height)) {
SDE_ERROR("pic_dim=%dx%d has to be multiple of slice=%dx%d\n",
pic_width, pic_height,
dsc->slice_width, dsc->slice_height);
return -EINVAL;
}
dsc->pic_width = pic_width;
dsc->pic_height = pic_height;
return 0;
}
static void _sde_encoder_dsc_pclk_param_calc(struct msm_display_dsc_info *dsc,
int intf_width)
{
int slice_per_pkt, slice_per_intf;
int bytes_in_slice, total_bytes_per_intf;
if (!dsc || !dsc->slice_width || !dsc->slice_per_pkt ||
(intf_width < dsc->slice_width)) {
SDE_ERROR("invalid input: intf_width=%d slice_width=%d\n",
intf_width, dsc ? dsc->slice_width : -1);
return;
}
slice_per_pkt = dsc->slice_per_pkt;
slice_per_intf = DIV_ROUND_UP(intf_width, dsc->slice_width);
/*
* If slice_per_pkt is greater than slice_per_intf then default to 1.
* This can happen during partial update.
*/
if (slice_per_pkt > slice_per_intf)
slice_per_pkt = 1;
bytes_in_slice = DIV_ROUND_UP(dsc->slice_width * dsc->bpp, 8);
total_bytes_per_intf = bytes_in_slice * slice_per_intf;
dsc->eol_byte_num = total_bytes_per_intf % 3;
dsc->pclk_per_line = DIV_ROUND_UP(total_bytes_per_intf, 3);
dsc->bytes_in_slice = bytes_in_slice;
dsc->bytes_per_pkt = bytes_in_slice * slice_per_pkt;
dsc->pkt_per_line = slice_per_intf / slice_per_pkt;
}
static int _sde_encoder_dsc_initial_line_calc(struct msm_display_dsc_info *dsc,
int enc_ip_width)
{
int ssm_delay, total_pixels, soft_slice_per_enc;
soft_slice_per_enc = enc_ip_width / dsc->slice_width;
/*
* minimum number of initial line pixels is a sum of:
* 1. sub-stream multiplexer delay (83 groups for 8bpc,
* 91 for 10 bpc) * 3
* 2. for two soft slice cases, add extra sub-stream multiplexer * 3
* 3. the initial xmit delay
* 4. total pipeline delay through the "lock step" of encoder (47)
* 5. 6 additional pixels as the output of the rate buffer is
* 48 bits wide
*/
ssm_delay = ((dsc->bpc < 10) ? 84 : 92);
total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
if (soft_slice_per_enc > 1)
total_pixels += (ssm_delay * 3);
dsc->initial_lines = DIV_ROUND_UP(total_pixels, dsc->slice_width);
return 0;
}
static bool _sde_encoder_dsc_ich_reset_override_needed(bool pu_en,
struct msm_display_dsc_info *dsc)
{
/*
* As per the DSC spec, ICH_RESET can be either end of the slice line
* or at the end of the slice. HW internally generates ich_reset at
* end of the slice line if DSC_MERGE is used or encoder has two
* soft slices. However, if encoder has only 1 soft slice and DSC_MERGE
* is not used then it will generate ich_reset at the end of slice.
*
* Now as per the spec, during one PPS session, position where
* ich_reset is generated should not change. Now if full-screen frame
* has more than 1 soft slice then HW will automatically generate
* ich_reset at the end of slice_line. But for the same panel, if
* partial frame is enabled and only 1 encoder is used with 1 slice,
* then HW will generate ich_reset at end of the slice. This is a
* mismatch. Prevent this by overriding HW's decision.
*/
return pu_en && dsc && (dsc->full_frame_slices > 1) &&
(dsc->slice_width == dsc->pic_width);
}
static void _sde_encoder_dsc_pipe_cfg(struct sde_hw_dsc *hw_dsc,
struct sde_hw_pingpong *hw_pp, struct msm_display_dsc_info *dsc,
u32 common_mode, bool ich_reset, bool enable)
{
if (!enable) {
if (hw_pp->ops.disable_dsc)
hw_pp->ops.disable_dsc(hw_pp);
return;
}
if (hw_dsc->ops.dsc_config)
hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, ich_reset);
if (hw_dsc->ops.dsc_config_thresh)
hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
if (hw_pp->ops.setup_dsc)
hw_pp->ops.setup_dsc(hw_pp);
if (hw_pp->ops.enable_dsc)
hw_pp->ops.enable_dsc(hw_pp);
}
static void _sde_encoder_get_connector_roi(
struct sde_encoder_virt *sde_enc,
struct sde_rect *merged_conn_roi)
{
struct drm_connector *drm_conn;
struct sde_connector_state *c_state;
if (!sde_enc || !merged_conn_roi)
return;
drm_conn = sde_enc->phys_encs[0]->connector;
if (!drm_conn || !drm_conn->state)
return;
c_state = to_sde_connector_state(drm_conn->state);
sde_kms_rect_merge_rectangles(&c_state->rois, merged_conn_roi);
}
static int _sde_encoder_dsc_n_lm_1_enc_1_intf(struct sde_encoder_virt *sde_enc)
{
int this_frame_slices;
int intf_ip_w, enc_ip_w;
int ich_res, dsc_common_mode = 0;
struct sde_hw_pingpong *hw_pp = sde_enc->hw_pp[0];
struct sde_hw_dsc *hw_dsc = sde_enc->hw_dsc[0];
struct sde_encoder_phys *enc_master = sde_enc->cur_master;
const struct sde_rect *roi = &sde_enc->cur_conn_roi;
struct msm_mode_info mode_info;
struct msm_display_dsc_info *dsc = NULL;
int rc;
if (hw_dsc == NULL || hw_pp == NULL || !enc_master) {
SDE_ERROR_ENC(sde_enc, "invalid params for DSC\n");
return -EINVAL;
}
rc = _sde_encoder_get_mode_info(&sde_enc->base, &mode_info);
if (rc) {
SDE_ERROR_ENC(sde_enc, "failed to get mode info\n");
return -EINVAL;
}
dsc = &mode_info.comp_info.dsc_info;
_sde_encoder_dsc_update_pic_dim(dsc, roi->w, roi->h);
this_frame_slices = roi->w / dsc->slice_width;
intf_ip_w = this_frame_slices * dsc->slice_width;
_sde_encoder_dsc_pclk_param_calc(dsc, intf_ip_w);
enc_ip_w = intf_ip_w;
_sde_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
ich_res = _sde_encoder_dsc_ich_reset_override_needed(false, dsc);
if (enc_master->intf_mode == INTF_MODE_VIDEO)
dsc_common_mode = DSC_MODE_VIDEO;
SDE_DEBUG_ENC(sde_enc, "pic_w: %d pic_h: %d mode:%d\n",
roi->w, roi->h, dsc_common_mode);
SDE_EVT32(DRMID(&sde_enc->base), roi->w, roi->h, dsc_common_mode);
_sde_encoder_dsc_pipe_cfg(hw_dsc, hw_pp, dsc, dsc_common_mode,
ich_res, true);
return 0;
}
static int _sde_encoder_dsc_4_lm_4_enc_2_intf(struct sde_encoder_virt *sde_enc,
struct sde_encoder_kickoff_params *params)
{
int this_frame_slices;
int intf_ip_w, enc_ip_w;
int ich_res, dsc_common_mode;
struct sde_encoder_phys *enc_master = sde_enc->cur_master;
const struct sde_rect *roi = &sde_enc->cur_conn_roi;
struct sde_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
struct sde_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
struct msm_display_dsc_info dsc[MAX_CHANNELS_PER_ENC];
struct msm_mode_info mode_info;
bool half_panel_partial_update;
int i, rc;
memset(hw_dsc, 0, sizeof(struct sde_hw_dsc *)*MAX_CHANNELS_PER_ENC);
memset(hw_pp, 0, sizeof(struct sde_hw_pingpong *)*MAX_CHANNELS_PER_ENC);
for (i = 0; i < params->num_channels; i++) {
hw_pp[i] = sde_enc->hw_pp[i];
hw_dsc[i] = sde_enc->hw_dsc[i];
if (!hw_pp[i] || !hw_dsc[i]) {
SDE_ERROR_ENC(sde_enc, "invalid params for DSC\n");
return -EINVAL;
}
}
rc = _sde_encoder_get_mode_info(&sde_enc->base, &mode_info);
if (rc) {
SDE_ERROR_ENC(sde_enc, "failed to get mode info\n");
return -EINVAL;
}
half_panel_partial_update =
hweight_long(params->affected_displays) == 1;
dsc_common_mode = 0;
if (!half_panel_partial_update)
dsc_common_mode |= DSC_MODE_SPLIT_PANEL | DSC_MODE_MULTIPLEX;
if (enc_master->intf_mode == INTF_MODE_VIDEO)
dsc_common_mode |= DSC_MODE_VIDEO;
memcpy(&dsc[0], &mode_info.comp_info.dsc_info, sizeof(dsc[0]));
memcpy(&dsc[1], &mode_info.comp_info.dsc_info, sizeof(dsc[1]));
memcpy(&dsc[2], &mode_info.comp_info.dsc_info, sizeof(dsc[2]));
memcpy(&dsc[3], &mode_info.comp_info.dsc_info, sizeof(dsc[3]));
/*
* Since both DSC use same pic dimension, set same pic dimension
* to both DSC structures.
*/
_sde_encoder_dsc_update_pic_dim(&dsc[0], roi->w, roi->h);
_sde_encoder_dsc_update_pic_dim(&dsc[1], roi->w, roi->h);
_sde_encoder_dsc_update_pic_dim(&dsc[2], roi->w, roi->h);
_sde_encoder_dsc_update_pic_dim(&dsc[3], roi->w, roi->h);
this_frame_slices = roi->w / dsc[0].slice_width;
intf_ip_w = this_frame_slices * dsc[0].slice_width;
if (!half_panel_partial_update)
intf_ip_w /= 2;
/*
* In this topology when both interfaces are active, they have same
* load so intf_ip_w will be same.
*/
_sde_encoder_dsc_pclk_param_calc(&dsc[0], intf_ip_w);
_sde_encoder_dsc_pclk_param_calc(&dsc[1], intf_ip_w);
_sde_encoder_dsc_pclk_param_calc(&dsc[2], intf_ip_w);
_sde_encoder_dsc_pclk_param_calc(&dsc[3], intf_ip_w);
/*
* In this topology, since there is no dsc_merge, uncompressed input
* to encoder and interface is same.
*/
enc_ip_w = intf_ip_w;
_sde_encoder_dsc_initial_line_calc(&dsc[0], enc_ip_w);
_sde_encoder_dsc_initial_line_calc(&dsc[1], enc_ip_w);
_sde_encoder_dsc_initial_line_calc(&dsc[2], enc_ip_w);
_sde_encoder_dsc_initial_line_calc(&dsc[3], enc_ip_w);
/*
* __is_ich_reset_override_needed should be called only after
* updating pic dimension, mdss_panel_dsc_update_pic_dim.
*/
ich_res = _sde_encoder_dsc_ich_reset_override_needed(
half_panel_partial_update, &dsc[0]);
SDE_DEBUG_ENC(sde_enc, "pic_w: %d pic_h: %d mode:%d\n",
roi->w, roi->h, dsc_common_mode);
_sde_encoder_dsc_pipe_cfg(hw_dsc[0], hw_pp[0], &dsc[0],
dsc_common_mode, ich_res, true);
_sde_encoder_dsc_pipe_cfg(hw_dsc[1], hw_pp[1], &dsc[1],
dsc_common_mode, ich_res, true);
_sde_encoder_dsc_pipe_cfg(hw_dsc[2], hw_pp[2], &dsc[2],
dsc_common_mode, ich_res, true);
_sde_encoder_dsc_pipe_cfg(hw_dsc[3], hw_pp[3], &dsc[3],
dsc_common_mode, ich_res, true);
return 0;
}
static int _sde_encoder_dsc_2_lm_2_enc_2_intf(struct sde_encoder_virt *sde_enc,
struct sde_encoder_kickoff_params *params)
{
int this_frame_slices;
int intf_ip_w, enc_ip_w;
int ich_res, dsc_common_mode;
struct sde_encoder_phys *enc_master = sde_enc->cur_master;
const struct sde_rect *roi = &sde_enc->cur_conn_roi;
struct sde_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
struct sde_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
struct msm_display_dsc_info dsc[MAX_CHANNELS_PER_ENC];
struct msm_mode_info mode_info;
bool half_panel_partial_update;
int i, rc;
for (i = 0; i < params->num_channels; i++) {
hw_pp[i] = sde_enc->hw_pp[i];
hw_dsc[i] = sde_enc->hw_dsc[i];
if (!hw_pp[i] || !hw_dsc[i]) {
SDE_ERROR_ENC(sde_enc, "invalid params for DSC\n");
return -EINVAL;
}
}
rc = _sde_encoder_get_mode_info(&sde_enc->base, &mode_info);
if (rc) {
SDE_ERROR_ENC(sde_enc, "failed to get mode info\n");
return -EINVAL;
}
half_panel_partial_update =
hweight_long(params->affected_displays) == 1;
dsc_common_mode = 0;
if (!half_panel_partial_update)
dsc_common_mode |= DSC_MODE_SPLIT_PANEL;
if (enc_master->intf_mode == INTF_MODE_VIDEO)
dsc_common_mode |= DSC_MODE_VIDEO;
memcpy(&dsc[0], &mode_info.comp_info.dsc_info, sizeof(dsc[0]));
memcpy(&dsc[1], &mode_info.comp_info.dsc_info, sizeof(dsc[1]));
/*
* Since both DSC use same pic dimension, set same pic dimension
* to both DSC structures.
*/
_sde_encoder_dsc_update_pic_dim(&dsc[0], roi->w, roi->h);
_sde_encoder_dsc_update_pic_dim(&dsc[1], roi->w, roi->h);
this_frame_slices = roi->w / dsc[0].slice_width;
intf_ip_w = this_frame_slices * dsc[0].slice_width;
if (!half_panel_partial_update)
intf_ip_w /= 2;
/*
* In this topology when both interfaces are active, they have same
* load so intf_ip_w will be same.
*/
_sde_encoder_dsc_pclk_param_calc(&dsc[0], intf_ip_w);
_sde_encoder_dsc_pclk_param_calc(&dsc[1], intf_ip_w);
/*
* In this topology, since there is no dsc_merge, uncompressed input
* to encoder and interface is same.
*/
enc_ip_w = intf_ip_w;
_sde_encoder_dsc_initial_line_calc(&dsc[0], enc_ip_w);
_sde_encoder_dsc_initial_line_calc(&dsc[1], enc_ip_w);
/*
* __is_ich_reset_override_needed should be called only after
* updating pic dimension, mdss_panel_dsc_update_pic_dim.
*/
ich_res = _sde_encoder_dsc_ich_reset_override_needed(
half_panel_partial_update, &dsc[0]);
SDE_DEBUG_ENC(sde_enc, "pic_w: %d pic_h: %d mode:%d\n",
roi->w, roi->h, dsc_common_mode);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
bool active = !!((1 << i) & params->affected_displays);
SDE_EVT32(DRMID(&sde_enc->base), roi->w, roi->h,
dsc_common_mode, i, active);
_sde_encoder_dsc_pipe_cfg(hw_dsc[i], hw_pp[i], &dsc[i],
dsc_common_mode, ich_res, active);
}
return 0;
}
static int _sde_encoder_dsc_2_lm_2_enc_1_intf(struct sde_encoder_virt *sde_enc,
struct sde_encoder_kickoff_params *params)
{
int this_frame_slices;
int intf_ip_w, enc_ip_w;
int ich_res, dsc_common_mode;
struct sde_encoder_phys *enc_master = sde_enc->cur_master;
const struct sde_rect *roi = &sde_enc->cur_conn_roi;
struct sde_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
struct sde_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
struct msm_display_dsc_info *dsc = NULL;
struct msm_mode_info mode_info;
bool half_panel_partial_update;
int i, rc;
for (i = 0; i < params->num_channels; i++) {
hw_pp[i] = sde_enc->hw_pp[i];
hw_dsc[i] = sde_enc->hw_dsc[i];
if (!hw_pp[i] || !hw_dsc[i]) {
SDE_ERROR_ENC(sde_enc, "invalid params for DSC\n");
return -EINVAL;
}
}
rc = _sde_encoder_get_mode_info(&sde_enc->base, &mode_info);
if (rc) {
SDE_ERROR_ENC(sde_enc, "failed to get mode info\n");
return -EINVAL;
}
dsc = &mode_info.comp_info.dsc_info;
half_panel_partial_update =
hweight_long(params->affected_displays) == 1;
dsc_common_mode = 0;
if (!half_panel_partial_update)
dsc_common_mode |= DSC_MODE_SPLIT_PANEL | DSC_MODE_MULTIPLEX;
if (enc_master->intf_mode == INTF_MODE_VIDEO)
dsc_common_mode |= DSC_MODE_VIDEO;
_sde_encoder_dsc_update_pic_dim(dsc, roi->w, roi->h);
this_frame_slices = roi->w / dsc->slice_width;
intf_ip_w = this_frame_slices * dsc->slice_width;
_sde_encoder_dsc_pclk_param_calc(dsc, intf_ip_w);
/*
* dsc merge case: when using 2 encoders for the same stream,
* no. of slices need to be same on both the encoders.
*/
enc_ip_w = intf_ip_w / 2;
_sde_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
ich_res = _sde_encoder_dsc_ich_reset_override_needed(
half_panel_partial_update, dsc);
SDE_DEBUG_ENC(sde_enc, "pic_w: %d pic_h: %d mode:%d\n",
roi->w, roi->h, dsc_common_mode);
SDE_EVT32(DRMID(&sde_enc->base), roi->w, roi->h,
dsc_common_mode, i, params->affected_displays);
_sde_encoder_dsc_pipe_cfg(hw_dsc[0], hw_pp[0], dsc, dsc_common_mode,
ich_res, true);
_sde_encoder_dsc_pipe_cfg(hw_dsc[1], hw_pp[1], dsc, dsc_common_mode,
ich_res, !half_panel_partial_update);
return 0;
}
static int _sde_encoder_update_roi(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
struct drm_connector *drm_conn;
struct drm_display_mode *adj_mode;
struct sde_rect roi;
if (!drm_enc) {
SDE_ERROR("invalid encoder parameter\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc->crtc || !sde_enc->crtc->state) {
SDE_ERROR("invalid crtc parameter\n");
return -EINVAL;
}
if (!sde_enc->cur_master) {
SDE_ERROR("invalid cur_master parameter\n");
return -EINVAL;
}
adj_mode = &sde_enc->cur_master->cached_mode;
drm_conn = sde_enc->cur_master->connector;
_sde_encoder_get_connector_roi(sde_enc, &roi);
if (sde_kms_rect_is_null(&roi)) {
roi.w = adj_mode->hdisplay;
roi.h = adj_mode->vdisplay;
}
memcpy(&sde_enc->prv_conn_roi, &sde_enc->cur_conn_roi,
sizeof(sde_enc->prv_conn_roi));
memcpy(&sde_enc->cur_conn_roi, &roi, sizeof(sde_enc->cur_conn_roi));
return 0;
}
static int _sde_encoder_dsc_setup(struct sde_encoder_virt *sde_enc,
struct sde_encoder_kickoff_params *params)
{
enum sde_rm_topology_name topology;
struct drm_connector *drm_conn;
int ret = 0;
if (!sde_enc || !params || !sde_enc->phys_encs[0] ||
!sde_enc->phys_encs[0]->connector)
return -EINVAL;
drm_conn = sde_enc->phys_encs[0]->connector;
topology = sde_connector_get_topology_name(drm_conn);
if (topology == SDE_RM_TOPOLOGY_NONE) {
SDE_ERROR_ENC(sde_enc, "topology not set yet\n");
return -EINVAL;
}
params->num_channels =
sde_rm_get_topology_num_encoders(topology);
SDE_DEBUG_ENC(sde_enc, "topology:%d\n", topology);
SDE_EVT32(DRMID(&sde_enc->base), topology,
sde_enc->cur_conn_roi.x,
sde_enc->cur_conn_roi.y,
sde_enc->cur_conn_roi.w,
sde_enc->cur_conn_roi.h,
sde_enc->prv_conn_roi.x,
sde_enc->prv_conn_roi.y,
sde_enc->prv_conn_roi.w,
sde_enc->prv_conn_roi.h,
sde_enc->cur_master->cached_mode.hdisplay,
sde_enc->cur_master->cached_mode.vdisplay);
if (sde_kms_rect_is_equal(&sde_enc->cur_conn_roi,
&sde_enc->prv_conn_roi))
return ret;
switch (topology) {
case SDE_RM_TOPOLOGY_SINGLEPIPE_DSC:
case SDE_RM_TOPOLOGY_DUALPIPE_3DMERGE_DSC:
ret = _sde_encoder_dsc_n_lm_1_enc_1_intf(sde_enc);
break;
case SDE_RM_TOPOLOGY_DUALPIPE_DSCMERGE:
ret = _sde_encoder_dsc_2_lm_2_enc_1_intf(sde_enc, params);
break;
case SDE_RM_TOPOLOGY_DUALPIPE_DSC:
case SDE_RM_TOPOLOGY_QUADPIPE_3DMERGE_DSC:
ret = _sde_encoder_dsc_2_lm_2_enc_2_intf(sde_enc, params);
break;
case SDE_RM_TOPOLOGY_QUADPIPE_DSCMERGE:
ret = _sde_encoder_dsc_4_lm_4_enc_2_intf(sde_enc, params);
break;
default:
SDE_ERROR_ENC(sde_enc, "No DSC support for topology %d",
topology);
return -EINVAL;
};
return ret;
}
static void _sde_encoder_update_vsync_source(struct sde_encoder_virt *sde_enc,
struct msm_display_info *disp_info, bool is_dummy)
{
struct sde_vsync_source_cfg vsync_cfg = { 0 };
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct sde_hw_mdp *hw_mdptop;
struct drm_encoder *drm_enc;
struct msm_mode_info mode_info;
int i, rc = 0;
if (!sde_enc || !sde_enc->cur_master || !disp_info) {
SDE_ERROR("invalid param sde_enc:%d or disp_info:%d\n",
sde_enc != NULL, disp_info != NULL);
return;
} else if (sde_enc->num_phys_encs > ARRAY_SIZE(sde_enc->hw_pp)) {
SDE_ERROR("invalid num phys enc %d/%d\n",
sde_enc->num_phys_encs,
(int) ARRAY_SIZE(sde_enc->hw_pp));
return;
}
drm_enc = &sde_enc->base;
/* this pointers are checked in virt_enable_helper */
priv = drm_enc->dev->dev_private;
sde_kms = to_sde_kms(priv->kms);
if (!sde_kms) {
SDE_ERROR("invalid sde_kms\n");
return;
}
hw_mdptop = sde_kms->hw_mdp;
if (!hw_mdptop) {
SDE_ERROR("invalid mdptop\n");
return;
}
rc = _sde_encoder_get_mode_info(drm_enc, &mode_info);
if (rc) {
SDE_ERROR_ENC(sde_enc, "failed to get mode info\n");
return;
}
if (hw_mdptop->ops.setup_vsync_source &&
disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
for (i = 0; i < sde_enc->num_phys_encs; i++)
vsync_cfg.ppnumber[i] = sde_enc->hw_pp[i]->idx;
vsync_cfg.pp_count = sde_enc->num_phys_encs;
vsync_cfg.frame_rate = mode_info.frame_rate;
vsync_cfg.vsync_source =
sde_enc->cur_master->hw_pp->caps->te_source;
if (is_dummy)
vsync_cfg.vsync_source = SDE_VSYNC_SOURCE_WD_TIMER_1;
else if (disp_info->is_te_using_watchdog_timer)
vsync_cfg.vsync_source = SDE_VSYNC_SOURCE_WD_TIMER_0;
vsync_cfg.is_dummy = is_dummy;
hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
}
}
static int _sde_encoder_dsc_disable(struct sde_encoder_virt *sde_enc)
{
int i, ret = 0;
struct sde_hw_pingpong *hw_pp = NULL;
struct sde_hw_dsc *hw_dsc = NULL;
if (!sde_enc || !sde_enc->phys_encs[0] ||
!sde_enc->phys_encs[0]->connector) {
SDE_ERROR("invalid params %d %d\n",
!sde_enc, sde_enc ? !sde_enc->phys_encs[0] : -1);
return -EINVAL;
}
/* Disable DSC for all the pp's present in this topology */
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
hw_pp = sde_enc->hw_pp[i];
hw_dsc = sde_enc->hw_dsc[i];
if (hw_pp && hw_pp->ops.disable_dsc)
hw_pp->ops.disable_dsc(hw_pp);
if (hw_dsc && hw_dsc->ops.dsc_disable)
hw_dsc->ops.dsc_disable(hw_dsc);
}
return ret;
}
static int _sde_encoder_switch_to_watchdog_vsync(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
struct msm_display_info disp_info;
if (!drm_enc) {
pr_err("invalid drm encoder\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
sde_encoder_control_te(drm_enc, false);
memcpy(&disp_info, &sde_enc->disp_info, sizeof(disp_info));
disp_info.is_te_using_watchdog_timer = true;
_sde_encoder_update_vsync_source(sde_enc, &disp_info, false);
sde_encoder_control_te(drm_enc, true);
return 0;
}
static int _sde_encoder_update_rsc_client(
struct drm_encoder *drm_enc,
struct sde_encoder_rsc_config *config, bool enable)
{
struct sde_encoder_virt *sde_enc;
struct drm_crtc *crtc;
enum sde_rsc_state rsc_state;
struct sde_rsc_cmd_config *rsc_config;
int ret, prefill_lines;
struct msm_display_info *disp_info;
struct msm_mode_info mode_info;
int wait_vblank_crtc_id = SDE_RSC_INVALID_CRTC_ID;
int wait_count = 0;
struct drm_crtc *primary_crtc;
int pipe = -1;
int rc = 0;
int wait_refcount;
if (!drm_enc || !drm_enc->dev) {
SDE_ERROR("invalid encoder arguments\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
crtc = sde_enc->crtc;
if (!sde_enc->crtc) {
SDE_ERROR("invalid crtc parameter\n");
return -EINVAL;
}
disp_info = &sde_enc->disp_info;
rsc_config = &sde_enc->rsc_config;
if (!sde_enc->rsc_client) {
SDE_DEBUG_ENC(sde_enc, "rsc client not created\n");
return 0;
}
rc = _sde_encoder_get_mode_info(drm_enc, &mode_info);
if (rc) {
SDE_ERROR_ENC(sde_enc, "failed to mode info\n");
return 0;
}
/**
* only primary command mode panel can request CMD state.
* all other panels/displays can request for VID state including
* secondary command mode panel.
* Clone mode encoder can request CLK STATE only.
*/
if (sde_encoder_in_clone_mode(drm_enc))
rsc_state = enable ? SDE_RSC_CLK_STATE : SDE_RSC_IDLE_STATE;
else
rsc_state = enable ?
(((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
&& disp_info->is_primary) ? SDE_RSC_CMD_STATE :
SDE_RSC_VID_STATE) : SDE_RSC_IDLE_STATE;
prefill_lines = config ? mode_info.prefill_lines +
config->inline_rotate_prefill : mode_info.prefill_lines;
/* compare specific items and reconfigure the rsc */
if ((rsc_config->fps != mode_info.frame_rate) ||
(rsc_config->vtotal != mode_info.vtotal) ||
(rsc_config->prefill_lines != prefill_lines) ||
(rsc_config->jitter_numer != mode_info.jitter_numer) ||
(rsc_config->jitter_denom != mode_info.jitter_denom)) {
rsc_config->fps = mode_info.frame_rate;
rsc_config->vtotal = mode_info.vtotal;
rsc_config->prefill_lines = prefill_lines;
rsc_config->jitter_numer = mode_info.jitter_numer;
rsc_config->jitter_denom = mode_info.jitter_denom;
sde_enc->rsc_state_init = false;
}
if (rsc_state != SDE_RSC_IDLE_STATE && !sde_enc->rsc_state_init
&& disp_info->is_primary) {
/* update it only once */
sde_enc->rsc_state_init = true;
ret = sde_rsc_client_state_update(sde_enc->rsc_client,
rsc_state, rsc_config, crtc->base.id,
&wait_vblank_crtc_id);
} else {
ret = sde_rsc_client_state_update(sde_enc->rsc_client,
rsc_state, NULL, crtc->base.id,
&wait_vblank_crtc_id);
}
/**
* if RSC performed a state change that requires a VBLANK wait, it will
* set wait_vblank_crtc_id to the CRTC whose VBLANK we must wait on.
*
* if we are the primary display, we will need to enable and wait
* locally since we hold the commit thread
*
* if we are an external display, we must send a signal to the primary
* to enable its VBLANK and wait one, since the RSC hardware is driven
* by the primary panel's VBLANK signals
*/
SDE_EVT32_VERBOSE(DRMID(drm_enc), wait_vblank_crtc_id);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"sde rsc client update failed ret:%d\n", ret);
return ret;
} else if (wait_vblank_crtc_id == SDE_RSC_INVALID_CRTC_ID) {
return ret;
}
if (wait_vblank_crtc_id)
wait_refcount =
sde_rsc_client_get_vsync_refcount(sde_enc->rsc_client);
SDE_EVT32_VERBOSE(DRMID(drm_enc), wait_vblank_crtc_id, wait_refcount,
SDE_EVTLOG_FUNC_ENTRY);
if (crtc->base.id != wait_vblank_crtc_id) {
primary_crtc = drm_crtc_find(drm_enc->dev, wait_vblank_crtc_id);
if (!primary_crtc) {
SDE_ERROR_ENC(sde_enc,
"failed to find primary crtc id %d\n",
wait_vblank_crtc_id);
return -EINVAL;
}
pipe = drm_crtc_index(primary_crtc);
}
/**
* note: VBLANK is expected to be enabled at this point in
* resource control state machine if on primary CRTC
*/
for (wait_count = 0; wait_count < MAX_RSC_WAIT; wait_count++) {
if (sde_rsc_client_is_state_update_complete(
sde_enc->rsc_client))
break;
if (crtc->base.id == wait_vblank_crtc_id)
ret = sde_encoder_wait_for_event(drm_enc,
MSM_ENC_VBLANK);
else
drm_wait_one_vblank(drm_enc->dev, pipe);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"wait for vblank failed ret:%d\n", ret);
/**
* rsc hardware may hang without vsync. avoid rsc hang
* by generating the vsync from watchdog timer.
*/
if (crtc->base.id == wait_vblank_crtc_id)
_sde_encoder_switch_to_watchdog_vsync(drm_enc);
}
}
if (wait_count >= MAX_RSC_WAIT)
SDE_EVT32(DRMID(drm_enc), wait_vblank_crtc_id, wait_count,
SDE_EVTLOG_ERROR);
if (wait_refcount)
sde_rsc_client_reset_vsync_refcount(sde_enc->rsc_client);
SDE_EVT32_VERBOSE(DRMID(drm_enc), wait_vblank_crtc_id, wait_refcount,
SDE_EVTLOG_FUNC_EXIT);
return ret;
}
static void _sde_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
{
struct sde_encoder_virt *sde_enc;
int i;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "enable:%d\n", enable);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.irq_control)
phys->ops.irq_control(phys, enable);
}
}
/* keep track of the userspace vblank during modeset */
static void _sde_encoder_modeset_helper_locked(struct drm_encoder *drm_enc,
u32 sw_event)
{
struct sde_encoder_virt *sde_enc;
bool enable;
int i;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, vblank_enabled:%d\n",
sw_event, sde_enc->vblank_enabled);
/* nothing to do if vblank not enabled by userspace */
if (!sde_enc->vblank_enabled)
return;
/* disable vblank on pre_modeset */
if (sw_event == SDE_ENC_RC_EVENT_PRE_MODESET)
enable = false;
/* enable vblank on post_modeset */
else if (sw_event == SDE_ENC_RC_EVENT_POST_MODESET)
enable = true;
else
return;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.control_vblank_irq)
phys->ops.control_vblank_irq(phys, enable);
}
}
struct sde_rsc_client *sde_encoder_get_rsc_client(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
if (!drm_enc)
return NULL;
sde_enc = to_sde_encoder_virt(drm_enc);
return sde_enc->rsc_client;
}
static void _sde_encoder_resource_control_rsc_update(
struct drm_encoder *drm_enc, bool enable)
{
struct sde_encoder_rsc_config rsc_cfg = { 0 };
struct sde_encoder_virt *sde_enc;
if (!drm_enc) {
SDE_ERROR("invalid encoder argument\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc->crtc) {
SDE_ERROR("invalid crtc\n");
return;
}
if (enable) {
rsc_cfg.inline_rotate_prefill =
sde_crtc_get_inline_prefill(sde_enc->crtc);
_sde_encoder_update_rsc_client(drm_enc, &rsc_cfg, true);
} else {
_sde_encoder_update_rsc_client(drm_enc, NULL, false);
}
}
static int _sde_encoder_resource_control_helper(struct drm_encoder *drm_enc,
bool enable)
{
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct sde_encoder_virt *sde_enc;
int rc;
bool is_cmd_mode, is_primary;
sde_enc = to_sde_encoder_virt(drm_enc);
priv = drm_enc->dev->dev_private;
sde_kms = to_sde_kms(priv->kms);
is_cmd_mode = sde_enc->disp_info.capabilities &
MSM_DISPLAY_CAP_CMD_MODE;
is_primary = sde_enc->disp_info.is_primary;
SDE_DEBUG_ENC(sde_enc, "enable:%d\n", enable);
SDE_EVT32(DRMID(drm_enc), enable);
if (!sde_enc->cur_master) {
SDE_ERROR("encoder master not set\n");
return -EINVAL;
}
if (enable) {
/* enable SDE core clks */
rc = sde_power_resource_enable(&priv->phandle,
sde_kms->core_client, true);
if (rc) {
SDE_ERROR("failed to enable power resource %d\n", rc);
SDE_EVT32(rc, SDE_EVTLOG_ERROR);
return rc;
}
sde_enc->elevated_ahb_vote = true;
/* enable DSI clks */
rc = sde_connector_clk_ctrl(sde_enc->cur_master->connector,
true);
if (rc) {
SDE_ERROR("failed to enable clk control %d\n", rc);
sde_power_resource_enable(&priv->phandle,
sde_kms->core_client, false);
return rc;
}
/* enable all the irq */
_sde_encoder_irq_control(drm_enc, true);
if (is_cmd_mode && is_primary)
_sde_encoder_pm_qos_add_request(drm_enc);
} else {
if (is_cmd_mode && is_primary)
_sde_encoder_pm_qos_remove_request(drm_enc);
/* disable all the irq */
_sde_encoder_irq_control(drm_enc, false);
/* disable DSI clks */
sde_connector_clk_ctrl(sde_enc->cur_master->connector, false);
/* disable SDE core clks */
sde_power_resource_enable(&priv->phandle,
sde_kms->core_client, false);
}
return 0;
}
static void sde_encoder_input_event_handler(struct input_handle *handle,
unsigned int type, unsigned int code, int value)
{
struct drm_encoder *drm_enc = NULL;
struct sde_encoder_virt *sde_enc = NULL;
struct msm_drm_thread *event_thread = NULL;
struct msm_drm_private *priv = NULL;
if (!handle || !handle->handler || !handle->handler->private) {
SDE_ERROR("invalid encoder for the input event\n");
return;
}
drm_enc = (struct drm_encoder *)handle->handler->private;
if (!drm_enc->dev || !drm_enc->dev->dev_private) {
SDE_ERROR("invalid parameters\n");
return;
}
priv = drm_enc->dev->dev_private;
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc->crtc || (sde_enc->crtc->index
>= ARRAY_SIZE(priv->event_thread))) {
SDE_DEBUG_ENC(sde_enc,
"invalid cached CRTC: %d or crtc index: %d\n",
sde_enc->crtc == NULL,
sde_enc->crtc ? sde_enc->crtc->index : -EINVAL);
return;
}
SDE_EVT32_VERBOSE(DRMID(drm_enc));
event_thread = &priv->event_thread[sde_enc->crtc->index];
/* Queue input event work to event thread */
kthread_queue_work(&event_thread->worker,
&sde_enc->input_event_work);
}
void sde_encoder_control_idle_pc(struct drm_encoder *drm_enc, bool enable)
{
struct sde_encoder_virt *sde_enc;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
/* return early if there is no state change */
if (sde_enc->idle_pc_enabled == enable)
return;
sde_enc->idle_pc_enabled = enable;
SDE_DEBUG("idle-pc state:%d\n", sde_enc->idle_pc_enabled);
SDE_EVT32(sde_enc->idle_pc_enabled);
}
static int sde_encoder_resource_control(struct drm_encoder *drm_enc,
u32 sw_event)
{
bool autorefresh_enabled = false;
unsigned int lp, idle_pc_duration;
struct sde_encoder_virt *sde_enc;
struct msm_drm_private *priv;
struct msm_drm_thread *disp_thread;
int ret;
bool is_vid_mode = false;
if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
SDE_ERROR("invalid encoder parameters, sw_event:%u\n",
sw_event);
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
priv = drm_enc->dev->dev_private;
is_vid_mode = sde_enc->disp_info.capabilities &
MSM_DISPLAY_CAP_VID_MODE;
/*
* when idle_pc is not supported, process only KICKOFF, STOP and MODESET
* events and return early for other events (ie wb display).
*/
if (!sde_enc->idle_pc_enabled &&
(sw_event != SDE_ENC_RC_EVENT_KICKOFF &&
sw_event != SDE_ENC_RC_EVENT_PRE_MODESET &&
sw_event != SDE_ENC_RC_EVENT_POST_MODESET &&
sw_event != SDE_ENC_RC_EVENT_STOP &&
sw_event != SDE_ENC_RC_EVENT_PRE_STOP))
return 0;
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, idle_pc:%d\n",
sw_event, sde_enc->idle_pc_enabled);
SDE_EVT32_VERBOSE(DRMID(drm_enc), sw_event, sde_enc->idle_pc_enabled,
sde_enc->rc_state, SDE_EVTLOG_FUNC_ENTRY);
switch (sw_event) {
case SDE_ENC_RC_EVENT_KICKOFF:
/* cancel delayed off work, if any */
if (kthread_cancel_delayed_work_sync(
&sde_enc->delayed_off_work))
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, work cancelled\n",
sw_event);
mutex_lock(&sde_enc->rc_lock);
/* return if the resource control is already in ON state */
if (sde_enc->rc_state == SDE_ENC_RC_STATE_ON) {
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in ON state\n",
sw_event);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_FUNC_CASE1);
mutex_unlock(&sde_enc->rc_lock);
return 0;
} else if (sde_enc->rc_state != SDE_ENC_RC_STATE_OFF &&
sde_enc->rc_state != SDE_ENC_RC_STATE_IDLE) {
SDE_ERROR_ENC(sde_enc, "sw_event:%d, rc in state %d\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_ERROR);
mutex_unlock(&sde_enc->rc_lock);
return -EINVAL;
}
if (is_vid_mode && sde_enc->rc_state == SDE_ENC_RC_STATE_IDLE) {
_sde_encoder_irq_control(drm_enc, true);
} else {
/* enable all the clks and resources */
ret = _sde_encoder_resource_control_helper(drm_enc,
true);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"sw_event:%d, rc in state %d\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event,
sde_enc->rc_state,
SDE_EVTLOG_ERROR);
mutex_unlock(&sde_enc->rc_lock);
return ret;
}
_sde_encoder_resource_control_rsc_update(drm_enc, true);
}
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_ON, SDE_EVTLOG_FUNC_CASE1);
sde_enc->rc_state = SDE_ENC_RC_STATE_ON;
mutex_unlock(&sde_enc->rc_lock);
break;
case SDE_ENC_RC_EVENT_FRAME_DONE:
if (!sde_enc->crtc) {
SDE_ERROR("invalid crtc, sw_event:%u\n", sw_event);
return -EINVAL;
}
if (sde_enc->crtc->index >= ARRAY_SIZE(priv->disp_thread)) {
SDE_ERROR("invalid crtc index :%u\n",
sde_enc->crtc->index);
return -EINVAL;
}
disp_thread = &priv->disp_thread[sde_enc->crtc->index];
/*
* mutex lock is not used as this event happens at interrupt
* context. And locking is not required as, the other events
* like KICKOFF and STOP does a wait-for-idle before executing
* the resource_control
*/
if (sde_enc->rc_state != SDE_ENC_RC_STATE_ON) {
SDE_ERROR_ENC(sde_enc, "sw_event:%d,rc:%d-unexpected\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_ERROR);
return -EINVAL;
}
/*
* schedule off work item only when there are no
* frames pending
*/
if (sde_crtc_frame_pending(sde_enc->crtc) > 1) {
SDE_DEBUG_ENC(sde_enc, "skip schedule work");
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_FUNC_CASE2);
return 0;
}
/* schedule delayed off work if autorefresh is disabled */
if (sde_enc->cur_master &&
sde_enc->cur_master->ops.is_autorefresh_enabled)
autorefresh_enabled =
sde_enc->cur_master->ops.is_autorefresh_enabled(
sde_enc->cur_master);
/* set idle timeout based on master connector's lp value */
if (sde_enc->cur_master)
lp = sde_connector_get_lp(
sde_enc->cur_master->connector);
else
lp = SDE_MODE_DPMS_ON;
if (lp == SDE_MODE_DPMS_LP2)
idle_pc_duration = IDLE_SHORT_TIMEOUT;
else
idle_pc_duration = IDLE_POWERCOLLAPSE_DURATION;
if (!autorefresh_enabled)
kthread_mod_delayed_work(
&disp_thread->worker,
&sde_enc->delayed_off_work,
msecs_to_jiffies(idle_pc_duration));
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
autorefresh_enabled,
idle_pc_duration, SDE_EVTLOG_FUNC_CASE2);
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, work scheduled\n",
sw_event);
break;
case SDE_ENC_RC_EVENT_PRE_STOP:
/* cancel delayed off work, if any */
if (kthread_cancel_delayed_work_sync(
&sde_enc->delayed_off_work))
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, work cancelled\n",
sw_event);
mutex_lock(&sde_enc->rc_lock);
if (is_vid_mode &&
sde_enc->rc_state == SDE_ENC_RC_STATE_IDLE) {
_sde_encoder_irq_control(drm_enc, true);
}
/* skip if is already OFF or IDLE, resources are off already */
else if (sde_enc->rc_state == SDE_ENC_RC_STATE_OFF ||
sde_enc->rc_state == SDE_ENC_RC_STATE_IDLE) {
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in %d state\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_FUNC_CASE3);
mutex_unlock(&sde_enc->rc_lock);
return 0;
}
/**
* IRQs are still enabled currently, which allows wait for
* VBLANK which RSC may require to correctly transition to OFF
*/
_sde_encoder_resource_control_rsc_update(drm_enc, false);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_PRE_OFF,
SDE_EVTLOG_FUNC_CASE3);
sde_enc->rc_state = SDE_ENC_RC_STATE_PRE_OFF;
mutex_unlock(&sde_enc->rc_lock);
break;
case SDE_ENC_RC_EVENT_STOP:
/* cancel vsync event work and timer */
kthread_cancel_work_sync(&sde_enc->vsync_event_work);
del_timer_sync(&sde_enc->vsync_event_timer);
mutex_lock(&sde_enc->rc_lock);
/* return if the resource control is already in OFF state */
if (sde_enc->rc_state == SDE_ENC_RC_STATE_OFF) {
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in OFF state\n",
sw_event);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_FUNC_CASE4);
mutex_unlock(&sde_enc->rc_lock);
return 0;
} else if (sde_enc->rc_state == SDE_ENC_RC_STATE_ON ||
sde_enc->rc_state == SDE_ENC_RC_STATE_MODESET) {
SDE_ERROR_ENC(sde_enc, "sw_event:%d, rc in state %d\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_ERROR);
mutex_unlock(&sde_enc->rc_lock);
return -EINVAL;
}
/**
* expect to arrive here only if in either idle state or pre-off
* and in IDLE state the resources are already disabled
*/
if (sde_enc->rc_state == SDE_ENC_RC_STATE_PRE_OFF)
_sde_encoder_resource_control_helper(drm_enc, false);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_OFF, SDE_EVTLOG_FUNC_CASE4);
sde_enc->rc_state = SDE_ENC_RC_STATE_OFF;
mutex_unlock(&sde_enc->rc_lock);
break;
case SDE_ENC_RC_EVENT_PRE_MODESET:
/* cancel delayed off work, if any */
if (kthread_cancel_delayed_work_sync(
&sde_enc->delayed_off_work))
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, work cancelled\n",
sw_event);
mutex_lock(&sde_enc->rc_lock);
/* return if the resource control is already in ON state */
if (sde_enc->rc_state != SDE_ENC_RC_STATE_ON) {
/* enable all the clks and resources */
ret = _sde_encoder_resource_control_helper(drm_enc,
true);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"sw_event:%d, rc in state %d\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event,
sde_enc->rc_state,
SDE_EVTLOG_ERROR);
mutex_unlock(&sde_enc->rc_lock);
return ret;
}
_sde_encoder_resource_control_rsc_update(drm_enc, true);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_ON, SDE_EVTLOG_FUNC_CASE5);
sde_enc->rc_state = SDE_ENC_RC_STATE_ON;
}
ret = sde_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
if (ret && ret != -EWOULDBLOCK) {
SDE_ERROR_ENC(sde_enc,
"wait for commit done returned %d\n",
ret);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
ret, SDE_EVTLOG_ERROR);
mutex_unlock(&sde_enc->rc_lock);
return -EINVAL;
}
_sde_encoder_irq_control(drm_enc, false);
_sde_encoder_modeset_helper_locked(drm_enc, sw_event);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_MODESET, SDE_EVTLOG_FUNC_CASE5);
sde_enc->rc_state = SDE_ENC_RC_STATE_MODESET;
mutex_unlock(&sde_enc->rc_lock);
break;
case SDE_ENC_RC_EVENT_POST_MODESET:
mutex_lock(&sde_enc->rc_lock);
/* return if the resource control is already in ON state */
if (sde_enc->rc_state != SDE_ENC_RC_STATE_MODESET) {
SDE_ERROR_ENC(sde_enc,
"sw_event:%d, rc:%d !MODESET state\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_ERROR);
mutex_unlock(&sde_enc->rc_lock);
return -EINVAL;
}
_sde_encoder_modeset_helper_locked(drm_enc, sw_event);
_sde_encoder_irq_control(drm_enc, true);
_sde_encoder_update_rsc_client(drm_enc, NULL, true);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_ON, SDE_EVTLOG_FUNC_CASE6);
sde_enc->rc_state = SDE_ENC_RC_STATE_ON;
mutex_unlock(&sde_enc->rc_lock);
break;
case SDE_ENC_RC_EVENT_ENTER_IDLE:
mutex_lock(&sde_enc->rc_lock);
if (sde_enc->rc_state != SDE_ENC_RC_STATE_ON) {
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc:%d !ON state\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_ERROR);
mutex_unlock(&sde_enc->rc_lock);
return 0;
}
/*
* if we are in ON but a frame was just kicked off,
* ignore the IDLE event, it's probably a stale timer event
*/
if (sde_enc->frame_busy_mask[0]) {
SDE_ERROR_ENC(sde_enc,
"sw_event:%d, rc:%d frame pending\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_ERROR);
mutex_unlock(&sde_enc->rc_lock);
return 0;
}
if (is_vid_mode) {
_sde_encoder_irq_control(drm_enc, false);
} else {
/* disable all the clks and resources */
_sde_encoder_resource_control_rsc_update(drm_enc,
false);
_sde_encoder_resource_control_helper(drm_enc, false);
}
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_IDLE, SDE_EVTLOG_FUNC_CASE7);
sde_enc->rc_state = SDE_ENC_RC_STATE_IDLE;
mutex_unlock(&sde_enc->rc_lock);
break;
case SDE_ENC_RC_EVENT_EARLY_WAKEUP:
if (!sde_enc->crtc ||
sde_enc->crtc->index >= ARRAY_SIZE(priv->disp_thread)) {
SDE_DEBUG_ENC(sde_enc,
"invalid crtc:%d or crtc index:%d , sw_event:%u\n",
sde_enc->crtc == NULL,
sde_enc->crtc ? sde_enc->crtc->index : -EINVAL,
sw_event);
return -EINVAL;
}
disp_thread = &priv->disp_thread[sde_enc->crtc->index];
mutex_lock(&sde_enc->rc_lock);
if (sde_enc->rc_state == SDE_ENC_RC_STATE_ON) {
if (sde_enc->cur_master &&
sde_enc->cur_master->ops.is_autorefresh_enabled)
autorefresh_enabled =
sde_enc->cur_master->ops.is_autorefresh_enabled(
sde_enc->cur_master);
if (autorefresh_enabled) {
SDE_DEBUG_ENC(sde_enc,
"not handling early wakeup since auto refresh is enabled\n");
mutex_unlock(&sde_enc->rc_lock);
return 0;
}
if (!sde_crtc_frame_pending(sde_enc->crtc))
kthread_mod_delayed_work(&disp_thread->worker,
&sde_enc->delayed_off_work,
msecs_to_jiffies(
IDLE_POWERCOLLAPSE_DURATION));
} else if (sde_enc->rc_state == SDE_ENC_RC_STATE_IDLE) {
/* enable all the clks and resources */
_sde_encoder_resource_control_rsc_update(drm_enc, true);
_sde_encoder_resource_control_helper(drm_enc, true);
/*
* In some cases, commit comes with slight delay
* (> 80 ms)after early wake up, prevent clock switch
* off to avoid jank in next update. So, increase the
* command mode idle timeout sufficiently to prevent
* such case.
*/
kthread_mod_delayed_work(&disp_thread->worker,
&sde_enc->delayed_off_work,
msecs_to_jiffies(
IDLE_POWERCOLLAPSE_IN_EARLY_WAKEUP));
sde_enc->rc_state = SDE_ENC_RC_STATE_ON;
}
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_ON, SDE_EVTLOG_FUNC_CASE8);
mutex_unlock(&sde_enc->rc_lock);
break;
default:
SDE_EVT32(DRMID(drm_enc), sw_event, SDE_EVTLOG_ERROR);
SDE_ERROR("unexpected sw_event: %d\n", sw_event);
break;
}
SDE_EVT32_VERBOSE(DRMID(drm_enc), sw_event, sde_enc->idle_pc_enabled,
sde_enc->rc_state, SDE_EVTLOG_FUNC_EXIT);
return 0;
}
static void sde_encoder_virt_mode_set(struct drm_encoder *drm_enc,
struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
struct sde_encoder_virt *sde_enc;
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct list_head *connector_list;
struct drm_connector *conn = NULL, *conn_iter;
struct sde_connector_state *sde_conn_state = NULL;
struct sde_connector *sde_conn = NULL;
struct sde_rm_hw_iter dsc_iter, pp_iter;
int i = 0, ret;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
if (!sde_kms_power_resource_is_enabled(drm_enc->dev)) {
SDE_ERROR("power resource is not enabled\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
priv = drm_enc->dev->dev_private;
sde_kms = to_sde_kms(priv->kms);
connector_list = &sde_kms->dev->mode_config.connector_list;
SDE_EVT32(DRMID(drm_enc));
/*
* cache the crtc in sde_enc on enable for duration of use case
* for correctly servicing asynchronous irq events and timers
*/
if (!drm_enc->crtc) {
SDE_ERROR("invalid crtc\n");
return;
}
sde_enc->crtc = drm_enc->crtc;
list_for_each_entry(conn_iter, connector_list, head)
if (conn_iter->encoder == drm_enc)
conn = conn_iter;
if (!conn) {
SDE_ERROR_ENC(sde_enc, "failed to find attached connector\n");
return;
} else if (!conn->state) {
SDE_ERROR_ENC(sde_enc, "invalid connector state\n");
return;
}
sde_conn = to_sde_connector(conn);
sde_conn_state = to_sde_connector_state(conn->state);
if (sde_conn && sde_conn_state) {
ret = sde_conn->ops.get_mode_info(adj_mode,
&sde_conn_state->mode_info,
sde_kms->catalog->max_mixer_width,
sde_conn->display);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"failed to get mode info from the display\n");
return;
}
}
/* release resources before seamless mode change */
if (msm_is_mode_seamless_dms(adj_mode)) {
/* restore resource state before releasing them */
ret = sde_encoder_resource_control(drm_enc,
SDE_ENC_RC_EVENT_PRE_MODESET);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"sde resource control failed: %d\n",
ret);
return;
}
/*
* Disable dsc before switch the mode and after pre_modeset,
* to guarantee that previous kickoff finished.
*/
_sde_encoder_dsc_disable(sde_enc);
}
/* Reserve dynamic resources now. Indicating non-AtomicTest phase */
ret = sde_rm_reserve(&sde_kms->rm, drm_enc, drm_enc->crtc->state,
conn->state, false);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"failed to reserve hw resources, %d\n", ret);
return;
}
sde_rm_init_hw_iter(&pp_iter, drm_enc->base.id, SDE_HW_BLK_PINGPONG);
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
sde_enc->hw_pp[i] = NULL;
if (!sde_rm_get_hw(&sde_kms->rm, &pp_iter))
break;
sde_enc->hw_pp[i] = (struct sde_hw_pingpong *) pp_iter.hw;
}
sde_rm_init_hw_iter(&dsc_iter, drm_enc->base.id, SDE_HW_BLK_DSC);
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
sde_enc->hw_dsc[i] = NULL;
if (!sde_rm_get_hw(&sde_kms->rm, &dsc_iter))
break;
sde_enc->hw_dsc[i] = (struct sde_hw_dsc *) dsc_iter.hw;
}
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys) {
if (!sde_enc->hw_pp[i]) {
SDE_ERROR_ENC(sde_enc,
"invalid pingpong block for the encoder\n");
return;
}
phys->hw_pp = sde_enc->hw_pp[i];
phys->connector = conn->state->connector;
if (phys->ops.mode_set)
phys->ops.mode_set(phys, mode, adj_mode);
}
}
/* update resources after seamless mode change */
if (msm_is_mode_seamless_dms(adj_mode))
sde_encoder_resource_control(&sde_enc->base,
SDE_ENC_RC_EVENT_POST_MODESET);
}
void sde_encoder_control_te(struct drm_encoder *drm_enc, bool enable)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
int i;
if (!drm_enc) {
SDE_ERROR("invalid parameters\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc) {
SDE_ERROR("invalid sde encoder\n");
return;
}
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys && phys->ops.control_te)
phys->ops.control_te(phys, enable);
}
}
static int _sde_encoder_input_connect(struct input_handler *handler,
struct input_dev *dev, const struct input_device_id *id)
{
struct input_handle *handle;
int rc = 0;
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
if (!handle)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = handler->name;
rc = input_register_handle(handle);
if (rc) {
pr_err("failed to register input handle\n");
goto error;
}
rc = input_open_device(handle);
if (rc) {
pr_err("failed to open input device\n");
goto error_unregister;
}
return 0;
error_unregister:
input_unregister_handle(handle);
error:
kfree(handle);
return rc;
}
static void _sde_encoder_input_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
/**
* Structure for specifying event parameters on which to receive callbacks.
* This structure will trigger a callback in case of a touch event (specified by
* EV_ABS) where there is a change in X and Y coordinates,
*/
static const struct input_device_id sde_input_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
.evbit = { BIT_MASK(EV_ABS) },
.absbit = { [BIT_WORD(ABS_MT_POSITION_X)] =
BIT_MASK(ABS_MT_POSITION_X) |
BIT_MASK(ABS_MT_POSITION_Y) },
},
{ },
};
static int _sde_encoder_input_handler_register(
struct input_handler *input_handler)
{
int rc = 0;
rc = input_register_handler(input_handler);
if (rc) {
pr_err("input_register_handler failed, rc= %d\n", rc);
kfree(input_handler);
return rc;
}
return rc;
}
static int _sde_encoder_input_handler(
struct sde_encoder_virt *sde_enc)
{
struct input_handler *input_handler = NULL;
int rc = 0;
if (sde_enc->input_handler) {
SDE_ERROR_ENC(sde_enc,
"input_handle is active. unexpected\n");
return -EINVAL;
}
input_handler = kzalloc(sizeof(*sde_enc->input_handler), GFP_KERNEL);
if (!input_handler)
return -ENOMEM;
input_handler->event = sde_encoder_input_event_handler;
input_handler->connect = _sde_encoder_input_connect;
input_handler->disconnect = _sde_encoder_input_disconnect;
input_handler->name = "sde";
input_handler->id_table = sde_input_ids;
input_handler->private = sde_enc;
sde_enc->input_handler = input_handler;
sde_enc->input_handler_registered = false;
return rc;
}
static void _sde_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
SDE_ERROR("invalid parameters\n");
return;
}
priv = drm_enc->dev->dev_private;
sde_kms = to_sde_kms(priv->kms);
if (!sde_kms) {
SDE_ERROR("invalid sde_kms\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc || !sde_enc->cur_master) {
SDE_ERROR("invalid sde encoder/master\n");
return;
}
if (sde_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DisplayPort &&
sde_enc->cur_master->hw_mdptop &&
sde_enc->cur_master->hw_mdptop->ops.intf_audio_select)
sde_enc->cur_master->hw_mdptop->ops.intf_audio_select(
sde_enc->cur_master->hw_mdptop);
if (sde_enc->cur_master->hw_mdptop &&
sde_enc->cur_master->hw_mdptop->ops.reset_ubwc)
sde_enc->cur_master->hw_mdptop->ops.reset_ubwc(
sde_enc->cur_master->hw_mdptop,
sde_kms->catalog);
_sde_encoder_update_vsync_source(sde_enc, &sde_enc->disp_info, false);
sde_encoder_control_te(drm_enc, true);
memset(&sde_enc->prv_conn_roi, 0, sizeof(sde_enc->prv_conn_roi));
memset(&sde_enc->cur_conn_roi, 0, sizeof(sde_enc->cur_conn_roi));
}
void sde_encoder_virt_restore(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
int i;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && (phys != sde_enc->cur_master) && phys->ops.restore)
phys->ops.restore(phys);
}
if (sde_enc->cur_master && sde_enc->cur_master->ops.restore)
sde_enc->cur_master->ops.restore(sde_enc->cur_master);
_sde_encoder_virt_enable_helper(drm_enc);
}
static void sde_encoder_off_work(struct kthread_work *work)
{
struct sde_encoder_virt *sde_enc = container_of(work,
struct sde_encoder_virt, delayed_off_work.work);
struct drm_encoder *drm_enc;
if (!sde_enc) {
SDE_ERROR("invalid sde encoder\n");
return;
}
drm_enc = &sde_enc->base;
sde_encoder_idle_request(drm_enc);
}
static void sde_encoder_virt_enable(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
int i, ret = 0;
struct msm_compression_info *comp_info = NULL;
struct drm_display_mode *cur_mode = NULL;
struct msm_mode_info mode_info;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_kms_power_resource_is_enabled(drm_enc->dev)) {
SDE_ERROR("power resource is not enabled\n");
return;
}
ret = _sde_encoder_get_mode_info(drm_enc, &mode_info);
if (ret) {
SDE_ERROR_ENC(sde_enc, "failed to get mode info\n");
return;
}
if (drm_enc->crtc && !sde_enc->crtc)
sde_enc->crtc = drm_enc->crtc;
comp_info = &mode_info.comp_info;
cur_mode = &sde_enc->base.crtc->state->adjusted_mode;
SDE_DEBUG_ENC(sde_enc, "\n");
SDE_EVT32(DRMID(drm_enc), cur_mode->hdisplay, cur_mode->vdisplay);
sde_enc->cur_master = NULL;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.is_master && phys->ops.is_master(phys)) {
SDE_DEBUG_ENC(sde_enc, "master is now idx %d\n", i);
sde_enc->cur_master = phys;
break;
}
}
if (!sde_enc->cur_master) {
SDE_ERROR("virt encoder has no master! num_phys %d\n", i);
return;
}
if (sde_enc->input_handler && !sde_enc->input_handler_registered) {
ret = _sde_encoder_input_handler_register(
sde_enc->input_handler);
if (ret)
SDE_ERROR(
"input handler registration failed, rc = %d\n", ret);
else
sde_enc->input_handler_registered = true;
}
if (!(msm_is_mode_seamless_vrr(cur_mode)
|| msm_is_mode_seamless_dms(cur_mode)))
kthread_init_delayed_work(&sde_enc->delayed_off_work,
sde_encoder_off_work);
ret = sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_KICKOFF);
if (ret) {
SDE_ERROR_ENC(sde_enc, "sde resource control failed: %d\n",
ret);
return;
}
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (!phys)
continue;
phys->comp_type = comp_info->comp_type;
if (phys != sde_enc->cur_master) {
/**
* on DMS request, the encoder will be enabled
* already. Invoke restore to reconfigure the
* new mode.
*/
if (msm_is_mode_seamless_dms(cur_mode) &&
phys->ops.restore)
phys->ops.restore(phys);
else if (phys->ops.enable)
phys->ops.enable(phys);
}
if (sde_enc->misr_enable && (sde_enc->disp_info.capabilities &
MSM_DISPLAY_CAP_VID_MODE) && phys->ops.setup_misr)
phys->ops.setup_misr(phys, true,
sde_enc->misr_frame_count);
}
if (msm_is_mode_seamless_dms(cur_mode) &&
sde_enc->cur_master->ops.restore)
sde_enc->cur_master->ops.restore(sde_enc->cur_master);
else if (sde_enc->cur_master->ops.enable)
sde_enc->cur_master->ops.enable(sde_enc->cur_master);
_sde_encoder_virt_enable_helper(drm_enc);
}
static void sde_encoder_virt_disable(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
enum sde_intf_mode intf_mode;
int i = 0;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
} else if (!drm_enc->dev) {
SDE_ERROR("invalid dev\n");
return;
} else if (!drm_enc->dev->dev_private) {
SDE_ERROR("invalid dev_private\n");
return;
}
if (!sde_kms_power_resource_is_enabled(drm_enc->dev)) {
SDE_ERROR("power resource is not enabled\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
priv = drm_enc->dev->dev_private;
sde_kms = to_sde_kms(priv->kms);
intf_mode = sde_encoder_get_intf_mode(drm_enc);
SDE_EVT32(DRMID(drm_enc));
if (sde_enc->input_handler && sde_enc->input_handler_registered) {
input_unregister_handler(sde_enc->input_handler);
sde_enc->input_handler_registered = false;
}
/* wait for idle */
sde_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
kthread_flush_work(&sde_enc->input_event_work);
/*
* For primary command mode encoders, execute the resource control
* pre-stop operations before the physical encoders are disabled, to
* allow the rsc to transition its states properly.
*
* For other encoder types, rsc should not be enabled until after
* they have been fully disabled, so delay the pre-stop operations
* until after the physical disable calls have returned.
*/
if (sde_enc->disp_info.is_primary && intf_mode == INTF_MODE_CMD) {
sde_encoder_resource_control(drm_enc,
SDE_ENC_RC_EVENT_PRE_STOP);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.disable)
phys->ops.disable(phys);
}
} else {
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.disable)
phys->ops.disable(phys);
}
sde_encoder_resource_control(drm_enc,
SDE_ENC_RC_EVENT_PRE_STOP);
}
/*
* disable dsc after the transfer is complete (for command mode)
* and after physical encoder is disabled, to make sure timing
* engine is already disabled (for video mode).
*/
_sde_encoder_dsc_disable(sde_enc);
sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_STOP);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
if (sde_enc->phys_encs[i]) {
sde_enc->phys_encs[i]->cont_splash_settings = false;
sde_enc->phys_encs[i]->cont_splash_single_flush = 0;
sde_enc->phys_encs[i]->connector = NULL;
}
}
sde_enc->cur_master = NULL;
/*
* clear the cached crtc in sde_enc on use case finish, after all the
* outstanding events and timers have been completed
*/
sde_enc->crtc = NULL;
SDE_DEBUG_ENC(sde_enc, "encoder disabled\n");
sde_rm_release(&sde_kms->rm, drm_enc);
}
static enum sde_intf sde_encoder_get_intf(struct sde_mdss_cfg *catalog,
enum sde_intf_type type, u32 controller_id)
{
int i = 0;
for (i = 0; i < catalog->intf_count; i++) {
if (catalog->intf[i].type == type
&& catalog->intf[i].controller_id == controller_id) {
return catalog->intf[i].id;
}
}
return INTF_MAX;
}
static enum sde_wb sde_encoder_get_wb(struct sde_mdss_cfg *catalog,
enum sde_intf_type type, u32 controller_id)
{
if (controller_id < catalog->wb_count)
return catalog->wb[controller_id].id;
return WB_MAX;
}
static void sde_encoder_vblank_callback(struct drm_encoder *drm_enc,
struct sde_encoder_phys *phy_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
unsigned long lock_flags;
if (!drm_enc || !phy_enc)
return;
SDE_ATRACE_BEGIN("encoder_vblank_callback");
sde_enc = to_sde_encoder_virt(drm_enc);
spin_lock_irqsave(&sde_enc->enc_spinlock, lock_flags);
if (sde_enc->crtc_vblank_cb)
sde_enc->crtc_vblank_cb(sde_enc->crtc_vblank_cb_data);
spin_unlock_irqrestore(&sde_enc->enc_spinlock, lock_flags);
atomic_inc(&phy_enc->vsync_cnt);
SDE_ATRACE_END("encoder_vblank_callback");
}
static void sde_encoder_underrun_callback(struct drm_encoder *drm_enc,
struct sde_encoder_phys *phy_enc)
{
if (!phy_enc)
return;
SDE_ATRACE_BEGIN("encoder_underrun_callback");
atomic_inc(&phy_enc->underrun_cnt);
SDE_EVT32(DRMID(drm_enc), atomic_read(&phy_enc->underrun_cnt));
trace_sde_encoder_underrun(DRMID(drm_enc),
atomic_read(&phy_enc->underrun_cnt));
SDE_DBG_CTRL("stop_ftrace");
SDE_DBG_CTRL("panic_underrun");
SDE_ATRACE_END("encoder_underrun_callback");
}
void sde_encoder_register_vblank_callback(struct drm_encoder *drm_enc,
void (*vbl_cb)(void *), void *vbl_data)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
unsigned long lock_flags;
bool enable;
int i;
enable = vbl_cb ? true : false;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
SDE_DEBUG_ENC(sde_enc, "\n");
SDE_EVT32(DRMID(drm_enc), enable);
spin_lock_irqsave(&sde_enc->enc_spinlock, lock_flags);
sde_enc->crtc_vblank_cb = vbl_cb;
sde_enc->crtc_vblank_cb_data = vbl_data;
spin_unlock_irqrestore(&sde_enc->enc_spinlock, lock_flags);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.control_vblank_irq)
phys->ops.control_vblank_irq(phys, enable);
}
sde_enc->vblank_enabled = enable;
}
void sde_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
void (*frame_event_cb)(void *, u32 event),
struct drm_crtc *crtc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
unsigned long lock_flags;
bool enable;
enable = frame_event_cb ? true : false;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
SDE_DEBUG_ENC(sde_enc, "\n");
SDE_EVT32(DRMID(drm_enc), enable, 0);
spin_lock_irqsave(&sde_enc->enc_spinlock, lock_flags);
sde_enc->crtc_frame_event_cb = frame_event_cb;
sde_enc->crtc_frame_event_cb_data.crtc = crtc;
spin_unlock_irqrestore(&sde_enc->enc_spinlock, lock_flags);
}
static void sde_encoder_frame_done_callback(
struct drm_encoder *drm_enc,
struct sde_encoder_phys *ready_phys, u32 event)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
unsigned int i;
sde_enc->crtc_frame_event_cb_data.connector =
sde_enc->cur_master->connector;
if (event & (SDE_ENCODER_FRAME_EVENT_DONE
| SDE_ENCODER_FRAME_EVENT_ERROR
| SDE_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
if (!sde_enc->frame_busy_mask[0]) {
/**
* suppress frame_done without waiter,
* likely autorefresh
*/
SDE_EVT32(DRMID(drm_enc), event, ready_phys->intf_idx);
return;
}
/* One of the physical encoders has become idle */
for (i = 0; i < sde_enc->num_phys_encs; i++) {
if (sde_enc->phys_encs[i] == ready_phys) {
clear_bit(i, sde_enc->frame_busy_mask);
SDE_EVT32_VERBOSE(DRMID(drm_enc), i,
sde_enc->frame_busy_mask[0]);
}
}
if (!sde_enc->frame_busy_mask[0]) {
sde_encoder_resource_control(drm_enc,
SDE_ENC_RC_EVENT_FRAME_DONE);
if (sde_enc->crtc_frame_event_cb)
sde_enc->crtc_frame_event_cb(
&sde_enc->crtc_frame_event_cb_data,
event);
}
} else {
if (sde_enc->crtc_frame_event_cb)
sde_enc->crtc_frame_event_cb(
&sde_enc->crtc_frame_event_cb_data, event);
}
}
int sde_encoder_idle_request(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
if (!drm_enc) {
SDE_ERROR("invalid drm encoder\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
sde_encoder_resource_control(&sde_enc->base,
SDE_ENC_RC_EVENT_ENTER_IDLE);
return 0;
}
int sde_encoder_get_ctlstart_timeout_state(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
int i, count = 0;
if (!drm_enc)
return 0;
sde_enc = to_sde_encoder_virt(drm_enc);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
count += atomic_read(&sde_enc->phys_encs[i]->ctlstart_timeout);
atomic_set(&sde_enc->phys_encs[i]->ctlstart_timeout, 0);
}
return count;
}
/**
* _sde_encoder_trigger_flush - trigger flush for a physical encoder
* drm_enc: Pointer to drm encoder structure
* phys: Pointer to physical encoder structure
* extra_flush_bits: Additional bit mask to include in flush trigger
*/
static inline void _sde_encoder_trigger_flush(struct drm_encoder *drm_enc,
struct sde_encoder_phys *phys, uint32_t extra_flush_bits)
{
struct sde_hw_ctl *ctl;
int pending_kickoff_cnt;
if (!drm_enc || !phys) {
SDE_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n",
drm_enc != 0, phys != 0);
return;
}
if (!phys->hw_pp) {
SDE_ERROR("invalid pingpong hw\n");
return;
}
ctl = phys->hw_ctl;
if (!ctl || !phys->ops.trigger_flush) {
SDE_ERROR("missing ctl/trigger cb\n");
return;
}
if (phys->split_role == ENC_ROLE_SKIP) {
SDE_DEBUG_ENC(to_sde_encoder_virt(phys->parent),
"skip flush pp%d ctl%d\n",
phys->hw_pp->idx - PINGPONG_0,
ctl->idx - CTL_0);
return;
}
pending_kickoff_cnt = sde_encoder_phys_inc_pending(phys);
if (phys->ops.is_master && phys->ops.is_master(phys))
atomic_inc(&phys->pending_retire_fence_cnt);
if (extra_flush_bits && ctl->ops.update_pending_flush)
ctl->ops.update_pending_flush(ctl, extra_flush_bits);
phys->ops.trigger_flush(phys);
if (ctl->ops.get_pending_flush)
SDE_EVT32(DRMID(drm_enc), phys->intf_idx - INTF_0,
pending_kickoff_cnt, ctl->idx - CTL_0,
ctl->ops.get_pending_flush(ctl));
else
SDE_EVT32(DRMID(drm_enc), phys->intf_idx - INTF_0,
ctl->idx - CTL_0, pending_kickoff_cnt);
}
/**
* _sde_encoder_trigger_start - trigger start for a physical encoder
* phys: Pointer to physical encoder structure
*/
static inline void _sde_encoder_trigger_start(struct sde_encoder_phys *phys)
{
struct sde_hw_ctl *ctl;
if (!phys) {
SDE_ERROR("invalid argument(s)\n");
return;
}
if (!phys->hw_pp) {
SDE_ERROR("invalid pingpong hw\n");
return;
}
/* avoid ctrl start for encoder in clone mode */
if (phys->in_clone_mode)
return;
ctl = phys->hw_ctl;
if (phys->split_role == ENC_ROLE_SKIP) {
SDE_DEBUG_ENC(to_sde_encoder_virt(phys->parent),
"skip start pp%d ctl%d\n",
phys->hw_pp->idx - PINGPONG_0,
ctl->idx - CTL_0);
return;
}
if (phys->ops.trigger_start && phys->enable_state != SDE_ENC_DISABLED)
phys->ops.trigger_start(phys);
}
void sde_encoder_helper_trigger_flush(struct sde_encoder_phys *phys_enc)
{
struct sde_hw_ctl *ctl;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
ctl = phys_enc->hw_ctl;
if (ctl && ctl->ops.trigger_flush)
ctl->ops.trigger_flush(ctl);
}
void sde_encoder_helper_trigger_start(struct sde_encoder_phys *phys_enc)
{
struct sde_hw_ctl *ctl;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
ctl = phys_enc->hw_ctl;
if (ctl && ctl->ops.trigger_start) {
ctl->ops.trigger_start(ctl);
SDE_EVT32(DRMID(phys_enc->parent), ctl->idx - CTL_0);
}
}
static int _sde_encoder_wait_timeout(int32_t drm_id, int32_t hw_id,
s64 timeout_ms, struct sde_encoder_wait_info *info)
{
int rc = 0;
s64 wait_time_jiffies = msecs_to_jiffies(timeout_ms);
ktime_t cur_ktime;
ktime_t exp_ktime = ktime_add_ms(ktime_get(), timeout_ms);
do {
rc = wait_event_timeout(*(info->wq),
atomic_read(info->atomic_cnt) == 0, wait_time_jiffies);
cur_ktime = ktime_get();
SDE_EVT32(drm_id, hw_id, rc, ktime_to_ms(cur_ktime),
timeout_ms, atomic_read(info->atomic_cnt));
/* If we timed out, counter is valid and time is less, wait again */
} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
(ktime_compare_safe(exp_ktime, cur_ktime) > 0));
return rc;
}
int sde_encoder_helper_wait_event_timeout(int32_t drm_id, int32_t hw_id,
struct sde_encoder_wait_info *info)
{
int rc;
ktime_t exp_ktime = ktime_add_ms(ktime_get(), info->timeout_ms);
rc = _sde_encoder_wait_timeout(drm_id, hw_id, info->timeout_ms, info);
/**
* handle disabled irq case where timer irq is also delayed.
* wait for additional timeout of FAULT_TOLERENCE_WAIT_IN_MS
* if it event_timeout expired late detected.
*/
if (atomic_read(info->atomic_cnt) && (!rc) &&
(ktime_compare_safe(ktime_get(), ktime_add_ms(exp_ktime,
FAULT_TOLERENCE_DELTA_IN_MS)) > 0))
rc = _sde_encoder_wait_timeout(drm_id, hw_id,
FAULT_TOLERENCE_WAIT_IN_MS, info);
return rc;
}
void sde_encoder_helper_hw_reset(struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_virt *sde_enc;
struct sde_connector *sde_con;
void *sde_con_disp;
struct sde_hw_ctl *ctl;
int rc;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(phys_enc->parent);
ctl = phys_enc->hw_ctl;
if (!ctl || !ctl->ops.reset)
return;
SDE_DEBUG_ENC(sde_enc, "ctl %d reset\n", ctl->idx);
SDE_EVT32(DRMID(phys_enc->parent), ctl->idx);
if (phys_enc->ops.is_master && phys_enc->ops.is_master(phys_enc) &&
phys_enc->connector) {
sde_con = to_sde_connector(phys_enc->connector);
sde_con_disp = sde_connector_get_display(phys_enc->connector);
if (sde_con->ops.soft_reset) {
rc = sde_con->ops.soft_reset(sde_con_disp);
if (rc) {
SDE_ERROR_ENC(sde_enc,
"connector soft reset failure\n");
SDE_DBG_DUMP("all", "dbg_bus", "vbif_dbg_bus",
"panic");
}
}
}
phys_enc->enable_state = SDE_ENC_ENABLED;
}
/**
* _sde_encoder_kickoff_phys - handle physical encoder kickoff
* Iterate through the physical encoders and perform consolidated flush
* and/or control start triggering as needed. This is done in the virtual
* encoder rather than the individual physical ones in order to handle
* use cases that require visibility into multiple physical encoders at
* a time.
* sde_enc: Pointer to virtual encoder structure
*/
static void _sde_encoder_kickoff_phys(struct sde_encoder_virt *sde_enc)
{
struct sde_hw_ctl *ctl;
uint32_t i, pending_flush;
unsigned long lock_flags;
struct msm_drm_private *priv = NULL;
struct sde_kms *sde_kms = NULL;
bool is_vid_mode = false;
if (!sde_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
is_vid_mode = sde_enc->disp_info.capabilities &
MSM_DISPLAY_CAP_VID_MODE;
pending_flush = 0x0;
/*
* Trigger LUT DMA flush, this might need a wait, so we need
* to do this outside of the atomic context
*/
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (!phys || phys->enable_state == SDE_ENC_DISABLED)
continue;
ctl = phys->hw_ctl;
if (!ctl)
continue;
/* make reg dma kickoff as blocking for vidoe-mode */
if (phys->hw_ctl->ops.reg_dma_flush)
phys->hw_ctl->ops.reg_dma_flush(phys->hw_ctl,
is_vid_mode);
}
/* update pending counts and trigger kickoff ctl flush atomically */
spin_lock_irqsave(&sde_enc->enc_spinlock, lock_flags);
/* don't perform flush/start operations for slave encoders */
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
enum sde_rm_topology_name topology = SDE_RM_TOPOLOGY_NONE;
if (!phys || phys->enable_state == SDE_ENC_DISABLED)
continue;
ctl = phys->hw_ctl;
if (!ctl)
continue;
if (phys->connector)
topology = sde_connector_get_topology_name(
phys->connector);
/*
* don't wait on ppsplit slaves or skipped encoders because
* they dont receive irqs
*/
if (!(topology == SDE_RM_TOPOLOGY_PPSPLIT &&
phys->split_role == ENC_ROLE_SLAVE) &&
phys->split_role != ENC_ROLE_SKIP)
set_bit(i, sde_enc->frame_busy_mask);
if (!phys->ops.needs_single_flush ||
!phys->ops.needs_single_flush(phys))
_sde_encoder_trigger_flush(&sde_enc->base, phys, 0x0);
else if (ctl->ops.get_pending_flush)
pending_flush |= ctl->ops.get_pending_flush(ctl);
}
/* for split flush, combine pending flush masks and send to master */
if (pending_flush && sde_enc->cur_master) {
_sde_encoder_trigger_flush(
&sde_enc->base,
sde_enc->cur_master,
pending_flush);
}
_sde_encoder_trigger_start(sde_enc->cur_master);
spin_unlock_irqrestore(&sde_enc->enc_spinlock, lock_flags);
if (sde_enc->elevated_ahb_vote) {
priv = sde_enc->base.dev->dev_private;
if (priv != NULL) {
sde_kms = to_sde_kms(priv->kms);
if (sde_kms != NULL) {
sde_power_scale_reg_bus(&priv->phandle,
sde_kms->core_client,
VOTE_INDEX_LOW,
false);
}
}
sde_enc->elevated_ahb_vote = false;
}
}
static void _sde_encoder_ppsplit_swap_intf_for_right_only_update(
struct drm_encoder *drm_enc,
unsigned long *affected_displays,
int num_active_phys)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *master;
enum sde_rm_topology_name topology;
bool is_right_only;
if (!drm_enc || !affected_displays)
return;
sde_enc = to_sde_encoder_virt(drm_enc);
master = sde_enc->cur_master;
if (!master || !master->connector)
return;
topology = sde_connector_get_topology_name(master->connector);
if (topology != SDE_RM_TOPOLOGY_PPSPLIT)
return;
/*
* For pingpong split, the slave pingpong won't generate IRQs. For
* right-only updates, we can't swap pingpongs, or simply swap the
* master/slave assignment, we actually have to swap the interfaces
* so that the master physical encoder will use a pingpong/interface
* that generates irqs on which to wait.
*/
is_right_only = !test_bit(0, affected_displays) &&
test_bit(1, affected_displays);
if (is_right_only && !sde_enc->intfs_swapped) {
/* right-only update swap interfaces */
swap(sde_enc->phys_encs[0]->intf_idx,
sde_enc->phys_encs[1]->intf_idx);
sde_enc->intfs_swapped = true;
} else if (!is_right_only && sde_enc->intfs_swapped) {
/* left-only or full update, swap back */
swap(sde_enc->phys_encs[0]->intf_idx,
sde_enc->phys_encs[1]->intf_idx);
sde_enc->intfs_swapped = false;
}
SDE_DEBUG_ENC(sde_enc,
"right_only %d swapped %d phys0->intf%d, phys1->intf%d\n",
is_right_only, sde_enc->intfs_swapped,
sde_enc->phys_encs[0]->intf_idx - INTF_0,
sde_enc->phys_encs[1]->intf_idx - INTF_0);
SDE_EVT32(DRMID(drm_enc), is_right_only, sde_enc->intfs_swapped,
sde_enc->phys_encs[0]->intf_idx - INTF_0,
sde_enc->phys_encs[1]->intf_idx - INTF_0,
*affected_displays);
/* ppsplit always uses master since ppslave invalid for irqs*/
if (num_active_phys == 1)
*affected_displays = BIT(0);
}
static void _sde_encoder_update_master(struct drm_encoder *drm_enc,
struct sde_encoder_kickoff_params *params)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
int i, num_active_phys;
bool master_assigned = false;
if (!drm_enc || !params)
return;
sde_enc = to_sde_encoder_virt(drm_enc);
if (sde_enc->num_phys_encs <= 1)
return;
/* count bits set */
num_active_phys = hweight_long(params->affected_displays);
SDE_DEBUG_ENC(sde_enc, "affected_displays 0x%lx num_active_phys %d\n",
params->affected_displays, num_active_phys);
SDE_EVT32_VERBOSE(DRMID(drm_enc), params->affected_displays,
num_active_phys);
/* for left/right only update, ppsplit master switches interface */
_sde_encoder_ppsplit_swap_intf_for_right_only_update(drm_enc,
&params->affected_displays, num_active_phys);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
enum sde_enc_split_role prv_role, new_role;
bool active;
phys = sde_enc->phys_encs[i];
if (!phys || !phys->ops.update_split_role || !phys->hw_pp)
continue;
active = test_bit(i, &params->affected_displays);
prv_role = phys->split_role;
if (active && num_active_phys == 1)
new_role = ENC_ROLE_SOLO;
else if (active && !master_assigned)
new_role = ENC_ROLE_MASTER;
else if (active)
new_role = ENC_ROLE_SLAVE;
else
new_role = ENC_ROLE_SKIP;
phys->ops.update_split_role(phys, new_role);
if (new_role == ENC_ROLE_SOLO || new_role == ENC_ROLE_MASTER) {
sde_enc->cur_master = phys;
master_assigned = true;
}
SDE_DEBUG_ENC(sde_enc, "pp %d role prv %d new %d active %d\n",
phys->hw_pp->idx - PINGPONG_0, prv_role,
phys->split_role, active);
SDE_EVT32(DRMID(drm_enc), params->affected_displays,
phys->hw_pp->idx - PINGPONG_0, prv_role,
phys->split_role, active, num_active_phys);
}
}
bool sde_encoder_check_mode(struct drm_encoder *drm_enc, u32 mode)
{
struct sde_encoder_virt *sde_enc;
struct msm_display_info *disp_info;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return false;
}
sde_enc = to_sde_encoder_virt(drm_enc);
disp_info = &sde_enc->disp_info;
return (disp_info->capabilities & mode);
}
void sde_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
unsigned int i;
struct sde_hw_ctl *ctl;
struct msm_display_info *disp_info;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
disp_info = &sde_enc->disp_info;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys && phys->hw_ctl) {
ctl = phys->hw_ctl;
if (ctl->ops.clear_pending_flush)
ctl->ops.clear_pending_flush(ctl);
/* update only for command mode primary ctl */
if ((phys == sde_enc->cur_master) &&
(disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
&& ctl->ops.trigger_pending)
ctl->ops.trigger_pending(ctl);
}
}
}
static void _sde_encoder_setup_dither(struct sde_encoder_phys *phys)
{
void *dither_cfg;
int ret = 0, rc, i = 0;
size_t len = 0;
enum sde_rm_topology_name topology;
struct drm_encoder *drm_enc;
struct msm_mode_info mode_info;
struct msm_display_dsc_info *dsc = NULL;
struct sde_encoder_virt *sde_enc;
struct sde_hw_pingpong *hw_pp;
if (!phys || !phys->connector || !phys->hw_pp ||
!phys->hw_pp->ops.setup_dither || !phys->parent)
return;
topology = sde_connector_get_topology_name(phys->connector);
if ((topology == SDE_RM_TOPOLOGY_PPSPLIT) &&
(phys->split_role == ENC_ROLE_SLAVE))
return;
drm_enc = phys->parent;
sde_enc = to_sde_encoder_virt(drm_enc);
rc = _sde_encoder_get_mode_info(&sde_enc->base, &mode_info);
if (rc) {
SDE_ERROR_ENC(sde_enc, "failed to get mode info\n");
return;
}
dsc = &mode_info.comp_info.dsc_info;
/* disable dither for 10 bpp or 10bpc dsc config */
if (dsc->bpp == 10 || dsc->bpc == 10) {
phys->hw_pp->ops.setup_dither(phys->hw_pp, NULL, 0);
return;
}
ret = sde_connector_get_dither_cfg(phys->connector,
phys->connector->state, &dither_cfg, &len);
if (ret)
return;
if (TOPOLOGY_DUALPIPE_MERGE_MODE(topology)) {
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
hw_pp = sde_enc->hw_pp[i];
if (hw_pp) {
phys->hw_pp->ops.setup_dither(hw_pp, dither_cfg,
len);
}
}
} else {
phys->hw_pp->ops.setup_dither(phys->hw_pp, dither_cfg, len);
}
}
static u32 _sde_encoder_calculate_linetime(struct sde_encoder_virt *sde_enc,
struct drm_display_mode *mode)
{
u64 pclk_rate;
u32 pclk_period;
u32 line_time;
/*
* For linetime calculation, only operate on master encoder.
*/
if (!sde_enc->cur_master)
return 0;
if (!sde_enc->cur_master->ops.get_line_count) {
SDE_ERROR("get_line_count function not defined\n");
return 0;
}
pclk_rate = mode->clock; /* pixel clock in kHz */
if (pclk_rate == 0) {
SDE_ERROR("pclk is 0, cannot calculate line time\n");
return 0;
}
pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
if (pclk_period == 0) {
SDE_ERROR("pclk period is 0\n");
return 0;
}
/*
* Line time calculation based on Pixel clock and HTOTAL.
* Final unit is in ns.
*/
line_time = (pclk_period * mode->htotal) / 1000;
if (line_time == 0) {
SDE_ERROR("line time calculation is 0\n");
return 0;
}
SDE_DEBUG_ENC(sde_enc,
"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
pclk_rate, pclk_period, line_time);
return line_time;
}
static int _sde_encoder_wakeup_time(struct drm_encoder *drm_enc,
ktime_t *wakeup_time)
{
struct drm_display_mode *mode;
struct sde_encoder_virt *sde_enc;
u32 cur_line;
u32 line_time;
u32 vtotal, time_to_vsync;
ktime_t cur_time;
sde_enc = to_sde_encoder_virt(drm_enc);
mode = &sde_enc->cur_master->cached_mode;
line_time = _sde_encoder_calculate_linetime(sde_enc, mode);
if (!line_time)
return -EINVAL;
cur_line = sde_enc->cur_master->ops.get_line_count(sde_enc->cur_master);
vtotal = mode->vtotal;
if (cur_line >= vtotal)
time_to_vsync = line_time * vtotal;
else
time_to_vsync = line_time * (vtotal - cur_line);
if (time_to_vsync == 0) {
SDE_ERROR("time to vsync should not be zero, vtotal=%d\n",
vtotal);
return -EINVAL;
}
cur_time = ktime_get();
*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
SDE_DEBUG_ENC(sde_enc,
"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
cur_line, vtotal, time_to_vsync,
ktime_to_ms(cur_time),
ktime_to_ms(*wakeup_time));
return 0;
}
static void sde_encoder_vsync_event_handler(unsigned long data)
{
struct drm_encoder *drm_enc = (struct drm_encoder *) data;
struct sde_encoder_virt *sde_enc;
struct msm_drm_private *priv;
struct msm_drm_thread *event_thread;
if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
SDE_ERROR("invalid encoder parameters\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
priv = drm_enc->dev->dev_private;
if (!sde_enc->crtc) {
SDE_ERROR("invalid crtc");
return;
}
if (sde_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
SDE_ERROR("invalid crtc index:%u\n",
sde_enc->crtc->index);
return;
}
event_thread = &priv->event_thread[sde_enc->crtc->index];
if (!event_thread) {
SDE_ERROR("event_thread not found for crtc:%d\n",
sde_enc->crtc->index);
return;
}
kthread_queue_work(&event_thread->worker,
&sde_enc->vsync_event_work);
}
static void sde_encoder_esd_trigger_work_handler(struct kthread_work *work)
{
struct sde_encoder_virt *sde_enc = container_of(work,
struct sde_encoder_virt, esd_trigger_work);
if (!sde_enc) {
SDE_ERROR("invalid sde encoder\n");
return;
}
sde_encoder_resource_control(&sde_enc->base,
SDE_ENC_RC_EVENT_KICKOFF);
}
static void sde_encoder_input_event_work_handler(struct kthread_work *work)
{
struct sde_encoder_virt *sde_enc = container_of(work,
struct sde_encoder_virt, input_event_work);
if (!sde_enc) {
SDE_ERROR("invalid sde encoder\n");
return;
}
sde_encoder_resource_control(&sde_enc->base,
SDE_ENC_RC_EVENT_EARLY_WAKEUP);
}
static void sde_encoder_vsync_event_work_handler(struct kthread_work *work)
{
struct sde_encoder_virt *sde_enc = container_of(work,
struct sde_encoder_virt, vsync_event_work);
bool autorefresh_enabled = false;
int rc = 0;
ktime_t wakeup_time;
if (!sde_enc) {
SDE_ERROR("invalid sde encoder\n");
return;
}
rc = _sde_encoder_power_enable(sde_enc, true);
if (rc) {
SDE_ERROR_ENC(sde_enc, "sde enc power enabled failed:%d\n", rc);
return;
}
if (sde_enc->cur_master &&
sde_enc->cur_master->ops.is_autorefresh_enabled)
autorefresh_enabled =
sde_enc->cur_master->ops.is_autorefresh_enabled(
sde_enc->cur_master);
/* Update timer if autorefresh is enabled else return */
if (!autorefresh_enabled)
goto exit;
rc = _sde_encoder_wakeup_time(&sde_enc->base, &wakeup_time);
if (rc)
goto exit;
SDE_EVT32_VERBOSE(ktime_to_ms(wakeup_time));
mod_timer(&sde_enc->vsync_event_timer,
nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
exit:
_sde_encoder_power_enable(sde_enc, false);
}
int sde_encoder_poll_line_counts(struct drm_encoder *drm_enc)
{
static const uint64_t timeout_us = 50000;
static const uint64_t sleep_us = 20;
struct sde_encoder_virt *sde_enc;
ktime_t cur_ktime, exp_ktime;
uint32_t line_count, tmp, i;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc->cur_master ||
!sde_enc->cur_master->ops.get_line_count) {
SDE_DEBUG_ENC(sde_enc, "can't get master line count\n");
SDE_EVT32(DRMID(drm_enc), SDE_EVTLOG_ERROR);
return -EINVAL;
}
exp_ktime = ktime_add_ms(ktime_get(), timeout_us / 1000);
line_count = sde_enc->cur_master->ops.get_line_count(
sde_enc->cur_master);
for (i = 0; i < (timeout_us * 2 / sleep_us); ++i) {
tmp = line_count;
line_count = sde_enc->cur_master->ops.get_line_count(
sde_enc->cur_master);
if (line_count < tmp) {
SDE_EVT32(DRMID(drm_enc), line_count);
return 0;
}
cur_ktime = ktime_get();
if (ktime_compare_safe(exp_ktime, cur_ktime) <= 0)
break;
usleep_range(sleep_us / 2, sleep_us);
}
SDE_EVT32(DRMID(drm_enc), line_count, SDE_EVTLOG_ERROR);
return -ETIMEDOUT;
}
int sde_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc,
struct sde_encoder_kickoff_params *params)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
struct sde_kms *sde_kms = NULL;
struct msm_drm_private *priv = NULL;
struct drm_connector *conn_mas = NULL;
struct drm_display_mode *mode;
struct sde_hw_cdm *hw_cdm;
enum sde_csc_type conn_csc;
bool needs_hw_reset = false;
uint32_t ln_cnt1, ln_cnt2;
unsigned int i;
int rc, ret = 0;
int mode_is_yuv = 0;
if (!drm_enc || !params || !drm_enc->dev ||
!drm_enc->dev->dev_private) {
SDE_ERROR("invalid args\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
priv = drm_enc->dev->dev_private;
sde_kms = to_sde_kms(priv->kms);
SDE_DEBUG_ENC(sde_enc, "\n");
SDE_EVT32(DRMID(drm_enc));
/* save this for later, in case of errors */
if (sde_enc->cur_master && sde_enc->cur_master->ops.get_wr_line_count)
ln_cnt1 = sde_enc->cur_master->ops.get_wr_line_count(
sde_enc->cur_master);
else
ln_cnt1 = -EINVAL;
/* prepare for next kickoff, may include waiting on previous kickoff */
SDE_ATRACE_BEGIN("enc_prepare_for_kickoff");
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
params->is_primary = sde_enc->disp_info.is_primary;
if (phys) {
if (phys->ops.prepare_for_kickoff) {
rc = phys->ops.prepare_for_kickoff(
phys, params);
if (rc)
ret = rc;
}
if (phys->enable_state == SDE_ENC_ERR_NEEDS_HW_RESET)
needs_hw_reset = true;
_sde_encoder_setup_dither(phys);
}
}
SDE_ATRACE_END("enc_prepare_for_kickoff");
rc = sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_KICKOFF);
if (rc) {
SDE_ERROR_ENC(sde_enc, "resource kickoff failed rc %d\n", rc);
return rc;
}
/* if any phys needs reset, reset all phys, in-order */
if (needs_hw_reset) {
/* query line count before cur_master is updated */
if (sde_enc->cur_master &&
sde_enc->cur_master->ops.get_wr_line_count)
ln_cnt2 = sde_enc->cur_master->ops.get_wr_line_count(
sde_enc->cur_master);
else
ln_cnt2 = -EINVAL;
SDE_EVT32(DRMID(drm_enc), ln_cnt1, ln_cnt2,
SDE_EVTLOG_FUNC_CASE1);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys && phys->ops.hw_reset)
phys->ops.hw_reset(phys);
}
}
_sde_encoder_update_master(drm_enc, params);
_sde_encoder_update_roi(drm_enc);
if (sde_enc->cur_master && sde_enc->cur_master->connector) {
conn_mas = sde_enc->cur_master->connector;
rc = sde_connector_pre_kickoff(conn_mas);
if (rc) {
SDE_ERROR_ENC(sde_enc,
"kickoff conn%d failed rc %d\n",
conn_mas->base.id,
rc);
ret = rc;
}
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys) {
mode = &phys->cached_mode;
mode_is_yuv = ((mode->private_flags &
MSM_MODE_FLAG_COLOR_FORMAT_YCBCR420) ||
(mode->private_flags &
MSM_MODE_FLAG_COLOR_FORMAT_YCBCR422));
}
/**
* Check the CSC matrix type to which the
* CDM CSC matrix should be updated to based
* on the connector HDR state
*/
conn_csc = sde_connector_get_csc_type(conn_mas);
if (phys && mode_is_yuv) {
if (phys->enc_cdm_csc != conn_csc) {
hw_cdm = phys->hw_cdm;
rc = hw_cdm->ops.setup_csc_data(hw_cdm,
&sde_csc_10bit_convert[conn_csc]);
if (rc)
SDE_ERROR_ENC(sde_enc,
"CSC setup failed rc %d\n",
rc);
SDE_DEBUG_ENC(sde_enc,
"updating CSC %d to %d\n",
phys->enc_cdm_csc,
conn_csc);
phys->enc_cdm_csc = conn_csc;
}
}
}
}
if (_sde_encoder_is_dsc_enabled(drm_enc) &&
!sde_kms->splash_data.cont_splash_en) {
rc = _sde_encoder_dsc_setup(sde_enc, params);
if (rc) {
SDE_ERROR_ENC(sde_enc, "failed to setup DSC: %d\n", rc);
ret = rc;
}
}
return ret;
}
/**
* _sde_encoder_reset_ctl_hw - reset h/w configuration for all ctl's associated
* with the specified encoder, and unstage all pipes from it
* @encoder: encoder pointer
* Returns: 0 on success
*/
static int _sde_encoder_reset_ctl_hw(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
unsigned int i;
int rc = 0;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_ATRACE_BEGIN("encoder_release_lm");
SDE_DEBUG_ENC(sde_enc, "\n");
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (!phys)
continue;
SDE_EVT32(DRMID(drm_enc), phys->intf_idx - INTF_0);
rc = sde_encoder_helper_reset_mixers(phys, NULL);
if (rc)
SDE_EVT32(DRMID(drm_enc), rc, SDE_EVTLOG_ERROR);
}
SDE_ATRACE_END("encoder_release_lm");
return rc;
}
void sde_encoder_kickoff(struct drm_encoder *drm_enc, bool is_error)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
ktime_t wakeup_time;
unsigned int i;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
SDE_ATRACE_BEGIN("encoder_kickoff");
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
/* create a 'no pipes' commit to release buffers on errors */
if (is_error)
_sde_encoder_reset_ctl_hw(drm_enc);
/* All phys encs are ready to go, trigger the kickoff */
_sde_encoder_kickoff_phys(sde_enc);
/* allow phys encs to handle any post-kickoff business */
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys && phys->ops.handle_post_kickoff)
phys->ops.handle_post_kickoff(phys);
}
if (sde_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DSI &&
sde_enc->disp_info.is_primary &&
!_sde_encoder_wakeup_time(drm_enc, &wakeup_time)) {
SDE_EVT32_VERBOSE(ktime_to_ms(wakeup_time));
mod_timer(&sde_enc->vsync_event_timer,
nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
}
SDE_ATRACE_END("encoder_kickoff");
}
int sde_encoder_helper_reset_mixers(struct sde_encoder_phys *phys_enc,
struct drm_framebuffer *fb)
{
struct drm_encoder *drm_enc;
struct sde_hw_mixer_cfg mixer;
struct sde_rm_hw_iter lm_iter;
bool lm_valid = false;
if (!phys_enc || !phys_enc->parent) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
drm_enc = phys_enc->parent;
memset(&mixer, 0, sizeof(mixer));
/* reset associated CTL/LMs */
if (phys_enc->hw_ctl->ops.clear_all_blendstages)
phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
sde_rm_init_hw_iter(&lm_iter, drm_enc->base.id, SDE_HW_BLK_LM);
while (sde_rm_get_hw(&phys_enc->sde_kms->rm, &lm_iter)) {
struct sde_hw_mixer *hw_lm = (struct sde_hw_mixer *)lm_iter.hw;
if (!hw_lm)
continue;
/* need to flush LM to remove it */
if (phys_enc->hw_ctl->ops.get_bitmask_mixer &&
phys_enc->hw_ctl->ops.update_pending_flush)
phys_enc->hw_ctl->ops.update_pending_flush(
phys_enc->hw_ctl,
phys_enc->hw_ctl->ops.get_bitmask_mixer(
phys_enc->hw_ctl, hw_lm->idx));
if (fb) {
/* assume a single LM if targeting a frame buffer */
if (lm_valid)
continue;
mixer.out_height = fb->height;
mixer.out_width = fb->width;
if (hw_lm->ops.setup_mixer_out)
hw_lm->ops.setup_mixer_out(hw_lm, &mixer);
}
lm_valid = true;
/* only enable border color on LM */
if (phys_enc->hw_ctl->ops.setup_blendstage)
phys_enc->hw_ctl->ops.setup_blendstage(
phys_enc->hw_ctl, hw_lm->idx,
hw_lm->cfg.flags, NULL);
}
if (!lm_valid) {
SDE_ERROR_ENC(to_sde_encoder_virt(drm_enc), "lm not found\n");
return -EFAULT;
}
return 0;
}
void sde_encoder_prepare_commit(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
int i;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys && phys->ops.prepare_commit)
phys->ops.prepare_commit(phys);
}
}
#ifdef CONFIG_DEBUG_FS
static int _sde_encoder_status_show(struct seq_file *s, void *data)
{
struct sde_encoder_virt *sde_enc;
int i;
if (!s || !s->private)
return -EINVAL;
sde_enc = s->private;
mutex_lock(&sde_enc->enc_lock);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (!phys)
continue;
seq_printf(s, "intf:%d vsync:%8d underrun:%8d ",
phys->intf_idx - INTF_0,
atomic_read(&phys->vsync_cnt),
atomic_read(&phys->underrun_cnt));
switch (phys->intf_mode) {
case INTF_MODE_VIDEO:
seq_puts(s, "mode: video\n");
break;
case INTF_MODE_CMD:
seq_puts(s, "mode: command\n");
break;
case INTF_MODE_WB_BLOCK:
seq_puts(s, "mode: wb block\n");
break;
case INTF_MODE_WB_LINE:
seq_puts(s, "mode: wb line\n");
break;
default:
seq_puts(s, "mode: ???\n");
break;
}
}
mutex_unlock(&sde_enc->enc_lock);
return 0;
}
static int _sde_encoder_debugfs_status_open(struct inode *inode,
struct file *file)
{
return single_open(file, _sde_encoder_status_show, inode->i_private);
}
static ssize_t _sde_encoder_misr_setup(struct file *file,
const char __user *user_buf, size_t count, loff_t *ppos)
{
struct sde_encoder_virt *sde_enc;
int i = 0, rc;
char buf[MISR_BUFF_SIZE + 1];
size_t buff_copy;
u32 frame_count, enable;
if (!file || !file->private_data)
return -EINVAL;
sde_enc = file->private_data;
buff_copy = min_t(size_t, count, MISR_BUFF_SIZE);
if (copy_from_user(buf, user_buf, buff_copy))
return -EINVAL;
buf[buff_copy] = 0; /* end of string */
if (sscanf(buf, "%u %u", &enable, &frame_count) != 2)
return -EINVAL;
rc = _sde_encoder_power_enable(sde_enc, true);
if (rc)
return rc;
mutex_lock(&sde_enc->enc_lock);
sde_enc->misr_enable = enable;
sde_enc->misr_frame_count = frame_count;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (!phys || !phys->ops.setup_misr)
continue;
phys->ops.setup_misr(phys, enable, frame_count);
}
mutex_unlock(&sde_enc->enc_lock);
_sde_encoder_power_enable(sde_enc, false);
return count;
}
static ssize_t _sde_encoder_misr_read(struct file *file,
char __user *user_buff, size_t count, loff_t *ppos)
{
struct sde_encoder_virt *sde_enc;
int i = 0, len = 0;
char buf[MISR_BUFF_SIZE + 1] = {'\0'};
int rc;
if (*ppos)
return 0;
if (!file || !file->private_data)
return -EINVAL;
sde_enc = file->private_data;
rc = _sde_encoder_power_enable(sde_enc, true);
if (rc)
return rc;
mutex_lock(&sde_enc->enc_lock);
if (!sde_enc->misr_enable) {
len += snprintf(buf + len, MISR_BUFF_SIZE - len,
"disabled\n");
goto buff_check;
} else if (sde_enc->disp_info.capabilities &
~MSM_DISPLAY_CAP_VID_MODE) {
len += snprintf(buf + len, MISR_BUFF_SIZE - len,
"unsupported\n");
goto buff_check;
}
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (!phys || !phys->ops.collect_misr)
continue;
len += snprintf(buf + len, MISR_BUFF_SIZE - len,
"Intf idx:%d\n", phys->intf_idx - INTF_0);
len += snprintf(buf + len, MISR_BUFF_SIZE - len, "0x%x\n",
phys->ops.collect_misr(phys));
}
buff_check:
if (count <= len) {
len = 0;
goto end;
}
if (copy_to_user(user_buff, buf, len)) {
len = -EFAULT;
goto end;
}
*ppos += len; /* increase offset */
end:
mutex_unlock(&sde_enc->enc_lock);
_sde_encoder_power_enable(sde_enc, false);
return len;
}
static int _sde_encoder_init_debugfs(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
int i;
static const struct file_operations debugfs_status_fops = {
.open = _sde_encoder_debugfs_status_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations debugfs_misr_fops = {
.open = simple_open,
.read = _sde_encoder_misr_read,
.write = _sde_encoder_misr_setup,
};
char name[SDE_NAME_SIZE];
if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
SDE_ERROR("invalid encoder or kms\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
priv = drm_enc->dev->dev_private;
sde_kms = to_sde_kms(priv->kms);
snprintf(name, SDE_NAME_SIZE, "encoder%u", drm_enc->base.id);
/* create overall sub-directory for the encoder */
sde_enc->debugfs_root = debugfs_create_dir(name,
drm_enc->dev->primary->debugfs_root);
if (!sde_enc->debugfs_root)
return -ENOMEM;
/* don't error check these */
debugfs_create_file("status", 0600,
sde_enc->debugfs_root, sde_enc, &debugfs_status_fops);
debugfs_create_file("misr_data", 0600,
sde_enc->debugfs_root, sde_enc, &debugfs_misr_fops);
for (i = 0; i < sde_enc->num_phys_encs; i++)
if (sde_enc->phys_encs[i] &&
sde_enc->phys_encs[i]->ops.late_register)
sde_enc->phys_encs[i]->ops.late_register(
sde_enc->phys_encs[i],
sde_enc->debugfs_root);
return 0;
}
static void _sde_encoder_destroy_debugfs(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
if (!drm_enc)
return;
sde_enc = to_sde_encoder_virt(drm_enc);
debugfs_remove_recursive(sde_enc->debugfs_root);
}
#else
static int _sde_encoder_init_debugfs(struct drm_encoder *drm_enc)
{
return 0;
}
static void _sde_encoder_destroy_debugfs(struct drm_encoder *drm_enc)
{
}
#endif
static int sde_encoder_late_register(struct drm_encoder *encoder)
{
return _sde_encoder_init_debugfs(encoder);
}
static void sde_encoder_early_unregister(struct drm_encoder *encoder)
{
_sde_encoder_destroy_debugfs(encoder);
}
static int sde_encoder_virt_add_phys_encs(
u32 display_caps,
struct sde_encoder_virt *sde_enc,
struct sde_enc_phys_init_params *params)
{
struct sde_encoder_phys *enc = NULL;
SDE_DEBUG_ENC(sde_enc, "\n");
/*
* We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
* in this function, check up-front.
*/
if (sde_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
ARRAY_SIZE(sde_enc->phys_encs)) {
SDE_ERROR_ENC(sde_enc, "too many physical encoders %d\n",
sde_enc->num_phys_encs);
return -EINVAL;
}
if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
enc = sde_encoder_phys_vid_init(params);
if (IS_ERR_OR_NULL(enc)) {
SDE_ERROR_ENC(sde_enc, "failed to init vid enc: %ld\n",
PTR_ERR(enc));
return enc == 0 ? -EINVAL : PTR_ERR(enc);
}
sde_enc->phys_encs[sde_enc->num_phys_encs] = enc;
++sde_enc->num_phys_encs;
}
if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
enc = sde_encoder_phys_cmd_init(params);
if (IS_ERR_OR_NULL(enc)) {
SDE_ERROR_ENC(sde_enc, "failed to init cmd enc: %ld\n",
PTR_ERR(enc));
return enc == 0 ? -EINVAL : PTR_ERR(enc);
}
sde_enc->phys_encs[sde_enc->num_phys_encs] = enc;
++sde_enc->num_phys_encs;
}
return 0;
}
static int sde_encoder_virt_add_phys_enc_wb(struct sde_encoder_virt *sde_enc,
struct sde_enc_phys_init_params *params)
{
struct sde_encoder_phys *enc = NULL;
if (!sde_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
SDE_DEBUG_ENC(sde_enc, "\n");
if (sde_enc->num_phys_encs + 1 >= ARRAY_SIZE(sde_enc->phys_encs)) {
SDE_ERROR_ENC(sde_enc, "too many physical encoders %d\n",
sde_enc->num_phys_encs);
return -EINVAL;
}
enc = sde_encoder_phys_wb_init(params);
if (IS_ERR_OR_NULL(enc)) {
SDE_ERROR_ENC(sde_enc, "failed to init wb enc: %ld\n",
PTR_ERR(enc));
return enc == 0 ? -EINVAL : PTR_ERR(enc);
}
sde_enc->phys_encs[sde_enc->num_phys_encs] = enc;
++sde_enc->num_phys_encs;
return 0;
}
static int sde_encoder_setup_display(struct sde_encoder_virt *sde_enc,
struct sde_kms *sde_kms,
struct msm_display_info *disp_info,
int *drm_enc_mode)
{
int ret = 0;
int i = 0;
enum sde_intf_type intf_type;
struct sde_encoder_virt_ops parent_ops = {
sde_encoder_vblank_callback,
sde_encoder_underrun_callback,
sde_encoder_frame_done_callback,
};
struct sde_enc_phys_init_params phys_params;
if (!sde_enc || !sde_kms) {
SDE_ERROR("invalid arg(s), enc %d kms %d\n",
sde_enc != 0, sde_kms != 0);
return -EINVAL;
}
memset(&phys_params, 0, sizeof(phys_params));
phys_params.sde_kms = sde_kms;
phys_params.parent = &sde_enc->base;
phys_params.parent_ops = parent_ops;
phys_params.enc_spinlock = &sde_enc->enc_spinlock;
phys_params.vblank_ctl_lock = &sde_enc->vblank_ctl_lock;
SDE_DEBUG("\n");
if (disp_info->intf_type == DRM_MODE_CONNECTOR_DSI) {
*drm_enc_mode = DRM_MODE_ENCODER_DSI;
intf_type = INTF_DSI;
} else if (disp_info->intf_type == DRM_MODE_CONNECTOR_HDMIA) {
*drm_enc_mode = DRM_MODE_ENCODER_TMDS;
intf_type = INTF_HDMI;
} else if (disp_info->intf_type == DRM_MODE_CONNECTOR_DisplayPort) {
*drm_enc_mode = DRM_MODE_ENCODER_TMDS;
intf_type = INTF_DP;
} else if (disp_info->intf_type == DRM_MODE_CONNECTOR_VIRTUAL) {
*drm_enc_mode = DRM_MODE_ENCODER_VIRTUAL;
intf_type = INTF_WB;
} else {
SDE_ERROR_ENC(sde_enc, "unsupported display interface type\n");
return -EINVAL;
}
WARN_ON(disp_info->num_of_h_tiles < 1);
sde_enc->display_num_of_h_tiles = disp_info->num_of_h_tiles;
SDE_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
(disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
sde_enc->idle_pc_enabled = sde_kms->catalog->has_idle_pc;
mutex_lock(&sde_enc->enc_lock);
for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
/*
* Left-most tile is at index 0, content is controller id
* h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
* h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
*/
u32 controller_id = disp_info->h_tile_instance[i];
if (disp_info->num_of_h_tiles > 1) {
if (i == 0)
phys_params.split_role = ENC_ROLE_MASTER;
else
phys_params.split_role = ENC_ROLE_SLAVE;
} else {
phys_params.split_role = ENC_ROLE_SOLO;
}
SDE_DEBUG("h_tile_instance %d = %d, split_role %d\n",
i, controller_id, phys_params.split_role);
if (intf_type == INTF_WB) {
phys_params.intf_idx = INTF_MAX;
phys_params.wb_idx = sde_encoder_get_wb(
sde_kms->catalog,
intf_type, controller_id);
if (phys_params.wb_idx == WB_MAX) {
SDE_ERROR_ENC(sde_enc,
"could not get wb: type %d, id %d\n",
intf_type, controller_id);
ret = -EINVAL;
}
} else {
phys_params.wb_idx = WB_MAX;
phys_params.intf_idx = sde_encoder_get_intf(
sde_kms->catalog, intf_type,
controller_id);
if (phys_params.intf_idx == INTF_MAX) {
SDE_ERROR_ENC(sde_enc,
"could not get wb: type %d, id %d\n",
intf_type, controller_id);
ret = -EINVAL;
}
}
if (!ret) {
if (intf_type == INTF_WB)
ret = sde_encoder_virt_add_phys_enc_wb(sde_enc,
&phys_params);
else
ret = sde_encoder_virt_add_phys_encs(
disp_info->capabilities,
sde_enc,
&phys_params);
if (ret)
SDE_ERROR_ENC(sde_enc,
"failed to add phys encs\n");
}
}
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys) {
atomic_set(&phys->vsync_cnt, 0);
atomic_set(&phys->underrun_cnt, 0);
}
}
mutex_unlock(&sde_enc->enc_lock);
return ret;
}
static const struct drm_encoder_helper_funcs sde_encoder_helper_funcs = {
.mode_set = sde_encoder_virt_mode_set,
.disable = sde_encoder_virt_disable,
.enable = sde_encoder_virt_enable,
.atomic_check = sde_encoder_virt_atomic_check,
};
static const struct drm_encoder_funcs sde_encoder_funcs = {
.destroy = sde_encoder_destroy,
.late_register = sde_encoder_late_register,
.early_unregister = sde_encoder_early_unregister,
};
struct drm_encoder *sde_encoder_init(
struct drm_device *dev,
struct msm_display_info *disp_info)
{
struct msm_drm_private *priv = dev->dev_private;
struct sde_kms *sde_kms = to_sde_kms(priv->kms);
struct drm_encoder *drm_enc = NULL;
struct sde_encoder_virt *sde_enc = NULL;
int drm_enc_mode = DRM_MODE_ENCODER_NONE;
char name[SDE_NAME_SIZE];
int ret = 0;
sde_enc = kzalloc(sizeof(*sde_enc), GFP_KERNEL);
if (!sde_enc) {
ret = -ENOMEM;
goto fail;
}
mutex_init(&sde_enc->enc_lock);
ret = sde_encoder_setup_display(sde_enc, sde_kms, disp_info,
&drm_enc_mode);
if (ret)
goto fail;
sde_enc->cur_master = NULL;
spin_lock_init(&sde_enc->enc_spinlock);
mutex_init(&sde_enc->vblank_ctl_lock);
drm_enc = &sde_enc->base;
drm_encoder_init(dev, drm_enc, &sde_encoder_funcs, drm_enc_mode, NULL);
drm_encoder_helper_add(drm_enc, &sde_encoder_helper_funcs);
if ((disp_info->intf_type == DRM_MODE_CONNECTOR_DSI) &&
disp_info->is_primary)
setup_timer(&sde_enc->vsync_event_timer,
sde_encoder_vsync_event_handler,
(unsigned long)sde_enc);
snprintf(name, SDE_NAME_SIZE, "rsc_enc%u", drm_enc->base.id);
sde_enc->rsc_client = sde_rsc_client_create(SDE_RSC_INDEX, name,
disp_info->is_primary);
if (IS_ERR_OR_NULL(sde_enc->rsc_client)) {
SDE_DEBUG("sde rsc client create failed :%ld\n",
PTR_ERR(sde_enc->rsc_client));
sde_enc->rsc_client = NULL;
}
if (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
ret = _sde_encoder_input_handler(sde_enc);
if (ret)
SDE_ERROR(
"input handler registration failed, rc = %d\n", ret);
}
mutex_init(&sde_enc->rc_lock);
kthread_init_delayed_work(&sde_enc->delayed_off_work,
sde_encoder_off_work);
sde_enc->vblank_enabled = false;
kthread_init_work(&sde_enc->vsync_event_work,
sde_encoder_vsync_event_work_handler);
kthread_init_work(&sde_enc->input_event_work,
sde_encoder_input_event_work_handler);
kthread_init_work(&sde_enc->esd_trigger_work,
sde_encoder_esd_trigger_work_handler);
memcpy(&sde_enc->disp_info, disp_info, sizeof(*disp_info));
SDE_DEBUG_ENC(sde_enc, "created\n");
return drm_enc;
fail:
SDE_ERROR("failed to create encoder\n");
if (drm_enc)
sde_encoder_destroy(drm_enc);
return ERR_PTR(ret);
}
int sde_encoder_wait_for_event(struct drm_encoder *drm_enc,
enum msm_event_wait event)
{
int (*fn_wait)(struct sde_encoder_phys *phys_enc) = NULL;
struct sde_encoder_virt *sde_enc = NULL;
int i, ret = 0;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
switch (event) {
case MSM_ENC_COMMIT_DONE:
fn_wait = phys->ops.wait_for_commit_done;
break;
case MSM_ENC_TX_COMPLETE:
fn_wait = phys->ops.wait_for_tx_complete;
break;
case MSM_ENC_VBLANK:
fn_wait = phys->ops.wait_for_vblank;
break;
case MSM_ENC_ACTIVE_REGION:
fn_wait = phys->ops.wait_for_active;
break;
default:
SDE_ERROR_ENC(sde_enc, "unknown wait event %d\n",
event);
return -EINVAL;
};
if (phys && fn_wait) {
SDE_ATRACE_BEGIN("wait_for_completion_event");
ret = fn_wait(phys);
SDE_ATRACE_END("wait_for_completion_event");
if (ret)
return ret;
}
}
return ret;
}
enum sde_intf_mode sde_encoder_get_intf_mode(struct drm_encoder *encoder)
{
struct sde_encoder_virt *sde_enc = NULL;
int i;
if (!encoder) {
SDE_ERROR("invalid encoder\n");
return INTF_MODE_NONE;
}
sde_enc = to_sde_encoder_virt(encoder);
if (sde_enc->cur_master)
return sde_enc->cur_master->intf_mode;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys)
return phys->intf_mode;
}
return INTF_MODE_NONE;
}
/**
* sde_encoder_update_caps_for_cont_splash - update encoder settings during
* device bootup when cont_splash is enabled
* @drm_enc: Pointer to drm encoder structure
* @Return: true if successful in updating the encoder structure
*/
int sde_encoder_update_caps_for_cont_splash(struct drm_encoder *encoder)
{
struct sde_encoder_virt *sde_enc;
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct drm_connector *conn = NULL;
struct sde_connector *sde_conn = NULL;
struct sde_connector_state *sde_conn_state = NULL;
struct drm_display_mode *drm_mode = NULL;
struct sde_rm_hw_iter dsc_iter, pp_iter, ctl_iter;
int ret = 0, i;
if (!encoder) {
SDE_ERROR("invalid drm enc\n");
return -EINVAL;
}
if (!encoder->dev || !encoder->dev->dev_private) {
SDE_ERROR("drm device invalid\n");
return -EINVAL;
}
priv = encoder->dev->dev_private;
if (!priv->kms) {
SDE_ERROR("invalid kms\n");
return -EINVAL;
}
sde_kms = to_sde_kms(priv->kms);
sde_enc = to_sde_encoder_virt(encoder);
if (!priv->num_connectors) {
SDE_ERROR_ENC(sde_enc, "No connectors registered\n");
return -EINVAL;
}
SDE_DEBUG_ENC(sde_enc,
"num of connectors: %d\n", priv->num_connectors);
for (i = 0; i < priv->num_connectors; i++) {
SDE_DEBUG_ENC(sde_enc, "connector id: %d\n",
priv->connectors[i]->base.id);
sde_conn = to_sde_connector(priv->connectors[i]);
if (!sde_conn->encoder) {
SDE_DEBUG_ENC(sde_enc,
"encoder not attached to connector\n");
continue;
}
if (sde_conn->encoder->base.id
== encoder->base.id) {
conn = (priv->connectors[i]);
break;
}
}
if (!conn || !conn->state) {
SDE_ERROR_ENC(sde_enc, "connector not found\n");
return -EINVAL;
}
sde_conn_state = to_sde_connector_state(conn->state);
if (!sde_conn->ops.get_mode_info) {
SDE_ERROR_ENC(sde_enc, "conn: get_mode_info ops not found\n");
return -EINVAL;
}
ret = sde_conn->ops.get_mode_info(&encoder->crtc->state->adjusted_mode,
&sde_conn_state->mode_info,
sde_kms->catalog->max_mixer_width,
sde_conn->display);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"conn: ->get_mode_info failed. ret=%d\n", ret);
return ret;
}
ret = sde_rm_reserve(&sde_kms->rm, encoder, encoder->crtc->state,
conn->state, false);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"failed to reserve hw resources, %d\n", ret);
return ret;
}
if (sde_conn->encoder) {
conn->state->best_encoder = sde_conn->encoder;
SDE_DEBUG_ENC(sde_enc,
"configured cstate->best_encoder to ID = %d\n",
conn->state->best_encoder->base.id);
} else {
SDE_ERROR_ENC(sde_enc, "No encoder mapped to connector=%d\n",
conn->base.id);
}
SDE_DEBUG_ENC(sde_enc, "connector topology = %llu\n",
sde_connector_get_topology_name(conn));
drm_mode = &encoder->crtc->state->adjusted_mode;
SDE_DEBUG_ENC(sde_enc, "hdisplay = %d, vdisplay = %d\n",
drm_mode->hdisplay, drm_mode->vdisplay);
drm_set_preferred_mode(conn, drm_mode->hdisplay, drm_mode->vdisplay);
if (encoder->bridge) {
SDE_DEBUG_ENC(sde_enc, "Bridge mapped to encoder\n");
/*
* For cont-splash use case, we update the mode
* configurations manually. This will skip the
* usually mode set call when actual frame is
* pushed from framework. The bridge needs to
* be updated with the current drm mode by
* calling the bridge mode set ops.
*/
if (encoder->bridge->funcs) {
SDE_DEBUG_ENC(sde_enc, "calling mode_set\n");
encoder->bridge->funcs->mode_set(encoder->bridge,
drm_mode, drm_mode);
}
} else {
SDE_ERROR_ENC(sde_enc, "No bridge attached to encoder\n");
}
sde_rm_init_hw_iter(&pp_iter, encoder->base.id, SDE_HW_BLK_PINGPONG);
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
sde_enc->hw_pp[i] = NULL;
if (!sde_rm_get_hw(&sde_kms->rm, &pp_iter))
break;
sde_enc->hw_pp[i] = (struct sde_hw_pingpong *) pp_iter.hw;
}
sde_rm_init_hw_iter(&dsc_iter, encoder->base.id, SDE_HW_BLK_DSC);
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
sde_enc->hw_dsc[i] = NULL;
if (!sde_rm_get_hw(&sde_kms->rm, &dsc_iter))
break;
sde_enc->hw_dsc[i] = (struct sde_hw_dsc *) dsc_iter.hw;
}
sde_rm_init_hw_iter(&ctl_iter, encoder->base.id, SDE_HW_BLK_CTL);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
phys->hw_ctl = NULL;
if (!sde_rm_get_hw(&sde_kms->rm, &ctl_iter))
break;
phys->hw_ctl = (struct sde_hw_ctl *) ctl_iter.hw;
}
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (!phys) {
SDE_ERROR_ENC(sde_enc,
"phys encoders not initialized\n");
return -EINVAL;
}
/* update connector for master and slave phys encoders */
phys->connector = conn;
phys->cont_splash_single_flush =
sde_kms->splash_data.single_flush_en;
phys->cont_splash_settings = true;
phys->hw_pp = sde_enc->hw_pp[i];
if (phys->ops.cont_splash_mode_set)
phys->ops.cont_splash_mode_set(phys, drm_mode);
if (phys->ops.is_master && phys->ops.is_master(phys))
sde_enc->cur_master = phys;
}
return ret;
}
int sde_encoder_display_failure_notification(struct drm_encoder *enc)
{
struct msm_drm_thread *event_thread = NULL;
struct msm_drm_private *priv = NULL;
struct sde_encoder_virt *sde_enc = NULL;
if (!enc || !enc->dev || !enc->dev->dev_private) {
SDE_ERROR("invalid parameters\n");
return -EINVAL;
}
priv = enc->dev->dev_private;
sde_enc = to_sde_encoder_virt(enc);
if (!sde_enc->crtc || (sde_enc->crtc->index
>= ARRAY_SIZE(priv->event_thread))) {
SDE_DEBUG_ENC(sde_enc,
"invalid cached CRTC: %d or crtc index: %d\n",
sde_enc->crtc == NULL,
sde_enc->crtc ? sde_enc->crtc->index : -EINVAL);
return -EINVAL;
}
SDE_EVT32_VERBOSE(DRMID(enc));
event_thread = &priv->event_thread[sde_enc->crtc->index];
kthread_queue_work(&event_thread->worker,
&sde_enc->esd_trigger_work);
kthread_flush_work(&sde_enc->esd_trigger_work);
/**
* panel may stop generating te signal (vsync) during esd failure. rsc
* hardware may hang without vsync. Avoid rsc hang by generating the
* vsync from watchdog timer instead of panel.
*/
_sde_encoder_switch_to_watchdog_vsync(enc);
sde_encoder_wait_for_event(enc, MSM_ENC_TX_COMPLETE);
return 0;
}
/**
* sde_encoder_phys_setup_cdm - setup chroma down block
* @phys_enc: Pointer to physical encoder
* @output_type: HDMI/WB
* @format: Output format
* @roi: Output size
*/
void sde_encoder_phys_setup_cdm(struct sde_encoder_phys *phys_enc,
const struct sde_format *format, u32 output_type,
struct sde_rect *roi)
{
struct drm_encoder *encoder = phys_enc->parent;
struct sde_encoder_virt *sde_enc = NULL;
struct sde_hw_cdm *hw_cdm = phys_enc->hw_cdm;
struct sde_hw_cdm_cfg *cdm_cfg = &phys_enc->cdm_cfg;
struct drm_connector *connector = phys_enc->connector;
int ret;
u32 csc_type = 0;
if (!encoder) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(encoder);
if ((output_type == CDM_CDWN_OUTPUT_WB) &&
!SDE_FORMAT_IS_YUV(format)) {
SDE_DEBUG_ENC(sde_enc, "[cdm_disable fmt:%x]\n",
format->base.pixel_format);
if (hw_cdm && hw_cdm->ops.disable)
hw_cdm->ops.disable(hw_cdm);
return;
}
memset(cdm_cfg, 0, sizeof(struct sde_hw_cdm_cfg));
cdm_cfg->output_width = roi->w;
cdm_cfg->output_height = roi->h;
cdm_cfg->output_fmt = format;
cdm_cfg->output_type = output_type;
cdm_cfg->output_bit_depth = SDE_FORMAT_IS_DX(format) ?
CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
/* enable 10 bit logic */
switch (cdm_cfg->output_fmt->chroma_sample) {
case SDE_CHROMA_RGB:
cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
break;
case SDE_CHROMA_H2V1:
cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
break;
case SDE_CHROMA_420:
cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
break;
case SDE_CHROMA_H1V2:
default:
SDE_ERROR("unsupported chroma sampling type\n");
cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
break;
}
SDE_DEBUG_ENC(sde_enc, "[cdm_enable:%d,%d,%X,%d,%d,%d,%d]\n",
cdm_cfg->output_width,
cdm_cfg->output_height,
cdm_cfg->output_fmt->base.pixel_format,
cdm_cfg->output_type,
cdm_cfg->output_bit_depth,
cdm_cfg->h_cdwn_type,
cdm_cfg->v_cdwn_type);
/**
* Choose CSC matrix based on following rules:
* 1. If connector supports quantization select,
* pick Full-Range for better quality.
* 2. If non-CEA mode, then pick Full-Range as per CEA spec
* 3. Otherwise, pick Limited-Range as all other CEA modes
* need a limited range
*/
if (output_type == CDM_CDWN_OUTPUT_HDMI) {
if (SDE_FORMAT_IS_YUV(format)) {
if (connector && connector->yuv_qs)
csc_type = SDE_CSC_RGB2YUV_709FR;
else if (connector &&
sde_connector_mode_needs_full_range(connector))
csc_type = SDE_CSC_RGB2YUV_709FR;
else
csc_type = SDE_CSC_RGB2YUV_709L;
} else if (connector &&
sde_connector_mode_is_cea_mode(connector)) {
csc_type = SDE_CSC_RGB2RGB_L;
} else {
csc_type = SDE_CSC_RGB2RGB_FR;
}
} else if (output_type == CDM_CDWN_OUTPUT_WB) {
csc_type = SDE_CSC_RGB2YUV_601L;
}
if (hw_cdm && hw_cdm->ops.setup_csc_data) {
ret = hw_cdm->ops.setup_csc_data(hw_cdm,
&sde_csc_10bit_convert[csc_type]);
if (ret < 0) {
SDE_ERROR("failed to setup CSC %d\n", ret);
return;
}
}
/* Cache the CSC default matrix type */
phys_enc->enc_cdm_csc = csc_type;
if (hw_cdm && hw_cdm->ops.setup_cdwn) {
ret = hw_cdm->ops.setup_cdwn(hw_cdm, cdm_cfg);
if (ret < 0) {
SDE_ERROR("failed to setup CDM %d\n", ret);
return;
}
}
if (hw_cdm && hw_cdm->ops.enable) {
ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
if (ret < 0) {
SDE_ERROR("failed to enable CDM %d\n", ret);
return;
}
}
}
void sde_encoder_phys_destroy_cdm(struct sde_encoder_phys *phys_enc)
{
struct drm_encoder *encoder = phys_enc->parent;
struct sde_encoder_virt *sde_enc = NULL;
struct sde_hw_cdm *hw_cdm = phys_enc->hw_cdm;
if (!encoder) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(encoder);
SDE_DEBUG_ENC(sde_enc, "[cdm_disable]\n");
if (hw_cdm && hw_cdm->ops.disable)
hw_cdm->ops.disable(hw_cdm);
}