blob: bd0868be9ae1106226c3cb6189a1df5d1efa0cde [file] [log] [blame]
/* Copyright (c) 2015-2020, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include "sde_encoder_phys.h"
#include "sde_hw_interrupts.h"
#include "sde_core_irq.h"
#include "sde_formats.h"
#include "dsi_display.h"
#include "sde_trace.h"
#define SDE_DEBUG_VIDENC(e, fmt, ...) SDE_DEBUG("enc%d intf%d " fmt, \
(e) && (e)->base.parent ? \
(e)->base.parent->base.id : -1, \
(e) && (e)->hw_intf ? \
(e)->hw_intf->idx - INTF_0 : -1, ##__VA_ARGS__)
#define SDE_ERROR_VIDENC(e, fmt, ...) SDE_ERROR("enc%d intf%d " fmt, \
(e) && (e)->base.parent ? \
(e)->base.parent->base.id : -1, \
(e) && (e)->hw_intf ? \
(e)->hw_intf->idx - INTF_0 : -1, ##__VA_ARGS__)
#define to_sde_encoder_phys_vid(x) \
container_of(x, struct sde_encoder_phys_vid, base)
/* maximum number of consecutive kickoff errors */
#define KICKOFF_MAX_ERRORS 2
/* Poll time to do recovery during active region */
#define POLL_TIME_USEC_FOR_LN_CNT 500
#define MAX_POLL_CNT 10
static bool _sde_encoder_phys_is_ppsplit(struct sde_encoder_phys *phys_enc)
{
enum sde_rm_topology_name topology;
if (!phys_enc)
return false;
topology = sde_connector_get_topology_name(phys_enc->connector);
if (topology == SDE_RM_TOPOLOGY_PPSPLIT)
return true;
return false;
}
static bool sde_encoder_phys_vid_is_master(
struct sde_encoder_phys *phys_enc)
{
bool ret = false;
if (phys_enc->split_role != ENC_ROLE_SLAVE)
ret = true;
return ret;
}
static void drm_mode_to_intf_timing_params(
const struct sde_encoder_phys_vid *vid_enc,
const struct drm_display_mode *mode,
struct intf_timing_params *timing)
{
memset(timing, 0, sizeof(*timing));
if ((mode->htotal < mode->hsync_end)
|| (mode->hsync_start < mode->hdisplay)
|| (mode->vtotal < mode->vsync_end)
|| (mode->vsync_start < mode->vdisplay)
|| (mode->hsync_end < mode->hsync_start)
|| (mode->vsync_end < mode->vsync_start)) {
SDE_ERROR(
"invalid params - hstart:%d,hend:%d,htot:%d,hdisplay:%d\n",
mode->hsync_start, mode->hsync_end,
mode->htotal, mode->hdisplay);
SDE_ERROR("vstart:%d,vend:%d,vtot:%d,vdisplay:%d\n",
mode->vsync_start, mode->vsync_end,
mode->vtotal, mode->vdisplay);
return;
}
/*
* https://www.kernel.org/doc/htmldocs/drm/ch02s05.html
* Active Region Front Porch Sync Back Porch
* <-----------------><------------><-----><----------->
* <- [hv]display --->
* <--------- [hv]sync_start ------>
* <----------------- [hv]sync_end ------->
* <---------------------------- [hv]total ------------->
*/
timing->width = mode->hdisplay; /* active width */
if (vid_enc->base.comp_type == MSM_DISPLAY_COMPRESSION_DSC)
timing->width = DIV_ROUND_UP(timing->width, 3);
timing->height = mode->vdisplay; /* active height */
timing->xres = timing->width;
timing->yres = timing->height;
timing->h_back_porch = mode->htotal - mode->hsync_end;
timing->h_front_porch = mode->hsync_start - mode->hdisplay;
timing->v_back_porch = mode->vtotal - mode->vsync_end;
timing->v_front_porch = mode->vsync_start - mode->vdisplay;
timing->hsync_pulse_width = mode->hsync_end - mode->hsync_start;
timing->vsync_pulse_width = mode->vsync_end - mode->vsync_start;
timing->hsync_polarity = (mode->flags & DRM_MODE_FLAG_NHSYNC) ? 1 : 0;
timing->vsync_polarity = (mode->flags & DRM_MODE_FLAG_NVSYNC) ? 1 : 0;
timing->border_clr = 0;
timing->underflow_clr = 0xff;
timing->hsync_skew = mode->hskew;
timing->v_front_porch_fixed = vid_enc->base.vfp_cached;
/* DSI controller cannot handle active-low sync signals. */
if (vid_enc->hw_intf->cap->type == INTF_DSI) {
timing->hsync_polarity = 0;
timing->vsync_polarity = 0;
}
/*
* For edp only:
* DISPLAY_V_START = (VBP * HCYCLE) + HBP
* DISPLAY_V_END = (VBP + VACTIVE) * HCYCLE - 1 - HFP
*/
/*
* if (vid_enc->hw->cap->type == INTF_EDP) {
* display_v_start += mode->htotal - mode->hsync_start;
* display_v_end -= mode->hsync_start - mode->hdisplay;
* }
*/
}
static inline u32 get_horizontal_total(const struct intf_timing_params *timing)
{
u32 active = timing->xres;
u32 inactive =
timing->h_back_porch + timing->h_front_porch +
timing->hsync_pulse_width;
return active + inactive;
}
static inline u32 get_vertical_total(const struct intf_timing_params *timing,
bool use_fixed_vfp)
{
u32 inactive;
u32 active = timing->yres;
u32 v_front_porch = use_fixed_vfp ?
timing->v_front_porch_fixed : timing->v_front_porch;
inactive = timing->v_back_porch + v_front_porch +
timing->vsync_pulse_width;
return active + inactive;
}
/*
* programmable_fetch_get_num_lines:
* Number of fetch lines in vertical front porch
* @timing: Pointer to the intf timing information for the requested mode
*
* Returns the number of fetch lines in vertical front porch at which mdp
* can start fetching the next frame.
*
* Number of needed prefetch lines is anything that cannot be absorbed in the
* start of frame time (back porch + vsync pulse width).
*
* Some panels have very large VFP, however we only need a total number of
* lines based on the chip worst case latencies.
*/
static u32 programmable_fetch_get_num_lines(
struct sde_encoder_phys_vid *vid_enc,
const struct intf_timing_params *timing,
bool use_fixed_vfp)
{
u32 worst_case_needed_lines =
vid_enc->hw_intf->cap->prog_fetch_lines_worst_case;
u32 start_of_frame_lines =
timing->v_back_porch + timing->vsync_pulse_width;
u32 needed_vfp_lines = worst_case_needed_lines - start_of_frame_lines;
u32 actual_vfp_lines = 0;
u32 v_front_porch = use_fixed_vfp ?
timing->v_front_porch_fixed : timing->v_front_porch;
/* Fetch must be outside active lines, otherwise undefined. */
if (start_of_frame_lines >= worst_case_needed_lines) {
SDE_DEBUG_VIDENC(vid_enc,
"prog fetch is not needed, large vbp+vsw\n");
actual_vfp_lines = 0;
} else if (v_front_porch < needed_vfp_lines) {
/* Warn fetch needed, but not enough porch in panel config */
pr_warn_once
("low vbp+vfp may lead to perf issues in some cases\n");
SDE_DEBUG_VIDENC(vid_enc,
"less vfp than fetch req, using entire vfp\n");
actual_vfp_lines = v_front_porch;
} else {
SDE_DEBUG_VIDENC(vid_enc, "room in vfp for needed prefetch\n");
actual_vfp_lines = needed_vfp_lines;
}
SDE_DEBUG_VIDENC(vid_enc,
"v_front_porch %u v_back_porch %u vsync_pulse_width %u\n",
v_front_porch, timing->v_back_porch,
timing->vsync_pulse_width);
SDE_DEBUG_VIDENC(vid_enc,
"wc_lines %u needed_vfp_lines %u actual_vfp_lines %u\n",
worst_case_needed_lines, needed_vfp_lines, actual_vfp_lines);
return actual_vfp_lines;
}
/*
* programmable_fetch_config: Programs HW to prefetch lines by offsetting
* the start of fetch into the vertical front porch for cases where the
* vsync pulse width and vertical back porch time is insufficient
*
* Gets # of lines to pre-fetch, then calculate VSYNC counter value.
* HW layer requires VSYNC counter of first pixel of tgt VFP line.
*
* @timing: Pointer to the intf timing information for the requested mode
*/
static void programmable_fetch_config(struct sde_encoder_phys *phys_enc,
const struct intf_timing_params *timing)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
struct intf_prog_fetch f = { 0 };
u32 vfp_fetch_lines = 0;
u32 horiz_total = 0;
u32 vert_total = 0;
u32 vfp_fetch_start_vsync_counter = 0;
unsigned long lock_flags;
if (WARN_ON_ONCE(!vid_enc->hw_intf->ops.setup_prg_fetch))
return;
vfp_fetch_lines = programmable_fetch_get_num_lines(vid_enc,
timing, true);
if (vfp_fetch_lines) {
vert_total = get_vertical_total(timing, true);
horiz_total = get_horizontal_total(timing);
vfp_fetch_start_vsync_counter =
(vert_total - vfp_fetch_lines) * horiz_total + 1;
f.enable = 1;
f.fetch_start = vfp_fetch_start_vsync_counter;
}
SDE_DEBUG_VIDENC(vid_enc,
"vfp_fetch_lines %u vfp_fetch_start_vsync_counter %u\n",
vfp_fetch_lines, vfp_fetch_start_vsync_counter);
spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
vid_enc->hw_intf->ops.setup_prg_fetch(vid_enc->hw_intf, &f);
spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
}
/*
* programmable_rot_fetch_config: Programs ROT to prefetch lines by offsetting
* the start of fetch into the vertical front porch for cases where the
* vsync pulse width and vertical back porch time is insufficient
*
* Gets # of lines to pre-fetch, then calculate VSYNC counter value.
* HW layer requires VSYNC counter of first pixel of tgt VFP line.
* @phys_enc: Pointer to physical encoder
* @rot_fetch_lines: number of line to prefill, or 0 to disable
* @is_primary: set true if the display is primary display
*/
static void programmable_rot_fetch_config(struct sde_encoder_phys *phys_enc,
u32 rot_fetch_lines, u32 is_primary)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
struct intf_prog_fetch f = { 0 };
struct intf_timing_params *timing;
u32 vfp_fetch_lines = 0;
u32 horiz_total = 0;
u32 vert_total = 0;
u32 rot_fetch_start_vsync_counter = 0;
u32 flush_mask = 0;
unsigned long lock_flags;
if (!phys_enc || !vid_enc->hw_intf || !phys_enc->hw_ctl ||
!phys_enc->hw_ctl->ops.get_bitmask_intf ||
!phys_enc->hw_ctl->ops.update_pending_flush ||
!vid_enc->hw_intf->ops.setup_rot_start ||
!phys_enc->sde_kms ||
!is_primary)
return;
timing = &vid_enc->timing_params;
vfp_fetch_lines = programmable_fetch_get_num_lines(vid_enc,
timing, true);
if (rot_fetch_lines) {
vert_total = get_vertical_total(timing, true);
horiz_total = get_horizontal_total(timing);
if (vert_total >= (vfp_fetch_lines + rot_fetch_lines)) {
rot_fetch_start_vsync_counter =
(vert_total - vfp_fetch_lines - rot_fetch_lines) *
horiz_total + 1;
f.enable = 1;
f.fetch_start = rot_fetch_start_vsync_counter;
} else {
SDE_ERROR_VIDENC(vid_enc,
"vert_total %u rot_fetch_lines %u vfp_fetch_lines %u\n",
vert_total, rot_fetch_lines, vfp_fetch_lines);
SDE_EVT32(DRMID(phys_enc->parent), vert_total,
rot_fetch_lines, vfp_fetch_lines,
SDE_EVTLOG_ERROR);
}
}
/* return if rot_fetch does not change since last update */
if (vid_enc->rot_fetch_valid &&
!memcmp(&vid_enc->rot_fetch, &f, sizeof(f)))
return;
SDE_DEBUG_VIDENC(vid_enc,
"rot_fetch_lines %u vfp_fetch_lines %u rot_fetch_start_vsync_counter %u\n",
rot_fetch_lines, vfp_fetch_lines,
rot_fetch_start_vsync_counter);
if (!phys_enc->sde_kms->splash_data.cont_splash_en) {
SDE_EVT32(DRMID(phys_enc->parent), f.enable, f.fetch_start);
if (!_sde_encoder_phys_is_ppsplit(phys_enc) ||
sde_encoder_phys_vid_is_master(phys_enc)) {
phys_enc->hw_ctl->ops.get_bitmask_intf(
phys_enc->hw_ctl, &flush_mask,
vid_enc->hw_intf->idx);
phys_enc->hw_ctl->ops.update_pending_flush(
phys_enc->hw_ctl, flush_mask);
}
spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
vid_enc->hw_intf->ops.setup_rot_start(vid_enc->hw_intf, &f);
spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
vid_enc->rot_fetch = f;
vid_enc->rot_fetch_valid = true;
}
}
static bool sde_encoder_phys_vid_mode_fixup(
struct sde_encoder_phys *phys_enc,
const struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
if (phys_enc)
SDE_DEBUG_VIDENC(to_sde_encoder_phys_vid(phys_enc), "\n");
/*
* Modifying mode has consequences when the mode comes back to us
*/
return true;
}
static void sde_encoder_phys_vid_setup_timing_engine(
struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_phys_vid *vid_enc;
struct drm_display_mode mode;
struct intf_timing_params timing_params = { 0 };
const struct sde_format *fmt = NULL;
u32 fmt_fourcc = DRM_FORMAT_RGB888;
unsigned long lock_flags;
struct sde_hw_intf_cfg intf_cfg = { 0 };
if (!phys_enc || !phys_enc->sde_kms || !phys_enc->hw_ctl ||
!phys_enc->hw_ctl->ops.setup_intf_cfg) {
SDE_ERROR("invalid encoder %d\n", phys_enc != 0);
return;
}
mode = phys_enc->cached_mode;
vid_enc = to_sde_encoder_phys_vid(phys_enc);
if (!vid_enc->hw_intf->ops.setup_timing_gen) {
SDE_ERROR("timing engine setup is not supported\n");
return;
}
SDE_DEBUG_VIDENC(vid_enc, "enabling mode:\n");
drm_mode_debug_printmodeline(&mode);
if (phys_enc->split_role != ENC_ROLE_SOLO ||
(mode.private_flags & MSM_MODE_FLAG_COLOR_FORMAT_YCBCR420)) {
mode.hdisplay >>= 1;
mode.htotal >>= 1;
mode.hsync_start >>= 1;
mode.hsync_end >>= 1;
mode.hskew >>= 1;
SDE_DEBUG_VIDENC(vid_enc,
"split_role %d, halve horizontal %d %d %d %d %d\n",
phys_enc->split_role,
mode.hdisplay, mode.htotal,
mode.hsync_start, mode.hsync_end,
mode.hskew);
}
if (!phys_enc->vfp_cached) {
phys_enc->vfp_cached =
sde_connector_get_panel_vfp(phys_enc->connector, &mode);
if (phys_enc->vfp_cached <= 0)
phys_enc->vfp_cached = mode.vsync_start - mode.vdisplay;
}
drm_mode_to_intf_timing_params(vid_enc, &mode, &timing_params);
vid_enc->timing_params = timing_params;
if (phys_enc->sde_kms->splash_data.cont_splash_en) {
SDE_DEBUG_VIDENC(vid_enc,
"skipping intf programming since cont splash is enabled\n");
return;
}
fmt = sde_get_sde_format(fmt_fourcc);
SDE_DEBUG_VIDENC(vid_enc, "fmt_fourcc 0x%X\n", fmt_fourcc);
intf_cfg.intf = vid_enc->hw_intf->idx;
intf_cfg.intf_mode_sel = SDE_CTL_MODE_SEL_VID;
intf_cfg.stream_sel = 0; /* Don't care value for video mode */
intf_cfg.mode_3d = sde_encoder_helper_get_3d_blend_mode(phys_enc);
spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
vid_enc->hw_intf->ops.setup_timing_gen(vid_enc->hw_intf,
&timing_params, fmt);
phys_enc->hw_ctl->ops.setup_intf_cfg(phys_enc->hw_ctl, &intf_cfg);
spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
programmable_fetch_config(phys_enc, &timing_params);
}
static void sde_encoder_phys_vid_vblank_irq(void *arg, int irq_idx)
{
struct sde_encoder_phys *phys_enc = arg;
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
struct sde_hw_ctl *hw_ctl;
unsigned long lock_flags;
u32 flush_register = ~0;
u32 reset_status = 0;
int new_cnt = -1, old_cnt = -1;
u32 event = 0;
if (!phys_enc)
return;
hw_ctl = phys_enc->hw_ctl;
if (!hw_ctl)
return;
SDE_ATRACE_BEGIN("vblank_irq");
/*
* only decrement the pending flush count if we've actually flushed
* hardware. due to sw irq latency, vblank may have already happened
* so we need to double-check with hw that it accepted the flush bits
*/
spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
old_cnt = atomic_read(&phys_enc->pending_kickoff_cnt);
if (hw_ctl && hw_ctl->ops.get_flush_register)
flush_register = hw_ctl->ops.get_flush_register(hw_ctl);
if (flush_register)
goto not_flushed;
new_cnt = atomic_add_unless(&phys_enc->pending_kickoff_cnt, -1, 0);
/* signal only for master, where there is a pending kickoff */
if (sde_encoder_phys_vid_is_master(phys_enc)) {
if (atomic_add_unless(&phys_enc->pending_retire_fence_cnt,
-1, 0))
event |= SDE_ENCODER_FRAME_EVENT_SIGNAL_RETIRE_FENCE |
SDE_ENCODER_FRAME_EVENT_SIGNAL_RELEASE_FENCE;
}
not_flushed:
if (hw_ctl && hw_ctl->ops.get_reset)
reset_status = hw_ctl->ops.get_reset(hw_ctl);
spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
if (event && phys_enc->parent_ops.handle_frame_done)
phys_enc->parent_ops.handle_frame_done(phys_enc->parent,
phys_enc, event);
if (phys_enc->parent_ops.handle_vblank_virt)
phys_enc->parent_ops.handle_vblank_virt(phys_enc->parent,
phys_enc);
SDE_EVT32_IRQ(DRMID(phys_enc->parent), vid_enc->hw_intf->idx - INTF_0,
old_cnt, new_cnt, reset_status ? SDE_EVTLOG_ERROR : 0,
flush_register, event);
/* Signal any waiting atomic commit thread */
wake_up_all(&phys_enc->pending_kickoff_wq);
SDE_ATRACE_END("vblank_irq");
}
static void sde_encoder_phys_vid_underrun_irq(void *arg, int irq_idx)
{
struct sde_encoder_phys *phys_enc = arg;
if (!phys_enc)
return;
if (phys_enc->parent_ops.handle_underrun_virt)
phys_enc->parent_ops.handle_underrun_virt(phys_enc->parent,
phys_enc);
}
static bool _sde_encoder_phys_is_dual_ctl(struct sde_encoder_phys *phys_enc)
{
enum sde_rm_topology_name topology;
if (!phys_enc)
return false;
topology = sde_connector_get_topology_name(phys_enc->connector);
if ((topology == SDE_RM_TOPOLOGY_DUALPIPE_DSC) ||
(topology == SDE_RM_TOPOLOGY_DUALPIPE) ||
(topology == SDE_RM_TOPOLOGY_QUADPIPE_3DMERGE) ||
(topology == SDE_RM_TOPOLOGY_QUADPIPE_DSCMERGE) ||
(topology == SDE_RM_TOPOLOGY_QUADPIPE_3DMERGE_DSC))
return true;
return false;
}
static bool sde_encoder_phys_vid_needs_single_flush(
struct sde_encoder_phys *phys_enc)
{
return phys_enc && (
phys_enc->cont_splash_settings ?
phys_enc->cont_splash_single_flush :
(_sde_encoder_phys_is_ppsplit(phys_enc) ||
_sde_encoder_phys_is_dual_ctl(phys_enc)));
}
static void _sde_encoder_phys_vid_setup_irq_hw_idx(
struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_irq *irq;
/*
* Initialize irq->hw_idx only when irq is not registered.
* Prevent invalidating irq->irq_idx as modeset may be
* called many times during dfps.
*/
irq = &phys_enc->irq[INTR_IDX_VSYNC];
if (irq->irq_idx < 0)
irq->hw_idx = phys_enc->intf_idx;
irq = &phys_enc->irq[INTR_IDX_UNDERRUN];
if (irq->irq_idx < 0)
irq->hw_idx = phys_enc->intf_idx;
}
static void sde_encoder_phys_vid_cont_splash_mode_set(
struct sde_encoder_phys *phys_enc,
struct drm_display_mode *adj_mode)
{
if (!phys_enc || !adj_mode) {
SDE_ERROR("invalid args\n");
return;
}
phys_enc->cached_mode = *adj_mode;
phys_enc->enable_state = SDE_ENC_ENABLED;
_sde_encoder_phys_vid_setup_irq_hw_idx(phys_enc);
}
static void sde_encoder_phys_vid_mode_set(
struct sde_encoder_phys *phys_enc,
struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
struct sde_rm *rm;
struct sde_rm_hw_iter iter;
int i, instance;
struct sde_encoder_phys_vid *vid_enc;
if (!phys_enc || !phys_enc->sde_kms) {
SDE_ERROR("invalid encoder/kms\n");
return;
}
phys_enc->hw_ctl = NULL;
phys_enc->hw_cdm = NULL;
rm = &phys_enc->sde_kms->rm;
vid_enc = to_sde_encoder_phys_vid(phys_enc);
if (adj_mode) {
phys_enc->cached_mode = *adj_mode;
drm_mode_debug_printmodeline(adj_mode);
SDE_DEBUG_VIDENC(vid_enc, "caching mode:\n");
}
instance = phys_enc->split_role == ENC_ROLE_SLAVE ? 1 : 0;
/* Retrieve previously allocated HW Resources. Shouldn't fail */
sde_rm_init_hw_iter(&iter, phys_enc->parent->base.id, SDE_HW_BLK_CTL);
for (i = 0; i <= instance; i++) {
if (sde_rm_get_hw(rm, &iter))
phys_enc->hw_ctl = (struct sde_hw_ctl *)iter.hw;
}
if (IS_ERR_OR_NULL(phys_enc->hw_ctl)) {
SDE_ERROR_VIDENC(vid_enc, "failed to init ctl, %ld\n",
PTR_ERR(phys_enc->hw_ctl));
phys_enc->hw_ctl = NULL;
return;
}
_sde_encoder_phys_vid_setup_irq_hw_idx(phys_enc);
/* CDM is optional */
sde_rm_init_hw_iter(&iter, phys_enc->parent->base.id, SDE_HW_BLK_CDM);
for (i = 0; i <= instance; i++) {
sde_rm_get_hw(rm, &iter);
if (i == instance)
phys_enc->hw_cdm = (struct sde_hw_cdm *) iter.hw;
}
if (IS_ERR(phys_enc->hw_cdm)) {
SDE_ERROR("CDM required but not allocated: %ld\n",
PTR_ERR(phys_enc->hw_cdm));
phys_enc->hw_cdm = NULL;
}
}
static int sde_encoder_phys_vid_control_vblank_irq(
struct sde_encoder_phys *phys_enc,
bool enable)
{
int ret = 0;
struct sde_encoder_phys_vid *vid_enc;
int refcount;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
mutex_lock(phys_enc->vblank_ctl_lock);
refcount = atomic_read(&phys_enc->vblank_refcount);
vid_enc = to_sde_encoder_phys_vid(phys_enc);
/* Slave encoders don't report vblank */
if (!sde_encoder_phys_vid_is_master(phys_enc))
goto end;
/* protect against negative */
if (!enable && refcount == 0) {
ret = -EINVAL;
goto end;
}
SDE_DEBUG_VIDENC(vid_enc, "[%pS] enable=%d/%d\n",
__builtin_return_address(0),
enable, atomic_read(&phys_enc->vblank_refcount));
SDE_EVT32(DRMID(phys_enc->parent), enable,
atomic_read(&phys_enc->vblank_refcount));
if (enable && atomic_inc_return(&phys_enc->vblank_refcount) == 1) {
ret = sde_encoder_helper_register_irq(phys_enc, INTR_IDX_VSYNC);
if (ret)
atomic_dec_return(&phys_enc->vblank_refcount);
} else if (!enable &&
atomic_dec_return(&phys_enc->vblank_refcount) == 0) {
ret = sde_encoder_helper_unregister_irq(phys_enc,
INTR_IDX_VSYNC);
if (ret)
atomic_inc_return(&phys_enc->vblank_refcount);
}
end:
if (ret) {
SDE_ERROR_VIDENC(vid_enc,
"control vblank irq error %d, enable %d\n",
ret, enable);
SDE_EVT32(DRMID(phys_enc->parent),
vid_enc->hw_intf->idx - INTF_0,
enable, refcount, SDE_EVTLOG_ERROR);
}
mutex_unlock(phys_enc->vblank_ctl_lock);
return ret;
}
static bool sde_encoder_phys_vid_wait_dma_trigger(
struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_phys_vid *vid_enc;
struct sde_hw_intf *intf;
struct sde_hw_ctl *ctl;
struct intf_status status;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return false;
}
vid_enc = to_sde_encoder_phys_vid(phys_enc);
intf = vid_enc->hw_intf;
ctl = phys_enc->hw_ctl;
if (!vid_enc->hw_intf || !phys_enc->hw_ctl) {
SDE_ERROR("invalid hw_intf %d hw_ctl %d\n",
vid_enc->hw_intf != NULL, phys_enc->hw_ctl != NULL);
return false;
}
if (!intf->ops.get_status)
return false;
intf->ops.get_status(intf, &status);
/* if interface is not enabled, return true to wait for dma trigger */
return status.is_en ? false : true;
}
static void sde_encoder_phys_vid_enable(struct sde_encoder_phys *phys_enc)
{
struct msm_drm_private *priv;
struct sde_encoder_phys_vid *vid_enc;
struct sde_hw_intf *intf;
struct sde_hw_ctl *ctl;
struct sde_hw_cdm *hw_cdm = NULL;
struct drm_display_mode mode;
const struct sde_format *fmt = NULL;
u32 flush_mask = 0;
if (!phys_enc || !phys_enc->parent || !phys_enc->parent->dev ||
!phys_enc->parent->dev->dev_private ||
!phys_enc->sde_kms) {
SDE_ERROR("invalid encoder/device\n");
return;
}
hw_cdm = phys_enc->hw_cdm;
priv = phys_enc->parent->dev->dev_private;
mode = phys_enc->cached_mode;
vid_enc = to_sde_encoder_phys_vid(phys_enc);
intf = vid_enc->hw_intf;
ctl = phys_enc->hw_ctl;
if (!vid_enc->hw_intf || !phys_enc->hw_ctl) {
SDE_ERROR("invalid hw_intf %d hw_ctl %d\n",
vid_enc->hw_intf != 0, phys_enc->hw_ctl != 0);
return;
}
SDE_DEBUG_VIDENC(vid_enc, "\n");
if (WARN_ON(!vid_enc->hw_intf->ops.enable_timing))
return;
/* reset state variables until after first update */
vid_enc->rot_fetch_valid = false;
if (!phys_enc->sde_kms->splash_data.cont_splash_en)
sde_encoder_helper_split_config(phys_enc,
vid_enc->hw_intf->idx);
sde_encoder_phys_vid_setup_timing_engine(phys_enc);
/*
* For pp-split, skip setting the flush bit for the slave intf,
* since both intfs use same ctl and HW will only flush the master.
*/
if (_sde_encoder_phys_is_ppsplit(phys_enc) &&
!sde_encoder_phys_vid_is_master(phys_enc))
goto skip_flush;
/**
* skip flushing intf during cont. splash handoff since bootloader
* has already enabled the hardware and is single buffered.
*/
if (phys_enc->sde_kms->splash_data.cont_splash_en) {
SDE_DEBUG_VIDENC(vid_enc,
"skipping intf flush bit set as cont. splash is enabled\n");
goto skip_flush;
}
if (mode.private_flags & MSM_MODE_FLAG_COLOR_FORMAT_YCBCR420)
fmt = sde_get_sde_format(DRM_FORMAT_YUV420);
else if (mode.private_flags & MSM_MODE_FLAG_COLOR_FORMAT_YCBCR422)
fmt = sde_get_sde_format(DRM_FORMAT_NV61);
else if (mode.private_flags & MSM_MODE_FLAG_COLOR_FORMAT_RGB444)
fmt = sde_get_sde_format(DRM_FORMAT_RGB888);
if (fmt) {
struct sde_rect hdmi_roi;
hdmi_roi.w = mode.hdisplay;
hdmi_roi.h = mode.vdisplay;
sde_encoder_phys_setup_cdm(phys_enc, fmt,
CDM_CDWN_OUTPUT_HDMI, &hdmi_roi);
}
ctl->ops.get_bitmask_intf(ctl, &flush_mask, intf->idx);
if (ctl->ops.get_bitmask_cdm && hw_cdm)
ctl->ops.get_bitmask_cdm(ctl, &flush_mask, hw_cdm->idx);
ctl->ops.update_pending_flush(ctl, flush_mask);
skip_flush:
SDE_DEBUG_VIDENC(vid_enc, "update pending flush ctl %d flush_mask %x\n",
ctl->idx - CTL_0, flush_mask);
/* ctl_flush & timing engine enable will be triggered by framework */
if (phys_enc->enable_state == SDE_ENC_DISABLED)
phys_enc->enable_state = SDE_ENC_ENABLING;
return;
}
static void sde_encoder_phys_vid_destroy(struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_phys_vid *vid_enc;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
vid_enc = to_sde_encoder_phys_vid(phys_enc);
sde_encoder_phys_destroy_cdm(phys_enc);
SDE_DEBUG_VIDENC(vid_enc, "\n");
kfree(vid_enc);
}
static void sde_encoder_phys_vid_get_hw_resources(
struct sde_encoder_phys *phys_enc,
struct sde_encoder_hw_resources *hw_res,
struct drm_connector_state *conn_state)
{
struct sde_encoder_phys_vid *vid_enc;
struct sde_mdss_cfg *vid_catalog;
if (!phys_enc || !hw_res) {
SDE_ERROR("invalid arg(s), enc %d hw_res %d conn_state %d\n",
phys_enc != NULL, hw_res != NULL, conn_state != NULL);
return;
}
vid_catalog = phys_enc->sde_kms->catalog;
vid_enc = to_sde_encoder_phys_vid(phys_enc);
if (!vid_enc->hw_intf || !vid_catalog) {
SDE_ERROR("invalid arg(s), hw_intf %d vid_catalog %d\n",
vid_enc->hw_intf != NULL, vid_catalog != NULL);
return;
}
SDE_DEBUG_VIDENC(vid_enc, "\n");
if (vid_enc->hw_intf->idx > INTF_MAX) {
SDE_ERROR("invalid arg(s), idx %d\n",
vid_enc->hw_intf->idx);
return;
}
hw_res->intfs[vid_enc->hw_intf->idx - INTF_0] = INTF_MODE_VIDEO;
if (vid_catalog->intf[vid_enc->hw_intf->idx - INTF_0].type
== INTF_DP)
hw_res->needs_cdm = true;
SDE_DEBUG_DRIVER("[vid] needs_cdm=%d\n", hw_res->needs_cdm);
}
static int _sde_encoder_phys_vid_wait_for_vblank(
struct sde_encoder_phys *phys_enc, bool notify)
{
struct sde_encoder_wait_info wait_info;
int ret = 0;
u32 event = 0;
if (!phys_enc) {
pr_err("invalid encoder\n");
return -EINVAL;
}
wait_info.wq = &phys_enc->pending_kickoff_wq;
wait_info.atomic_cnt = &phys_enc->pending_kickoff_cnt;
wait_info.timeout_ms = KICKOFF_TIMEOUT_MS;
if (!sde_encoder_phys_vid_is_master(phys_enc)) {
/* signal done for slave video encoder, unless it is pp-split */
if (!_sde_encoder_phys_is_ppsplit(phys_enc) && notify) {
event = SDE_ENCODER_FRAME_EVENT_DONE;
goto end;
}
return 0;
}
/* Wait for kickoff to complete */
ret = sde_encoder_helper_wait_for_irq(phys_enc, INTR_IDX_VSYNC,
&wait_info);
if (ret == -ETIMEDOUT)
event = SDE_ENCODER_FRAME_EVENT_SIGNAL_RELEASE_FENCE
| SDE_ENCODER_FRAME_EVENT_SIGNAL_RETIRE_FENCE
| SDE_ENCODER_FRAME_EVENT_ERROR;
else if (!ret && notify)
event = SDE_ENCODER_FRAME_EVENT_DONE;
end:
SDE_EVT32(DRMID(phys_enc->parent), event, notify, ret,
ret ? SDE_EVTLOG_FATAL : 0);
if (phys_enc->parent_ops.handle_frame_done && event)
phys_enc->parent_ops.handle_frame_done(
phys_enc->parent, phys_enc,
event);
return ret;
}
static int sde_encoder_phys_vid_wait_for_vblank(
struct sde_encoder_phys *phys_enc)
{
return _sde_encoder_phys_vid_wait_for_vblank(phys_enc, true);
}
static int sde_encoder_phys_vid_prepare_for_kickoff(
struct sde_encoder_phys *phys_enc,
struct sde_encoder_kickoff_params *params)
{
struct sde_encoder_phys_vid *vid_enc;
struct sde_hw_ctl *ctl;
int rc;
if (!phys_enc || !params || !phys_enc->hw_ctl) {
SDE_ERROR("invalid encoder/parameters\n");
return -EINVAL;
}
vid_enc = to_sde_encoder_phys_vid(phys_enc);
ctl = phys_enc->hw_ctl;
if (!ctl->ops.wait_reset_status)
return 0;
/*
* hw supports hardware initiated ctl reset, so before we kickoff a new
* frame, need to check and wait for hw initiated ctl reset completion
*/
rc = ctl->ops.wait_reset_status(ctl);
if (rc) {
SDE_ERROR_VIDENC(vid_enc, "ctl %d reset failure: %d\n",
ctl->idx, rc);
++vid_enc->error_count;
if (vid_enc->error_count >= KICKOFF_MAX_ERRORS) {
vid_enc->error_count = KICKOFF_MAX_ERRORS;
SDE_DBG_DUMP("panic");
} else if (vid_enc->error_count == 1) {
SDE_EVT32(DRMID(phys_enc->parent), SDE_EVTLOG_FATAL);
}
/* request a ctl reset before the next flush */
phys_enc->enable_state = SDE_ENC_ERR_NEEDS_HW_RESET;
} else {
vid_enc->error_count = 0;
}
programmable_rot_fetch_config(phys_enc,
params->inline_rotate_prefill, params->is_primary);
return rc;
}
static void sde_encoder_phys_vid_disable(struct sde_encoder_phys *phys_enc)
{
struct msm_drm_private *priv;
struct sde_encoder_phys_vid *vid_enc;
unsigned long lock_flags;
int ret;
if (!phys_enc || !phys_enc->parent || !phys_enc->parent->dev ||
!phys_enc->parent->dev->dev_private) {
SDE_ERROR("invalid encoder/device\n");
return;
}
priv = phys_enc->parent->dev->dev_private;
vid_enc = to_sde_encoder_phys_vid(phys_enc);
if (!vid_enc->hw_intf || !phys_enc->hw_ctl) {
SDE_ERROR("invalid hw_intf %d hw_ctl %d\n",
vid_enc->hw_intf != 0, phys_enc->hw_ctl != 0);
return;
}
SDE_DEBUG_VIDENC(vid_enc, "\n");
if (WARN_ON(!vid_enc->hw_intf->ops.enable_timing))
return;
if (phys_enc->enable_state == SDE_ENC_DISABLED) {
SDE_ERROR("already disabled\n");
return;
}
spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
vid_enc->hw_intf->ops.enable_timing(vid_enc->hw_intf, 0);
if (sde_encoder_phys_vid_is_master(phys_enc))
sde_encoder_phys_inc_pending(phys_enc);
spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
if (!sde_encoder_phys_vid_is_master(phys_enc))
goto exit;
/*
* Wait for a vsync so we know the ENABLE=0 latched before
* the (connector) source of the vsync's gets disabled,
* otherwise we end up in a funny state if we re-enable
* before the disable latches, which results that some of
* the settings changes for the new modeset (like new
* scanout buffer) don't latch properly..
*/
ret = sde_encoder_phys_vid_control_vblank_irq(phys_enc, true);
if (ret) {
SDE_ERROR_VIDENC(vid_enc,
"failed to enable vblank irq: %d\n",
ret);
SDE_EVT32(DRMID(phys_enc->parent),
vid_enc->hw_intf->idx - INTF_0, ret,
SDE_EVTLOG_FUNC_CASE1,
SDE_EVTLOG_ERROR);
} else {
ret = _sde_encoder_phys_vid_wait_for_vblank(phys_enc, false);
if (ret) {
atomic_set(&phys_enc->pending_kickoff_cnt, 0);
SDE_ERROR_VIDENC(vid_enc,
"failure waiting for disable: %d\n",
ret);
SDE_EVT32(DRMID(phys_enc->parent),
vid_enc->hw_intf->idx - INTF_0, ret,
SDE_EVTLOG_FUNC_CASE2,
SDE_EVTLOG_ERROR);
}
sde_encoder_phys_vid_control_vblank_irq(phys_enc, false);
}
if (phys_enc->hw_cdm && phys_enc->hw_cdm->ops.disable) {
SDE_DEBUG_DRIVER("[cdm_disable]\n");
phys_enc->hw_cdm->ops.disable(phys_enc->hw_cdm);
}
exit:
phys_enc->vfp_cached = 0;
phys_enc->enable_state = SDE_ENC_DISABLED;
}
static void sde_encoder_phys_vid_handle_post_kickoff(
struct sde_encoder_phys *phys_enc)
{
unsigned long lock_flags;
struct sde_encoder_phys_vid *vid_enc;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
vid_enc = to_sde_encoder_phys_vid(phys_enc);
SDE_DEBUG_VIDENC(vid_enc, "enable_state %d\n", phys_enc->enable_state);
/*
* Video mode must flush CTL before enabling timing engine
* Video encoders need to turn on their interfaces now
*/
if (phys_enc->enable_state == SDE_ENC_ENABLING) {
SDE_EVT32(DRMID(phys_enc->parent),
vid_enc->hw_intf->idx - INTF_0);
spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
vid_enc->hw_intf->ops.enable_timing(vid_enc->hw_intf, 1);
spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
phys_enc->enable_state = SDE_ENC_ENABLED;
}
}
static void sde_encoder_phys_vid_irq_control(struct sde_encoder_phys *phys_enc,
bool enable)
{
struct sde_encoder_phys_vid *vid_enc;
int ret;
if (!phys_enc)
return;
vid_enc = to_sde_encoder_phys_vid(phys_enc);
SDE_EVT32(DRMID(phys_enc->parent), vid_enc->hw_intf->idx - INTF_0,
enable, atomic_read(&phys_enc->vblank_refcount));
if (enable) {
ret = sde_encoder_phys_vid_control_vblank_irq(phys_enc, true);
if (ret)
return;
sde_encoder_helper_register_irq(phys_enc, INTR_IDX_UNDERRUN);
} else {
sde_encoder_phys_vid_control_vblank_irq(phys_enc, false);
sde_encoder_helper_unregister_irq(phys_enc, INTR_IDX_UNDERRUN);
}
}
static void sde_encoder_phys_vid_setup_misr(struct sde_encoder_phys *phys_enc,
bool enable, u32 frame_count)
{
struct sde_encoder_phys_vid *vid_enc;
if (!phys_enc)
return;
vid_enc = to_sde_encoder_phys_vid(phys_enc);
if (vid_enc->hw_intf && vid_enc->hw_intf->ops.setup_misr)
vid_enc->hw_intf->ops.setup_misr(vid_enc->hw_intf,
enable, frame_count);
}
static u32 sde_encoder_phys_vid_collect_misr(struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_phys_vid *vid_enc;
if (!phys_enc)
return 0;
vid_enc = to_sde_encoder_phys_vid(phys_enc);
return vid_enc->hw_intf && vid_enc->hw_intf->ops.collect_misr ?
vid_enc->hw_intf->ops.collect_misr(vid_enc->hw_intf) : 0;
}
static int sde_encoder_phys_vid_get_line_count(
struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_phys_vid *vid_enc;
if (!phys_enc)
return -EINVAL;
if (!sde_encoder_phys_vid_is_master(phys_enc))
return -EINVAL;
vid_enc = to_sde_encoder_phys_vid(phys_enc);
if (!vid_enc->hw_intf || !vid_enc->hw_intf->ops.get_line_count)
return -EINVAL;
return vid_enc->hw_intf->ops.get_line_count(vid_enc->hw_intf);
}
static int sde_encoder_phys_vid_wait_for_active(
struct sde_encoder_phys *phys_enc)
{
struct drm_display_mode mode;
struct sde_encoder_phys_vid *vid_enc;
u32 ln_cnt, min_ln_cnt, active_lns_cnt;
u32 clk_period, time_of_line;
u32 delay, retry = MAX_POLL_CNT;
vid_enc = to_sde_encoder_phys_vid(phys_enc);
if (!vid_enc->hw_intf || !vid_enc->hw_intf->ops.get_line_count) {
SDE_ERROR_VIDENC(vid_enc, "invalid vid_enc params\n");
return -EINVAL;
}
mode = phys_enc->cached_mode;
/*
* calculate clk_period as pico second to maintain good
* accuracy with high pclk rate and this number is in 17 bit
* range.
*/
clk_period = DIV_ROUND_UP_ULL(1000000000, mode.clock);
if (!clk_period) {
SDE_ERROR_VIDENC(vid_enc, "Unable to calculate clock period\n");
return -EINVAL;
}
min_ln_cnt = (mode.vtotal - mode.vsync_start) +
(mode.vsync_end - mode.vsync_start);
active_lns_cnt = mode.vdisplay;
time_of_line = mode.htotal * clk_period;
/* delay in micro seconds */
delay = (time_of_line * (min_ln_cnt +
(mode.vsync_start - mode.vdisplay))) / 1000000;
/*
* Wait for max delay before
* polling to check active region
*/
if (delay > POLL_TIME_USEC_FOR_LN_CNT)
delay = POLL_TIME_USEC_FOR_LN_CNT;
while (retry) {
ln_cnt = vid_enc->hw_intf->ops.get_line_count(vid_enc->hw_intf);
if ((ln_cnt >= min_ln_cnt) &&
(ln_cnt < (active_lns_cnt + min_ln_cnt))) {
SDE_DEBUG_VIDENC(vid_enc,
"Needed lines left line_cnt=%d\n",
ln_cnt);
return 0;
}
SDE_ERROR_VIDENC(vid_enc, "line count is less. line_cnt = %d\n",
ln_cnt);
/* Add delay so that line count is in active region */
udelay(delay);
retry--;
}
return -EINVAL;
}
static void sde_encoder_phys_vid_init_ops(struct sde_encoder_phys_ops *ops)
{
ops->is_master = sde_encoder_phys_vid_is_master;
ops->mode_set = sde_encoder_phys_vid_mode_set;
ops->cont_splash_mode_set = sde_encoder_phys_vid_cont_splash_mode_set;
ops->mode_fixup = sde_encoder_phys_vid_mode_fixup;
ops->enable = sde_encoder_phys_vid_enable;
ops->disable = sde_encoder_phys_vid_disable;
ops->destroy = sde_encoder_phys_vid_destroy;
ops->get_hw_resources = sde_encoder_phys_vid_get_hw_resources;
ops->control_vblank_irq = sde_encoder_phys_vid_control_vblank_irq;
ops->wait_for_commit_done = sde_encoder_phys_vid_wait_for_vblank;
ops->wait_for_vblank = sde_encoder_phys_vid_wait_for_vblank;
ops->wait_for_tx_complete = sde_encoder_phys_vid_wait_for_vblank;
ops->irq_control = sde_encoder_phys_vid_irq_control;
ops->prepare_for_kickoff = sde_encoder_phys_vid_prepare_for_kickoff;
ops->handle_post_kickoff = sde_encoder_phys_vid_handle_post_kickoff;
ops->needs_single_flush = sde_encoder_phys_vid_needs_single_flush;
ops->setup_misr = sde_encoder_phys_vid_setup_misr;
ops->collect_misr = sde_encoder_phys_vid_collect_misr;
ops->trigger_flush = sde_encoder_helper_trigger_flush;
ops->hw_reset = sde_encoder_helper_hw_reset;
ops->get_line_count = sde_encoder_phys_vid_get_line_count;
ops->get_wr_line_count = sde_encoder_phys_vid_get_line_count;
ops->wait_dma_trigger = sde_encoder_phys_vid_wait_dma_trigger;
ops->wait_for_active = sde_encoder_phys_vid_wait_for_active;
}
struct sde_encoder_phys *sde_encoder_phys_vid_init(
struct sde_enc_phys_init_params *p)
{
struct sde_encoder_phys *phys_enc = NULL;
struct sde_encoder_phys_vid *vid_enc = NULL;
struct sde_rm_hw_iter iter;
struct sde_hw_mdp *hw_mdp;
struct sde_encoder_irq *irq;
int i, ret = 0;
if (!p) {
ret = -EINVAL;
goto fail;
}
vid_enc = kzalloc(sizeof(*vid_enc), GFP_KERNEL);
if (!vid_enc) {
ret = -ENOMEM;
goto fail;
}
phys_enc = &vid_enc->base;
hw_mdp = sde_rm_get_mdp(&p->sde_kms->rm);
if (IS_ERR_OR_NULL(hw_mdp)) {
ret = PTR_ERR(hw_mdp);
SDE_ERROR("failed to get mdptop\n");
goto fail;
}
phys_enc->hw_mdptop = hw_mdp;
phys_enc->intf_idx = p->intf_idx;
/**
* hw_intf resource permanently assigned to this encoder
* Other resources allocated at atomic commit time by use case
*/
sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_INTF);
while (sde_rm_get_hw(&p->sde_kms->rm, &iter)) {
struct sde_hw_intf *hw_intf = (struct sde_hw_intf *)iter.hw;
if (hw_intf->idx == p->intf_idx) {
vid_enc->hw_intf = hw_intf;
break;
}
}
if (!vid_enc->hw_intf) {
ret = -EINVAL;
SDE_ERROR("failed to get hw_intf\n");
goto fail;
}
SDE_DEBUG_VIDENC(vid_enc, "\n");
sde_encoder_phys_vid_init_ops(&phys_enc->ops);
phys_enc->parent = p->parent;
phys_enc->parent_ops = p->parent_ops;
phys_enc->sde_kms = p->sde_kms;
phys_enc->split_role = p->split_role;
phys_enc->intf_mode = INTF_MODE_VIDEO;
phys_enc->enc_spinlock = p->enc_spinlock;
phys_enc->vblank_ctl_lock = p->vblank_ctl_lock;
phys_enc->comp_type = p->comp_type;
for (i = 0; i < INTR_IDX_MAX; i++) {
irq = &phys_enc->irq[i];
INIT_LIST_HEAD(&irq->cb.list);
irq->irq_idx = -EINVAL;
irq->hw_idx = -EINVAL;
irq->cb.arg = phys_enc;
}
irq = &phys_enc->irq[INTR_IDX_VSYNC];
irq->name = "vsync_irq";
irq->intr_type = SDE_IRQ_TYPE_INTF_VSYNC;
irq->intr_idx = INTR_IDX_VSYNC;
irq->cb.func = sde_encoder_phys_vid_vblank_irq;
irq = &phys_enc->irq[INTR_IDX_UNDERRUN];
irq->name = "underrun";
irq->intr_type = SDE_IRQ_TYPE_INTF_UNDER_RUN;
irq->intr_idx = INTR_IDX_UNDERRUN;
irq->cb.func = sde_encoder_phys_vid_underrun_irq;
atomic_set(&phys_enc->vblank_refcount, 0);
atomic_set(&phys_enc->pending_kickoff_cnt, 0);
atomic_set(&phys_enc->pending_retire_fence_cnt, 0);
init_waitqueue_head(&phys_enc->pending_kickoff_wq);
phys_enc->enable_state = SDE_ENC_DISABLED;
SDE_DEBUG_VIDENC(vid_enc, "created intf idx:%d\n", p->intf_idx);
return phys_enc;
fail:
SDE_ERROR("failed to create encoder\n");
if (vid_enc)
sde_encoder_phys_vid_destroy(phys_enc);
return ERR_PTR(ret);
}