| /* |
| * include/asm-v850/bitops.h -- Bit operations |
| * |
| * Copyright (C) 2001,02,03,04,05 NEC Electronics Corporation |
| * Copyright (C) 2001,02,03,04,05 Miles Bader <miles@gnu.org> |
| * Copyright (C) 1992 Linus Torvalds. |
| * |
| * This file is subject to the terms and conditions of the GNU General |
| * Public License. See the file COPYING in the main directory of this |
| * archive for more details. |
| */ |
| |
| #ifndef __V850_BITOPS_H__ |
| #define __V850_BITOPS_H__ |
| |
| |
| #include <linux/config.h> |
| #include <linux/compiler.h> /* unlikely */ |
| #include <asm/byteorder.h> /* swab32 */ |
| #include <asm/system.h> /* interrupt enable/disable */ |
| |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * The __ functions are not atomic |
| */ |
| |
| /* |
| * ffz = Find First Zero in word. Undefined if no zero exists, |
| * so code should check against ~0UL first.. |
| */ |
| static inline unsigned long ffz (unsigned long word) |
| { |
| unsigned long result = 0; |
| |
| while (word & 1) { |
| result++; |
| word >>= 1; |
| } |
| return result; |
| } |
| |
| |
| /* In the following constant-bit-op macros, a "g" constraint is used when |
| we really need an integer ("i" constraint). This is to avoid |
| warnings/errors from the compiler in the case where the associated |
| operand _isn't_ an integer, and shouldn't produce bogus assembly because |
| use of that form is protected by a guard statement that checks for |
| constants, and should otherwise be removed by the optimizer. This |
| _usually_ works -- however, __builtin_constant_p returns true for a |
| variable with a known constant value too, and unfortunately gcc will |
| happily put the variable in a register and use the register for the "g" |
| constraint'd asm operand. To avoid the latter problem, we add a |
| constant offset to the operand and subtract it back in the asm code; |
| forcing gcc to do arithmetic on the value is usually enough to get it |
| to use a real constant value. This is horrible, and ultimately |
| unreliable too, but it seems to work for now (hopefully gcc will offer |
| us more control in the future, so we can do a better job). */ |
| |
| #define __const_bit_op(op, nr, addr) \ |
| ({ __asm__ (op " (%0 - 0x123), %1" \ |
| :: "g" (((nr) & 0x7) + 0x123), \ |
| "m" (*((char *)(addr) + ((nr) >> 3))) \ |
| : "memory"); }) |
| #define __var_bit_op(op, nr, addr) \ |
| ({ int __nr = (nr); \ |
| __asm__ (op " %0, [%1]" \ |
| :: "r" (__nr & 0x7), \ |
| "r" ((char *)(addr) + (__nr >> 3)) \ |
| : "memory"); }) |
| #define __bit_op(op, nr, addr) \ |
| ((__builtin_constant_p (nr) && (unsigned)(nr) <= 0x7FFFF) \ |
| ? __const_bit_op (op, nr, addr) \ |
| : __var_bit_op (op, nr, addr)) |
| |
| #define __set_bit(nr, addr) __bit_op ("set1", nr, addr) |
| #define __clear_bit(nr, addr) __bit_op ("clr1", nr, addr) |
| #define __change_bit(nr, addr) __bit_op ("not1", nr, addr) |
| |
| /* The bit instructions used by `non-atomic' variants are actually atomic. */ |
| #define set_bit __set_bit |
| #define clear_bit __clear_bit |
| #define change_bit __change_bit |
| |
| |
| #define __const_tns_bit_op(op, nr, addr) \ |
| ({ int __tns_res; \ |
| __asm__ __volatile__ ( \ |
| "tst1 (%1 - 0x123), %2; setf nz, %0; " op " (%1 - 0x123), %2" \ |
| : "=&r" (__tns_res) \ |
| : "g" (((nr) & 0x7) + 0x123), \ |
| "m" (*((char *)(addr) + ((nr) >> 3))) \ |
| : "memory"); \ |
| __tns_res; \ |
| }) |
| #define __var_tns_bit_op(op, nr, addr) \ |
| ({ int __nr = (nr); \ |
| int __tns_res; \ |
| __asm__ __volatile__ ( \ |
| "tst1 %1, [%2]; setf nz, %0; " op " %1, [%2]" \ |
| : "=&r" (__tns_res) \ |
| : "r" (__nr & 0x7), \ |
| "r" ((char *)(addr) + (__nr >> 3)) \ |
| : "memory"); \ |
| __tns_res; \ |
| }) |
| #define __tns_bit_op(op, nr, addr) \ |
| ((__builtin_constant_p (nr) && (unsigned)(nr) <= 0x7FFFF) \ |
| ? __const_tns_bit_op (op, nr, addr) \ |
| : __var_tns_bit_op (op, nr, addr)) |
| #define __tns_atomic_bit_op(op, nr, addr) \ |
| ({ int __tns_atomic_res, __tns_atomic_flags; \ |
| local_irq_save (__tns_atomic_flags); \ |
| __tns_atomic_res = __tns_bit_op (op, nr, addr); \ |
| local_irq_restore (__tns_atomic_flags); \ |
| __tns_atomic_res; \ |
| }) |
| |
| #define __test_and_set_bit(nr, addr) __tns_bit_op ("set1", nr, addr) |
| #define test_and_set_bit(nr, addr) __tns_atomic_bit_op ("set1", nr, addr) |
| |
| #define __test_and_clear_bit(nr, addr) __tns_bit_op ("clr1", nr, addr) |
| #define test_and_clear_bit(nr, addr) __tns_atomic_bit_op ("clr1", nr, addr) |
| |
| #define __test_and_change_bit(nr, addr) __tns_bit_op ("not1", nr, addr) |
| #define test_and_change_bit(nr, addr) __tns_atomic_bit_op ("not1", nr, addr) |
| |
| |
| #define __const_test_bit(nr, addr) \ |
| ({ int __test_bit_res; \ |
| __asm__ __volatile__ ("tst1 (%1 - 0x123), %2; setf nz, %0" \ |
| : "=r" (__test_bit_res) \ |
| : "g" (((nr) & 0x7) + 0x123), \ |
| "m" (*((const char *)(addr) + ((nr) >> 3)))); \ |
| __test_bit_res; \ |
| }) |
| static inline int __test_bit (int nr, const void *addr) |
| { |
| int res; |
| __asm__ __volatile__ ("tst1 %1, [%2]; setf nz, %0" |
| : "=r" (res) |
| : "r" (nr & 0x7), "r" (addr + (nr >> 3))); |
| return res; |
| } |
| #define test_bit(nr,addr) \ |
| ((__builtin_constant_p (nr) && (unsigned)(nr) <= 0x7FFFF) \ |
| ? __const_test_bit ((nr), (addr)) \ |
| : __test_bit ((nr), (addr))) |
| |
| |
| /* clear_bit doesn't provide any barrier for the compiler. */ |
| #define smp_mb__before_clear_bit() barrier () |
| #define smp_mb__after_clear_bit() barrier () |
| |
| |
| #define find_first_zero_bit(addr, size) \ |
| find_next_zero_bit ((addr), (size), 0) |
| |
| static inline int find_next_zero_bit(const void *addr, int size, int offset) |
| { |
| unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = * (p++); |
| tmp |= ~0UL >> (32-offset); |
| if (size < 32) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size & ~31UL) { |
| if (~ (tmp = * (p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp |= ~0UL >> size; |
| found_middle: |
| return result + ffz (tmp); |
| } |
| |
| |
| /* This is the same as generic_ffs, but we can't use that because it's |
| inline and the #include order mucks things up. */ |
| static inline int generic_ffs_for_find_next_bit(int x) |
| { |
| int r = 1; |
| |
| if (!x) |
| return 0; |
| if (!(x & 0xffff)) { |
| x >>= 16; |
| r += 16; |
| } |
| if (!(x & 0xff)) { |
| x >>= 8; |
| r += 8; |
| } |
| if (!(x & 0xf)) { |
| x >>= 4; |
| r += 4; |
| } |
| if (!(x & 3)) { |
| x >>= 2; |
| r += 2; |
| } |
| if (!(x & 1)) { |
| x >>= 1; |
| r += 1; |
| } |
| return r; |
| } |
| |
| /* |
| * Find next one bit in a bitmap reasonably efficiently. |
| */ |
| static __inline__ unsigned long find_next_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| unsigned int *p = ((unsigned int *) addr) + (offset >> 5); |
| unsigned int result = offset & ~31UL; |
| unsigned int tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *p++; |
| tmp &= ~0UL << offset; |
| if (size < 32) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size >= 32) { |
| if ((tmp = *p++) != 0) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp &= ~0UL >> (32 - size); |
| if (tmp == 0UL) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + generic_ffs_for_find_next_bit(tmp); |
| } |
| |
| /* |
| * find_first_bit - find the first set bit in a memory region |
| */ |
| #define find_first_bit(addr, size) \ |
| find_next_bit((addr), (size), 0) |
| |
| |
| #define ffs(x) generic_ffs (x) |
| #define fls(x) generic_fls (x) |
| #define fls64(x) generic_fls64(x) |
| #define __ffs(x) ffs(x) |
| |
| |
| /* |
| * This is just `generic_ffs' from <linux/bitops.h>, except that it assumes |
| * that at least one bit is set, and returns the real index of the bit |
| * (rather than the bit index + 1, like ffs does). |
| */ |
| static inline int sched_ffs(int x) |
| { |
| int r = 0; |
| |
| if (!(x & 0xffff)) { |
| x >>= 16; |
| r += 16; |
| } |
| if (!(x & 0xff)) { |
| x >>= 8; |
| r += 8; |
| } |
| if (!(x & 0xf)) { |
| x >>= 4; |
| r += 4; |
| } |
| if (!(x & 3)) { |
| x >>= 2; |
| r += 2; |
| } |
| if (!(x & 1)) { |
| x >>= 1; |
| r += 1; |
| } |
| return r; |
| } |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is set. |
| */ |
| static inline int sched_find_first_bit(unsigned long *b) |
| { |
| unsigned offs = 0; |
| while (! *b) { |
| b++; |
| offs += 32; |
| } |
| return sched_ffs (*b) + offs; |
| } |
| |
| /* |
| * hweightN: returns the hamming weight (i.e. the number |
| * of bits set) of a N-bit word |
| */ |
| #define hweight32(x) generic_hweight32 (x) |
| #define hweight16(x) generic_hweight16 (x) |
| #define hweight8(x) generic_hweight8 (x) |
| |
| #define ext2_set_bit test_and_set_bit |
| #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a) |
| #define ext2_clear_bit test_and_clear_bit |
| #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) |
| #define ext2_test_bit test_bit |
| #define ext2_find_first_zero_bit find_first_zero_bit |
| #define ext2_find_next_zero_bit find_next_zero_bit |
| |
| /* Bitmap functions for the minix filesystem. */ |
| #define minix_test_and_set_bit test_and_set_bit |
| #define minix_set_bit set_bit |
| #define minix_test_and_clear_bit test_and_clear_bit |
| #define minix_test_bit test_bit |
| #define minix_find_first_zero_bit find_first_zero_bit |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* __V850_BITOPS_H__ */ |