blob: a6be6e3e8716026b8a8e129f5e7bc9d9ec31b37f [file] [log] [blame]
/*
* Universal Interface for Intel High Definition Audio Codec
*
* Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
*
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include "hda_codec.h"
#include <sound/asoundef.h>
#include <sound/tlv.h>
#include <sound/initval.h>
#include "hda_local.h"
#include <sound/hda_hwdep.h>
#include "hda_patch.h" /* codec presets */
#ifdef CONFIG_SND_HDA_POWER_SAVE
/* define this option here to hide as static */
static int power_save = CONFIG_SND_HDA_POWER_SAVE_DEFAULT;
module_param(power_save, int, 0644);
MODULE_PARM_DESC(power_save, "Automatic power-saving timeout "
"(in second, 0 = disable).");
#endif
/*
* vendor / preset table
*/
struct hda_vendor_id {
unsigned int id;
const char *name;
};
/* codec vendor labels */
static struct hda_vendor_id hda_vendor_ids[] = {
{ 0x1002, "ATI" },
{ 0x1057, "Motorola" },
{ 0x1095, "Silicon Image" },
{ 0x10ec, "Realtek" },
{ 0x1106, "VIA" },
{ 0x111d, "IDT" },
{ 0x11c1, "LSI" },
{ 0x11d4, "Analog Devices" },
{ 0x13f6, "C-Media" },
{ 0x14f1, "Conexant" },
{ 0x17e8, "Chrontel" },
{ 0x1854, "LG" },
{ 0x434d, "C-Media" },
{ 0x8384, "SigmaTel" },
{} /* terminator */
};
static const struct hda_codec_preset *hda_preset_tables[] = {
#ifdef CONFIG_SND_HDA_CODEC_REALTEK
snd_hda_preset_realtek,
#endif
#ifdef CONFIG_SND_HDA_CODEC_CMEDIA
snd_hda_preset_cmedia,
#endif
#ifdef CONFIG_SND_HDA_CODEC_ANALOG
snd_hda_preset_analog,
#endif
#ifdef CONFIG_SND_HDA_CODEC_SIGMATEL
snd_hda_preset_sigmatel,
#endif
#ifdef CONFIG_SND_HDA_CODEC_SI3054
snd_hda_preset_si3054,
#endif
#ifdef CONFIG_SND_HDA_CODEC_ATIHDMI
snd_hda_preset_atihdmi,
#endif
#ifdef CONFIG_SND_HDA_CODEC_CONEXANT
snd_hda_preset_conexant,
#endif
#ifdef CONFIG_SND_HDA_CODEC_VIA
snd_hda_preset_via,
#endif
NULL
};
#ifdef CONFIG_SND_HDA_POWER_SAVE
static void hda_power_work(struct work_struct *work);
static void hda_keep_power_on(struct hda_codec *codec);
#else
static inline void hda_keep_power_on(struct hda_codec *codec) {}
#endif
/**
* snd_hda_codec_read - send a command and get the response
* @codec: the HDA codec
* @nid: NID to send the command
* @direct: direct flag
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command and read the corresponding response.
*
* Returns the obtained response value, or -1 for an error.
*/
unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
int direct,
unsigned int verb, unsigned int parm)
{
unsigned int res;
snd_hda_power_up(codec);
mutex_lock(&codec->bus->cmd_mutex);
if (!codec->bus->ops.command(codec, nid, direct, verb, parm))
res = codec->bus->ops.get_response(codec);
else
res = (unsigned int)-1;
mutex_unlock(&codec->bus->cmd_mutex);
snd_hda_power_down(codec);
return res;
}
/**
* snd_hda_codec_write - send a single command without waiting for response
* @codec: the HDA codec
* @nid: NID to send the command
* @direct: direct flag
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command without waiting for response.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
unsigned int verb, unsigned int parm)
{
int err;
snd_hda_power_up(codec);
mutex_lock(&codec->bus->cmd_mutex);
err = codec->bus->ops.command(codec, nid, direct, verb, parm);
mutex_unlock(&codec->bus->cmd_mutex);
snd_hda_power_down(codec);
return err;
}
/**
* snd_hda_sequence_write - sequence writes
* @codec: the HDA codec
* @seq: VERB array to send
*
* Send the commands sequentially from the given array.
* The array must be terminated with NID=0.
*/
void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
{
for (; seq->nid; seq++)
snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
}
/**
* snd_hda_get_sub_nodes - get the range of sub nodes
* @codec: the HDA codec
* @nid: NID to parse
* @start_id: the pointer to store the start NID
*
* Parse the NID and store the start NID of its sub-nodes.
* Returns the number of sub-nodes.
*/
int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid,
hda_nid_t *start_id)
{
unsigned int parm;
parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
if (parm == -1)
return 0;
*start_id = (parm >> 16) & 0x7fff;
return (int)(parm & 0x7fff);
}
/**
* snd_hda_get_connections - get connection list
* @codec: the HDA codec
* @nid: NID to parse
* @conn_list: connection list array
* @max_conns: max. number of connections to store
*
* Parses the connection list of the given widget and stores the list
* of NIDs.
*
* Returns the number of connections, or a negative error code.
*/
int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
hda_nid_t *conn_list, int max_conns)
{
unsigned int parm;
int i, conn_len, conns;
unsigned int shift, num_elems, mask;
hda_nid_t prev_nid;
snd_assert(conn_list && max_conns > 0, return -EINVAL);
parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
if (parm & AC_CLIST_LONG) {
/* long form */
shift = 16;
num_elems = 2;
} else {
/* short form */
shift = 8;
num_elems = 4;
}
conn_len = parm & AC_CLIST_LENGTH;
mask = (1 << (shift-1)) - 1;
if (!conn_len)
return 0; /* no connection */
if (conn_len == 1) {
/* single connection */
parm = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_CONNECT_LIST, 0);
conn_list[0] = parm & mask;
return 1;
}
/* multi connection */
conns = 0;
prev_nid = 0;
for (i = 0; i < conn_len; i++) {
int range_val;
hda_nid_t val, n;
if (i % num_elems == 0)
parm = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_CONNECT_LIST, i);
range_val = !!(parm & (1 << (shift-1))); /* ranges */
val = parm & mask;
parm >>= shift;
if (range_val) {
/* ranges between the previous and this one */
if (!prev_nid || prev_nid >= val) {
snd_printk(KERN_WARNING "hda_codec: "
"invalid dep_range_val %x:%x\n",
prev_nid, val);
continue;
}
for (n = prev_nid + 1; n <= val; n++) {
if (conns >= max_conns) {
snd_printk(KERN_ERR
"Too many connections\n");
return -EINVAL;
}
conn_list[conns++] = n;
}
} else {
if (conns >= max_conns) {
snd_printk(KERN_ERR "Too many connections\n");
return -EINVAL;
}
conn_list[conns++] = val;
}
prev_nid = val;
}
return conns;
}
/**
* snd_hda_queue_unsol_event - add an unsolicited event to queue
* @bus: the BUS
* @res: unsolicited event (lower 32bit of RIRB entry)
* @res_ex: codec addr and flags (upper 32bit or RIRB entry)
*
* Adds the given event to the queue. The events are processed in
* the workqueue asynchronously. Call this function in the interrupt
* hanlder when RIRB receives an unsolicited event.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
{
struct hda_bus_unsolicited *unsol;
unsigned int wp;
unsol = bus->unsol;
if (!unsol)
return 0;
wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
unsol->wp = wp;
wp <<= 1;
unsol->queue[wp] = res;
unsol->queue[wp + 1] = res_ex;
schedule_work(&unsol->work);
return 0;
}
/*
* process queueud unsolicited events
*/
static void process_unsol_events(struct work_struct *work)
{
struct hda_bus_unsolicited *unsol =
container_of(work, struct hda_bus_unsolicited, work);
struct hda_bus *bus = unsol->bus;
struct hda_codec *codec;
unsigned int rp, caddr, res;
while (unsol->rp != unsol->wp) {
rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
unsol->rp = rp;
rp <<= 1;
res = unsol->queue[rp];
caddr = unsol->queue[rp + 1];
if (!(caddr & (1 << 4))) /* no unsolicited event? */
continue;
codec = bus->caddr_tbl[caddr & 0x0f];
if (codec && codec->patch_ops.unsol_event)
codec->patch_ops.unsol_event(codec, res);
}
}
/*
* initialize unsolicited queue
*/
static int __devinit init_unsol_queue(struct hda_bus *bus)
{
struct hda_bus_unsolicited *unsol;
if (bus->unsol) /* already initialized */
return 0;
unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
if (!unsol) {
snd_printk(KERN_ERR "hda_codec: "
"can't allocate unsolicited queue\n");
return -ENOMEM;
}
INIT_WORK(&unsol->work, process_unsol_events);
unsol->bus = bus;
bus->unsol = unsol;
return 0;
}
/*
* destructor
*/
static void snd_hda_codec_free(struct hda_codec *codec);
static int snd_hda_bus_free(struct hda_bus *bus)
{
struct hda_codec *codec, *n;
if (!bus)
return 0;
if (bus->unsol) {
flush_scheduled_work();
kfree(bus->unsol);
}
list_for_each_entry_safe(codec, n, &bus->codec_list, list) {
snd_hda_codec_free(codec);
}
if (bus->ops.private_free)
bus->ops.private_free(bus);
kfree(bus);
return 0;
}
static int snd_hda_bus_dev_free(struct snd_device *device)
{
struct hda_bus *bus = device->device_data;
return snd_hda_bus_free(bus);
}
/**
* snd_hda_bus_new - create a HDA bus
* @card: the card entry
* @temp: the template for hda_bus information
* @busp: the pointer to store the created bus instance
*
* Returns 0 if successful, or a negative error code.
*/
int __devinit snd_hda_bus_new(struct snd_card *card,
const struct hda_bus_template *temp,
struct hda_bus **busp)
{
struct hda_bus *bus;
int err;
static struct snd_device_ops dev_ops = {
.dev_free = snd_hda_bus_dev_free,
};
snd_assert(temp, return -EINVAL);
snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
if (busp)
*busp = NULL;
bus = kzalloc(sizeof(*bus), GFP_KERNEL);
if (bus == NULL) {
snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
return -ENOMEM;
}
bus->card = card;
bus->private_data = temp->private_data;
bus->pci = temp->pci;
bus->modelname = temp->modelname;
bus->ops = temp->ops;
mutex_init(&bus->cmd_mutex);
INIT_LIST_HEAD(&bus->codec_list);
err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
if (err < 0) {
snd_hda_bus_free(bus);
return err;
}
if (busp)
*busp = bus;
return 0;
}
#ifdef CONFIG_SND_HDA_GENERIC
#define is_generic_config(codec) \
(codec->bus->modelname && !strcmp(codec->bus->modelname, "generic"))
#else
#define is_generic_config(codec) 0
#endif
/*
* find a matching codec preset
*/
static const struct hda_codec_preset __devinit *
find_codec_preset(struct hda_codec *codec)
{
const struct hda_codec_preset **tbl, *preset;
if (is_generic_config(codec))
return NULL; /* use the generic parser */
for (tbl = hda_preset_tables; *tbl; tbl++) {
for (preset = *tbl; preset->id; preset++) {
u32 mask = preset->mask;
if (preset->afg && preset->afg != codec->afg)
continue;
if (preset->mfg && preset->mfg != codec->mfg)
continue;
if (!mask)
mask = ~0;
if (preset->id == (codec->vendor_id & mask) &&
(!preset->rev ||
preset->rev == codec->revision_id))
return preset;
}
}
return NULL;
}
/*
* snd_hda_get_codec_name - store the codec name
*/
void snd_hda_get_codec_name(struct hda_codec *codec,
char *name, int namelen)
{
const struct hda_vendor_id *c;
const char *vendor = NULL;
u16 vendor_id = codec->vendor_id >> 16;
char tmp[16];
for (c = hda_vendor_ids; c->id; c++) {
if (c->id == vendor_id) {
vendor = c->name;
break;
}
}
if (!vendor) {
sprintf(tmp, "Generic %04x", vendor_id);
vendor = tmp;
}
if (codec->preset && codec->preset->name)
snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
else
snprintf(name, namelen, "%s ID %x", vendor,
codec->vendor_id & 0xffff);
}
/*
* look for an AFG and MFG nodes
*/
static void __devinit setup_fg_nodes(struct hda_codec *codec)
{
int i, total_nodes;
hda_nid_t nid;
total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
for (i = 0; i < total_nodes; i++, nid++) {
unsigned int func;
func = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE);
switch (func & 0xff) {
case AC_GRP_AUDIO_FUNCTION:
codec->afg = nid;
break;
case AC_GRP_MODEM_FUNCTION:
codec->mfg = nid;
break;
default:
break;
}
}
}
/*
* read widget caps for each widget and store in cache
*/
static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
{
int i;
hda_nid_t nid;
codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
&codec->start_nid);
codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
if (!codec->wcaps)
return -ENOMEM;
nid = codec->start_nid;
for (i = 0; i < codec->num_nodes; i++, nid++)
codec->wcaps[i] = snd_hda_param_read(codec, nid,
AC_PAR_AUDIO_WIDGET_CAP);
return 0;
}
static void init_hda_cache(struct hda_cache_rec *cache,
unsigned int record_size);
static void free_hda_cache(struct hda_cache_rec *cache);
/*
* codec destructor
*/
static void snd_hda_codec_free(struct hda_codec *codec)
{
if (!codec)
return;
#ifdef CONFIG_SND_HDA_POWER_SAVE
cancel_delayed_work(&codec->power_work);
flush_scheduled_work();
#endif
list_del(&codec->list);
codec->bus->caddr_tbl[codec->addr] = NULL;
if (codec->patch_ops.free)
codec->patch_ops.free(codec);
free_hda_cache(&codec->amp_cache);
free_hda_cache(&codec->cmd_cache);
kfree(codec->wcaps);
kfree(codec);
}
/**
* snd_hda_codec_new - create a HDA codec
* @bus: the bus to assign
* @codec_addr: the codec address
* @codecp: the pointer to store the generated codec
*
* Returns 0 if successful, or a negative error code.
*/
int __devinit snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
struct hda_codec **codecp)
{
struct hda_codec *codec;
char component[13];
int err;
snd_assert(bus, return -EINVAL);
snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
if (bus->caddr_tbl[codec_addr]) {
snd_printk(KERN_ERR "hda_codec: "
"address 0x%x is already occupied\n", codec_addr);
return -EBUSY;
}
codec = kzalloc(sizeof(*codec), GFP_KERNEL);
if (codec == NULL) {
snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
return -ENOMEM;
}
codec->bus = bus;
codec->addr = codec_addr;
mutex_init(&codec->spdif_mutex);
init_hda_cache(&codec->amp_cache, sizeof(struct hda_amp_info));
init_hda_cache(&codec->cmd_cache, sizeof(struct hda_cache_head));
#ifdef CONFIG_SND_HDA_POWER_SAVE
INIT_DELAYED_WORK(&codec->power_work, hda_power_work);
/* snd_hda_codec_new() marks the codec as power-up, and leave it as is.
* the caller has to power down appropriatley after initialization
* phase.
*/
hda_keep_power_on(codec);
#endif
list_add_tail(&codec->list, &bus->codec_list);
bus->caddr_tbl[codec_addr] = codec;
codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
AC_PAR_VENDOR_ID);
if (codec->vendor_id == -1)
/* read again, hopefully the access method was corrected
* in the last read...
*/
codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
AC_PAR_VENDOR_ID);
codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT,
AC_PAR_SUBSYSTEM_ID);
codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT,
AC_PAR_REV_ID);
setup_fg_nodes(codec);
if (!codec->afg && !codec->mfg) {
snd_printdd("hda_codec: no AFG or MFG node found\n");
snd_hda_codec_free(codec);
return -ENODEV;
}
if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
snd_hda_codec_free(codec);
return -ENOMEM;
}
if (!codec->subsystem_id) {
hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
codec->subsystem_id =
snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_SUBSYSTEM_ID, 0);
}
codec->preset = find_codec_preset(codec);
/* audio codec should override the mixer name */
if (codec->afg || !*bus->card->mixername)
snd_hda_get_codec_name(codec, bus->card->mixername,
sizeof(bus->card->mixername));
if (is_generic_config(codec)) {
err = snd_hda_parse_generic_codec(codec);
goto patched;
}
if (codec->preset && codec->preset->patch) {
err = codec->preset->patch(codec);
goto patched;
}
/* call the default parser */
err = snd_hda_parse_generic_codec(codec);
if (err < 0)
printk(KERN_ERR "hda-codec: No codec parser is available\n");
patched:
if (err < 0) {
snd_hda_codec_free(codec);
return err;
}
if (codec->patch_ops.unsol_event)
init_unsol_queue(bus);
snd_hda_codec_proc_new(codec);
#ifdef CONFIG_SND_HDA_HWDEP
snd_hda_create_hwdep(codec);
#endif
sprintf(component, "HDA:%08x", codec->vendor_id);
snd_component_add(codec->bus->card, component);
if (codecp)
*codecp = codec;
return 0;
}
/**
* snd_hda_codec_setup_stream - set up the codec for streaming
* @codec: the CODEC to set up
* @nid: the NID to set up
* @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
* @channel_id: channel id to pass, zero based.
* @format: stream format.
*/
void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
u32 stream_tag,
int channel_id, int format)
{
if (!nid)
return;
snd_printdd("hda_codec_setup_stream: "
"NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
nid, stream_tag, channel_id, format);
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
(stream_tag << 4) | channel_id);
msleep(1);
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
}
void snd_hda_codec_cleanup_stream(struct hda_codec *codec, hda_nid_t nid)
{
if (!nid)
return;
snd_printdd("hda_codec_cleanup_stream: NID=0x%x\n", nid);
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID, 0);
#if 0 /* keep the format */
msleep(1);
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, 0);
#endif
}
/*
* amp access functions
*/
/* FIXME: more better hash key? */
#define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
#define INFO_AMP_CAPS (1<<0)
#define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
/* initialize the hash table */
static void __devinit init_hda_cache(struct hda_cache_rec *cache,
unsigned int record_size)
{
memset(cache, 0, sizeof(*cache));
memset(cache->hash, 0xff, sizeof(cache->hash));
cache->record_size = record_size;
}
static void free_hda_cache(struct hda_cache_rec *cache)
{
kfree(cache->buffer);
}
/* query the hash. allocate an entry if not found. */
static struct hda_cache_head *get_alloc_hash(struct hda_cache_rec *cache,
u32 key)
{
u16 idx = key % (u16)ARRAY_SIZE(cache->hash);
u16 cur = cache->hash[idx];
struct hda_cache_head *info;
while (cur != 0xffff) {
info = (struct hda_cache_head *)(cache->buffer +
cur * cache->record_size);
if (info->key == key)
return info;
cur = info->next;
}
/* add a new hash entry */
if (cache->num_entries >= cache->size) {
/* reallocate the array */
unsigned int new_size = cache->size + 64;
void *new_buffer;
new_buffer = kcalloc(new_size, cache->record_size, GFP_KERNEL);
if (!new_buffer) {
snd_printk(KERN_ERR "hda_codec: "
"can't malloc amp_info\n");
return NULL;
}
if (cache->buffer) {
memcpy(new_buffer, cache->buffer,
cache->size * cache->record_size);
kfree(cache->buffer);
}
cache->size = new_size;
cache->buffer = new_buffer;
}
cur = cache->num_entries++;
info = (struct hda_cache_head *)(cache->buffer +
cur * cache->record_size);
info->key = key;
info->val = 0;
info->next = cache->hash[idx];
cache->hash[idx] = cur;
return info;
}
/* query and allocate an amp hash entry */
static inline struct hda_amp_info *
get_alloc_amp_hash(struct hda_codec *codec, u32 key)
{
return (struct hda_amp_info *)get_alloc_hash(&codec->amp_cache, key);
}
/*
* query AMP capabilities for the given widget and direction
*/
u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
{
struct hda_amp_info *info;
info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
if (!info)
return 0;
if (!(info->head.val & INFO_AMP_CAPS)) {
if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
nid = codec->afg;
info->amp_caps = snd_hda_param_read(codec, nid,
direction == HDA_OUTPUT ?
AC_PAR_AMP_OUT_CAP :
AC_PAR_AMP_IN_CAP);
if (info->amp_caps)
info->head.val |= INFO_AMP_CAPS;
}
return info->amp_caps;
}
int snd_hda_override_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir,
unsigned int caps)
{
struct hda_amp_info *info;
info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, dir, 0));
if (!info)
return -EINVAL;
info->amp_caps = caps;
info->head.val |= INFO_AMP_CAPS;
return 0;
}
/*
* read the current volume to info
* if the cache exists, read the cache value.
*/
static unsigned int get_vol_mute(struct hda_codec *codec,
struct hda_amp_info *info, hda_nid_t nid,
int ch, int direction, int index)
{
u32 val, parm;
if (info->head.val & INFO_AMP_VOL(ch))
return info->vol[ch];
parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
parm |= index;
val = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_AMP_GAIN_MUTE, parm);
info->vol[ch] = val & 0xff;
info->head.val |= INFO_AMP_VOL(ch);
return info->vol[ch];
}
/*
* write the current volume in info to the h/w and update the cache
*/
static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
hda_nid_t nid, int ch, int direction, int index,
int val)
{
u32 parm;
parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
parm |= index << AC_AMP_SET_INDEX_SHIFT;
parm |= val;
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
info->vol[ch] = val;
}
/*
* read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
*/
int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
int direction, int index)
{
struct hda_amp_info *info;
info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
if (!info)
return 0;
return get_vol_mute(codec, info, nid, ch, direction, index);
}
/*
* update the AMP value, mask = bit mask to set, val = the value
*/
int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
int direction, int idx, int mask, int val)
{
struct hda_amp_info *info;
info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
if (!info)
return 0;
val &= mask;
val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
if (info->vol[ch] == val)
return 0;
put_vol_mute(codec, info, nid, ch, direction, idx, val);
return 1;
}
/*
* update the AMP stereo with the same mask and value
*/
int snd_hda_codec_amp_stereo(struct hda_codec *codec, hda_nid_t nid,
int direction, int idx, int mask, int val)
{
int ch, ret = 0;
for (ch = 0; ch < 2; ch++)
ret |= snd_hda_codec_amp_update(codec, nid, ch, direction,
idx, mask, val);
return ret;
}
#ifdef SND_HDA_NEEDS_RESUME
/* resume the all amp commands from the cache */
void snd_hda_codec_resume_amp(struct hda_codec *codec)
{
struct hda_amp_info *buffer = codec->amp_cache.buffer;
int i;
for (i = 0; i < codec->amp_cache.size; i++, buffer++) {
u32 key = buffer->head.key;
hda_nid_t nid;
unsigned int idx, dir, ch;
if (!key)
continue;
nid = key & 0xff;
idx = (key >> 16) & 0xff;
dir = (key >> 24) & 0xff;
for (ch = 0; ch < 2; ch++) {
if (!(buffer->head.val & INFO_AMP_VOL(ch)))
continue;
put_vol_mute(codec, buffer, nid, ch, dir, idx,
buffer->vol[ch]);
}
}
}
#endif /* SND_HDA_NEEDS_RESUME */
/*
* AMP control callbacks
*/
/* retrieve parameters from private_value */
#define get_amp_nid(kc) ((kc)->private_value & 0xffff)
#define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
#define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
#define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
/* volume */
int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
u16 nid = get_amp_nid(kcontrol);
u8 chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
u32 caps;
caps = query_amp_caps(codec, nid, dir);
/* num steps */
caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
if (!caps) {
printk(KERN_WARNING "hda_codec: "
"num_steps = 0 for NID=0x%x (ctl = %s)\n", nid,
kcontrol->id.name);
return -EINVAL;
}
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = chs == 3 ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = caps;
return 0;
}
int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
if (chs & 1)
*valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx)
& HDA_AMP_VOLMASK;
if (chs & 2)
*valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx)
& HDA_AMP_VOLMASK;
return 0;
}
int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
int change = 0;
snd_hda_power_up(codec);
if (chs & 1) {
change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
0x7f, *valp);
valp++;
}
if (chs & 2)
change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
0x7f, *valp);
snd_hda_power_down(codec);
return change;
}
int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *_tlv)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int dir = get_amp_direction(kcontrol);
u32 caps, val1, val2;
if (size < 4 * sizeof(unsigned int))
return -ENOMEM;
caps = query_amp_caps(codec, nid, dir);
val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
val2 = (val2 + 1) * 25;
val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
val1 = ((int)val1) * ((int)val2);
if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
return -EFAULT;
if (put_user(2 * sizeof(unsigned int), _tlv + 1))
return -EFAULT;
if (put_user(val1, _tlv + 2))
return -EFAULT;
if (put_user(val2, _tlv + 3))
return -EFAULT;
return 0;
}
/*
* set (static) TLV for virtual master volume; recalculated as max 0dB
*/
void snd_hda_set_vmaster_tlv(struct hda_codec *codec, hda_nid_t nid, int dir,
unsigned int *tlv)
{
u32 caps;
int nums, step;
caps = query_amp_caps(codec, nid, dir);
nums = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
step = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
step = (step + 1) * 25;
tlv[0] = SNDRV_CTL_TLVT_DB_SCALE;
tlv[1] = 2 * sizeof(unsigned int);
tlv[2] = -nums * step;
tlv[3] = step;
}
/* find a mixer control element with the given name */
static struct snd_kcontrol *
_snd_hda_find_mixer_ctl(struct hda_codec *codec,
const char *name, int idx)
{
struct snd_ctl_elem_id id;
memset(&id, 0, sizeof(id));
id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
id.index = idx;
strcpy(id.name, name);
return snd_ctl_find_id(codec->bus->card, &id);
}
struct snd_kcontrol *snd_hda_find_mixer_ctl(struct hda_codec *codec,
const char *name)
{
return _snd_hda_find_mixer_ctl(codec, name, 0);
}
/* create a virtual master control and add slaves */
int snd_hda_add_vmaster(struct hda_codec *codec, char *name,
unsigned int *tlv, const char **slaves)
{
struct snd_kcontrol *kctl;
const char **s;
int err;
for (s = slaves; *s && !snd_hda_find_mixer_ctl(codec, *s); s++)
;
if (!*s) {
snd_printdd("No slave found for %s\n", name);
return 0;
}
kctl = snd_ctl_make_virtual_master(name, tlv);
if (!kctl)
return -ENOMEM;
err = snd_ctl_add(codec->bus->card, kctl);
if (err < 0)
return err;
for (s = slaves; *s; s++) {
struct snd_kcontrol *sctl;
sctl = snd_hda_find_mixer_ctl(codec, *s);
if (!sctl) {
snd_printdd("Cannot find slave %s, skipped\n", *s);
continue;
}
err = snd_ctl_add_slave(kctl, sctl);
if (err < 0)
return err;
}
return 0;
}
/* switch */
int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int chs = get_amp_channels(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = chs == 3 ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
if (chs & 1)
*valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
HDA_AMP_MUTE) ? 0 : 1;
if (chs & 2)
*valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
HDA_AMP_MUTE) ? 0 : 1;
return 0;
}
int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
int change = 0;
snd_hda_power_up(codec);
if (chs & 1) {
change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
HDA_AMP_MUTE,
*valp ? 0 : HDA_AMP_MUTE);
valp++;
}
if (chs & 2)
change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
HDA_AMP_MUTE,
*valp ? 0 : HDA_AMP_MUTE);
#ifdef CONFIG_SND_HDA_POWER_SAVE
if (codec->patch_ops.check_power_status)
codec->patch_ops.check_power_status(codec, nid);
#endif
snd_hda_power_down(codec);
return change;
}
/*
* bound volume controls
*
* bind multiple volumes (# indices, from 0)
*/
#define AMP_VAL_IDX_SHIFT 19
#define AMP_VAL_IDX_MASK (0x0f<<19)
int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned long pval;
int err;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
pval = kcontrol->private_value;
kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
kcontrol->private_value = pval;
mutex_unlock(&codec->spdif_mutex);
return err;
}
int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned long pval;
int i, indices, err = 0, change = 0;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
pval = kcontrol->private_value;
indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
for (i = 0; i < indices; i++) {
kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
(i << AMP_VAL_IDX_SHIFT);
err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
if (err < 0)
break;
change |= err;
}
kcontrol->private_value = pval;
mutex_unlock(&codec->spdif_mutex);
return err < 0 ? err : change;
}
/*
* generic bound volume/swtich controls
*/
int snd_hda_mixer_bind_ctls_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_bind_ctls *c;
int err;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
c = (struct hda_bind_ctls *)kcontrol->private_value;
kcontrol->private_value = *c->values;
err = c->ops->info(kcontrol, uinfo);
kcontrol->private_value = (long)c;
mutex_unlock(&codec->spdif_mutex);
return err;
}
int snd_hda_mixer_bind_ctls_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_bind_ctls *c;
int err;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
c = (struct hda_bind_ctls *)kcontrol->private_value;
kcontrol->private_value = *c->values;
err = c->ops->get(kcontrol, ucontrol);
kcontrol->private_value = (long)c;
mutex_unlock(&codec->spdif_mutex);
return err;
}
int snd_hda_mixer_bind_ctls_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_bind_ctls *c;
unsigned long *vals;
int err = 0, change = 0;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
c = (struct hda_bind_ctls *)kcontrol->private_value;
for (vals = c->values; *vals; vals++) {
kcontrol->private_value = *vals;
err = c->ops->put(kcontrol, ucontrol);
if (err < 0)
break;
change |= err;
}
kcontrol->private_value = (long)c;
mutex_unlock(&codec->spdif_mutex);
return err < 0 ? err : change;
}
int snd_hda_mixer_bind_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *tlv)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_bind_ctls *c;
int err;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
c = (struct hda_bind_ctls *)kcontrol->private_value;
kcontrol->private_value = *c->values;
err = c->ops->tlv(kcontrol, op_flag, size, tlv);
kcontrol->private_value = (long)c;
mutex_unlock(&codec->spdif_mutex);
return err;
}
struct hda_ctl_ops snd_hda_bind_vol = {
.info = snd_hda_mixer_amp_volume_info,
.get = snd_hda_mixer_amp_volume_get,
.put = snd_hda_mixer_amp_volume_put,
.tlv = snd_hda_mixer_amp_tlv
};
struct hda_ctl_ops snd_hda_bind_sw = {
.info = snd_hda_mixer_amp_switch_info,
.get = snd_hda_mixer_amp_switch_get,
.put = snd_hda_mixer_amp_switch_put,
.tlv = snd_hda_mixer_amp_tlv
};
/*
* SPDIF out controls
*/
static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
IEC958_AES0_NONAUDIO |
IEC958_AES0_CON_EMPHASIS_5015 |
IEC958_AES0_CON_NOT_COPYRIGHT;
ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
IEC958_AES1_CON_ORIGINAL;
return 0;
}
static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
IEC958_AES0_NONAUDIO |
IEC958_AES0_PRO_EMPHASIS_5015;
return 0;
}
static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
return 0;
}
/* convert from SPDIF status bits to HDA SPDIF bits
* bit 0 (DigEn) is always set zero (to be filled later)
*/
static unsigned short convert_from_spdif_status(unsigned int sbits)
{
unsigned short val = 0;
if (sbits & IEC958_AES0_PROFESSIONAL)
val |= AC_DIG1_PROFESSIONAL;
if (sbits & IEC958_AES0_NONAUDIO)
val |= AC_DIG1_NONAUDIO;
if (sbits & IEC958_AES0_PROFESSIONAL) {
if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
IEC958_AES0_PRO_EMPHASIS_5015)
val |= AC_DIG1_EMPHASIS;
} else {
if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
IEC958_AES0_CON_EMPHASIS_5015)
val |= AC_DIG1_EMPHASIS;
if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
val |= AC_DIG1_COPYRIGHT;
if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
val |= AC_DIG1_LEVEL;
val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
}
return val;
}
/* convert to SPDIF status bits from HDA SPDIF bits
*/
static unsigned int convert_to_spdif_status(unsigned short val)
{
unsigned int sbits = 0;
if (val & AC_DIG1_NONAUDIO)
sbits |= IEC958_AES0_NONAUDIO;
if (val & AC_DIG1_PROFESSIONAL)
sbits |= IEC958_AES0_PROFESSIONAL;
if (sbits & IEC958_AES0_PROFESSIONAL) {
if (sbits & AC_DIG1_EMPHASIS)
sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
} else {
if (val & AC_DIG1_EMPHASIS)
sbits |= IEC958_AES0_CON_EMPHASIS_5015;
if (!(val & AC_DIG1_COPYRIGHT))
sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
if (val & AC_DIG1_LEVEL)
sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
sbits |= val & (0x7f << 8);
}
return sbits;
}
static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned short val;
int change;
mutex_lock(&codec->spdif_mutex);
codec->spdif_status = ucontrol->value.iec958.status[0] |
((unsigned int)ucontrol->value.iec958.status[1] << 8) |
((unsigned int)ucontrol->value.iec958.status[2] << 16) |
((unsigned int)ucontrol->value.iec958.status[3] << 24);
val = convert_from_spdif_status(codec->spdif_status);
val |= codec->spdif_ctls & 1;
change = codec->spdif_ctls != val;
codec->spdif_ctls = val;
if (change) {
snd_hda_codec_write_cache(codec, nid, 0,
AC_VERB_SET_DIGI_CONVERT_1,
val & 0xff);
snd_hda_codec_write_cache(codec, nid, 0,
AC_VERB_SET_DIGI_CONVERT_2,
val >> 8);
}
mutex_unlock(&codec->spdif_mutex);
return change;
}
#define snd_hda_spdif_out_switch_info snd_ctl_boolean_mono_info
static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = codec->spdif_ctls & AC_DIG1_ENABLE;
return 0;
}
static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned short val;
int change;
mutex_lock(&codec->spdif_mutex);
val = codec->spdif_ctls & ~AC_DIG1_ENABLE;
if (ucontrol->value.integer.value[0])
val |= AC_DIG1_ENABLE;
change = codec->spdif_ctls != val;
if (change) {
codec->spdif_ctls = val;
snd_hda_codec_write_cache(codec, nid, 0,
AC_VERB_SET_DIGI_CONVERT_1,
val & 0xff);
/* unmute amp switch (if any) */
if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
(val & AC_DIG1_ENABLE))
snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
HDA_AMP_MUTE, 0);
}
mutex_unlock(&codec->spdif_mutex);
return change;
}
static struct snd_kcontrol_new dig_mixes[] = {
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_cmask_get,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_pmask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_default_get,
.put = snd_hda_spdif_default_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
.info = snd_hda_spdif_out_switch_info,
.get = snd_hda_spdif_out_switch_get,
.put = snd_hda_spdif_out_switch_put,
},
{ } /* end */
};
#define SPDIF_MAX_IDX 4 /* 4 instances should be enough to probe */
/**
* snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
* @codec: the HDA codec
* @nid: audio out widget NID
*
* Creates controls related with the SPDIF output.
* Called from each patch supporting the SPDIF out.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
{
int err;
struct snd_kcontrol *kctl;
struct snd_kcontrol_new *dig_mix;
int idx;
for (idx = 0; idx < SPDIF_MAX_IDX; idx++) {
if (!_snd_hda_find_mixer_ctl(codec, "IEC958 Playback Switch",
idx))
break;
}
if (idx >= SPDIF_MAX_IDX) {
printk(KERN_ERR "hda_codec: too many IEC958 outputs\n");
return -EBUSY;
}
for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
kctl = snd_ctl_new1(dig_mix, codec);
kctl->id.index = idx;
kctl->private_value = nid;
err = snd_ctl_add(codec->bus->card, kctl);
if (err < 0)
return err;
}
codec->spdif_ctls =
snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_DIGI_CONVERT_1, 0);
codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
return 0;
}
/*
* SPDIF sharing with analog output
*/
static int spdif_share_sw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_multi_out *mout = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = mout->share_spdif;
return 0;
}
static int spdif_share_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_multi_out *mout = snd_kcontrol_chip(kcontrol);
mout->share_spdif = !!ucontrol->value.integer.value[0];
return 0;
}
static struct snd_kcontrol_new spdif_share_sw = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "IEC958 Default PCM Playback Switch",
.info = snd_ctl_boolean_mono_info,
.get = spdif_share_sw_get,
.put = spdif_share_sw_put,
};
int snd_hda_create_spdif_share_sw(struct hda_codec *codec,
struct hda_multi_out *mout)
{
if (!mout->dig_out_nid)
return 0;
/* ATTENTION: here mout is passed as private_data, instead of codec */
return snd_ctl_add(codec->bus->card,
snd_ctl_new1(&spdif_share_sw, mout));
}
/*
* SPDIF input
*/
#define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = codec->spdif_in_enable;
return 0;
}
static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned int val = !!ucontrol->value.integer.value[0];
int change;
mutex_lock(&codec->spdif_mutex);
change = codec->spdif_in_enable != val;
if (change) {
codec->spdif_in_enable = val;
snd_hda_codec_write_cache(codec, nid, 0,
AC_VERB_SET_DIGI_CONVERT_1, val);
}
mutex_unlock(&codec->spdif_mutex);
return change;
}
static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned short val;
unsigned int sbits;
val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT_1, 0);
sbits = convert_to_spdif_status(val);
ucontrol->value.iec958.status[0] = sbits;
ucontrol->value.iec958.status[1] = sbits >> 8;
ucontrol->value.iec958.status[2] = sbits >> 16;
ucontrol->value.iec958.status[3] = sbits >> 24;
return 0;
}
static struct snd_kcontrol_new dig_in_ctls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
.info = snd_hda_spdif_in_switch_info,
.get = snd_hda_spdif_in_switch_get,
.put = snd_hda_spdif_in_switch_put,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_in_status_get,
},
{ } /* end */
};
/**
* snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
* @codec: the HDA codec
* @nid: audio in widget NID
*
* Creates controls related with the SPDIF input.
* Called from each patch supporting the SPDIF in.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
{
int err;
struct snd_kcontrol *kctl;
struct snd_kcontrol_new *dig_mix;
int idx;
for (idx = 0; idx < SPDIF_MAX_IDX; idx++) {
if (!_snd_hda_find_mixer_ctl(codec, "IEC958 Capture Switch",
idx))
break;
}
if (idx >= SPDIF_MAX_IDX) {
printk(KERN_ERR "hda_codec: too many IEC958 inputs\n");
return -EBUSY;
}
for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
kctl = snd_ctl_new1(dig_mix, codec);
kctl->private_value = nid;
err = snd_ctl_add(codec->bus->card, kctl);
if (err < 0)
return err;
}
codec->spdif_in_enable =
snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_DIGI_CONVERT_1, 0) &
AC_DIG1_ENABLE;
return 0;
}
#ifdef SND_HDA_NEEDS_RESUME
/*
* command cache
*/
/* build a 32bit cache key with the widget id and the command parameter */
#define build_cmd_cache_key(nid, verb) ((verb << 8) | nid)
#define get_cmd_cache_nid(key) ((key) & 0xff)
#define get_cmd_cache_cmd(key) (((key) >> 8) & 0xffff)
/**
* snd_hda_codec_write_cache - send a single command with caching
* @codec: the HDA codec
* @nid: NID to send the command
* @direct: direct flag
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command without waiting for response.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_codec_write_cache(struct hda_codec *codec, hda_nid_t nid,
int direct, unsigned int verb, unsigned int parm)
{
int err;
snd_hda_power_up(codec);
mutex_lock(&codec->bus->cmd_mutex);
err = codec->bus->ops.command(codec, nid, direct, verb, parm);
if (!err) {
struct hda_cache_head *c;
u32 key = build_cmd_cache_key(nid, verb);
c = get_alloc_hash(&codec->cmd_cache, key);
if (c)
c->val = parm;
}
mutex_unlock(&codec->bus->cmd_mutex);
snd_hda_power_down(codec);
return err;
}
/* resume the all commands from the cache */
void snd_hda_codec_resume_cache(struct hda_codec *codec)
{
struct hda_cache_head *buffer = codec->cmd_cache.buffer;
int i;
for (i = 0; i < codec->cmd_cache.size; i++, buffer++) {
u32 key = buffer->key;
if (!key)
continue;
snd_hda_codec_write(codec, get_cmd_cache_nid(key), 0,
get_cmd_cache_cmd(key), buffer->val);
}
}
/**
* snd_hda_sequence_write_cache - sequence writes with caching
* @codec: the HDA codec
* @seq: VERB array to send
*
* Send the commands sequentially from the given array.
* Thte commands are recorded on cache for power-save and resume.
* The array must be terminated with NID=0.
*/
void snd_hda_sequence_write_cache(struct hda_codec *codec,
const struct hda_verb *seq)
{
for (; seq->nid; seq++)
snd_hda_codec_write_cache(codec, seq->nid, 0, seq->verb,
seq->param);
}
#endif /* SND_HDA_NEEDS_RESUME */
/*
* set power state of the codec
*/
static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
unsigned int power_state)
{
hda_nid_t nid;
int i;
snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
power_state);
msleep(10); /* partial workaround for "azx_get_response timeout" */
nid = codec->start_nid;
for (i = 0; i < codec->num_nodes; i++, nid++) {
unsigned int wcaps = get_wcaps(codec, nid);
if (wcaps & AC_WCAP_POWER) {
unsigned int wid_type = (wcaps & AC_WCAP_TYPE) >>
AC_WCAP_TYPE_SHIFT;
if (wid_type == AC_WID_PIN) {
unsigned int pincap;
/*
* don't power down the widget if it controls
* eapd and EAPD_BTLENABLE is set.
*/
pincap = snd_hda_param_read(codec, nid,
AC_PAR_PIN_CAP);
if (pincap & AC_PINCAP_EAPD) {
int eapd = snd_hda_codec_read(codec,
nid, 0,
AC_VERB_GET_EAPD_BTLENABLE, 0);
eapd &= 0x02;
if (power_state == AC_PWRST_D3 && eapd)
continue;
}
}
snd_hda_codec_write(codec, nid, 0,
AC_VERB_SET_POWER_STATE,
power_state);
}
}
if (power_state == AC_PWRST_D0) {
unsigned long end_time;
int state;
msleep(10);
/* wait until the codec reachs to D0 */
end_time = jiffies + msecs_to_jiffies(500);
do {
state = snd_hda_codec_read(codec, fg, 0,
AC_VERB_GET_POWER_STATE, 0);
if (state == power_state)
break;
msleep(1);
} while (time_after_eq(end_time, jiffies));
}
}
#ifdef SND_HDA_NEEDS_RESUME
/*
* call suspend and power-down; used both from PM and power-save
*/
static void hda_call_codec_suspend(struct hda_codec *codec)
{
if (codec->patch_ops.suspend)
codec->patch_ops.suspend(codec, PMSG_SUSPEND);
hda_set_power_state(codec,
codec->afg ? codec->afg : codec->mfg,
AC_PWRST_D3);
#ifdef CONFIG_SND_HDA_POWER_SAVE
cancel_delayed_work(&codec->power_work);
codec->power_on = 0;
codec->power_transition = 0;
#endif
}
/*
* kick up codec; used both from PM and power-save
*/
static void hda_call_codec_resume(struct hda_codec *codec)
{
hda_set_power_state(codec,
codec->afg ? codec->afg : codec->mfg,
AC_PWRST_D0);
if (codec->patch_ops.resume)
codec->patch_ops.resume(codec);
else {
if (codec->patch_ops.init)
codec->patch_ops.init(codec);
snd_hda_codec_resume_amp(codec);
snd_hda_codec_resume_cache(codec);
}
}
#endif /* SND_HDA_NEEDS_RESUME */
/**
* snd_hda_build_controls - build mixer controls
* @bus: the BUS
*
* Creates mixer controls for each codec included in the bus.
*
* Returns 0 if successful, otherwise a negative error code.
*/
int __devinit snd_hda_build_controls(struct hda_bus *bus)
{
struct hda_codec *codec;
list_for_each_entry(codec, &bus->codec_list, list) {
int err = 0;
/* fake as if already powered-on */
hda_keep_power_on(codec);
/* then fire up */
hda_set_power_state(codec,
codec->afg ? codec->afg : codec->mfg,
AC_PWRST_D0);
/* continue to initialize... */
if (codec->patch_ops.init)
err = codec->patch_ops.init(codec);
if (!err && codec->patch_ops.build_controls)
err = codec->patch_ops.build_controls(codec);
snd_hda_power_down(codec);
if (err < 0)
return err;
}
return 0;
}
/*
* stream formats
*/
struct hda_rate_tbl {
unsigned int hz;
unsigned int alsa_bits;
unsigned int hda_fmt;
};
static struct hda_rate_tbl rate_bits[] = {
/* rate in Hz, ALSA rate bitmask, HDA format value */
/* autodetected value used in snd_hda_query_supported_pcm */
{ 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
{ 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
{ 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
{ 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
{ 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
{ 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
{ 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
{ 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
{ 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
{ 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
{ 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
#define AC_PAR_PCM_RATE_BITS 11
/* up to bits 10, 384kHZ isn't supported properly */
/* not autodetected value */
{ 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
{ 0 } /* terminator */
};
/**
* snd_hda_calc_stream_format - calculate format bitset
* @rate: the sample rate
* @channels: the number of channels
* @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
* @maxbps: the max. bps
*
* Calculate the format bitset from the given rate, channels and th PCM format.
*
* Return zero if invalid.
*/
unsigned int snd_hda_calc_stream_format(unsigned int rate,
unsigned int channels,
unsigned int format,
unsigned int maxbps)
{
int i;
unsigned int val = 0;
for (i = 0; rate_bits[i].hz; i++)
if (rate_bits[i].hz == rate) {
val = rate_bits[i].hda_fmt;
break;
}
if (!rate_bits[i].hz) {
snd_printdd("invalid rate %d\n", rate);
return 0;
}
if (channels == 0 || channels > 8) {
snd_printdd("invalid channels %d\n", channels);
return 0;
}
val |= channels - 1;
switch (snd_pcm_format_width(format)) {
case 8: val |= 0x00; break;
case 16: val |= 0x10; break;
case 20:
case 24:
case 32:
if (maxbps >= 32)
val |= 0x40;
else if (maxbps >= 24)
val |= 0x30;
else
val |= 0x20;
break;
default:
snd_printdd("invalid format width %d\n",
snd_pcm_format_width(format));
return 0;
}
return val;
}
/**
* snd_hda_query_supported_pcm - query the supported PCM rates and formats
* @codec: the HDA codec
* @nid: NID to query
* @ratesp: the pointer to store the detected rate bitflags
* @formatsp: the pointer to store the detected formats
* @bpsp: the pointer to store the detected format widths
*
* Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
* or @bsps argument is ignored.
*
* Returns 0 if successful, otherwise a negative error code.
*/
int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
{
int i;
unsigned int val, streams;
val = 0;
if (nid != codec->afg &&
(get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
if (val == -1)
return -EIO;
}
if (!val)
val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
if (ratesp) {
u32 rates = 0;
for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
if (val & (1 << i))
rates |= rate_bits[i].alsa_bits;
}
*ratesp = rates;
}
if (formatsp || bpsp) {
u64 formats = 0;
unsigned int bps;
unsigned int wcaps;
wcaps = get_wcaps(codec, nid);
streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
if (streams == -1)
return -EIO;
if (!streams) {
streams = snd_hda_param_read(codec, codec->afg,
AC_PAR_STREAM);
if (streams == -1)
return -EIO;
}
bps = 0;
if (streams & AC_SUPFMT_PCM) {
if (val & AC_SUPPCM_BITS_8) {
formats |= SNDRV_PCM_FMTBIT_U8;
bps = 8;
}
if (val & AC_SUPPCM_BITS_16) {
formats |= SNDRV_PCM_FMTBIT_S16_LE;
bps = 16;
}
if (wcaps & AC_WCAP_DIGITAL) {
if (val & AC_SUPPCM_BITS_32)
formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
formats |= SNDRV_PCM_FMTBIT_S32_LE;
if (val & AC_SUPPCM_BITS_24)
bps = 24;
else if (val & AC_SUPPCM_BITS_20)
bps = 20;
} else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
AC_SUPPCM_BITS_32)) {
formats |= SNDRV_PCM_FMTBIT_S32_LE;
if (val & AC_SUPPCM_BITS_32)
bps = 32;
else if (val & AC_SUPPCM_BITS_24)
bps = 24;
else if (val & AC_SUPPCM_BITS_20)
bps = 20;
}
}
else if (streams == AC_SUPFMT_FLOAT32) {
/* should be exclusive */
formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
bps = 32;
} else if (streams == AC_SUPFMT_AC3) {
/* should be exclusive */
/* temporary hack: we have still no proper support
* for the direct AC3 stream...
*/
formats |= SNDRV_PCM_FMTBIT_U8;
bps = 8;
}
if (formatsp)
*formatsp = formats;
if (bpsp)
*bpsp = bps;
}
return 0;
}
/**
* snd_hda_is_supported_format - check whether the given node supports
* the format val
*
* Returns 1 if supported, 0 if not.
*/
int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
unsigned int format)
{
int i;
unsigned int val = 0, rate, stream;
if (nid != codec->afg &&
(get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
if (val == -1)
return 0;
}
if (!val) {
val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
if (val == -1)
return 0;
}
rate = format & 0xff00;
for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
if (rate_bits[i].hda_fmt == rate) {
if (val & (1 << i))
break;
return 0;
}
if (i >= AC_PAR_PCM_RATE_BITS)
return 0;
stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
if (stream == -1)
return 0;
if (!stream && nid != codec->afg)
stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
if (!stream || stream == -1)
return 0;
if (stream & AC_SUPFMT_PCM) {
switch (format & 0xf0) {
case 0x00:
if (!(val & AC_SUPPCM_BITS_8))
return 0;
break;
case 0x10:
if (!(val & AC_SUPPCM_BITS_16))
return 0;
break;
case 0x20:
if (!(val & AC_SUPPCM_BITS_20))
return 0;
break;
case 0x30:
if (!(val & AC_SUPPCM_BITS_24))
return 0;
break;
case 0x40:
if (!(val & AC_SUPPCM_BITS_32))
return 0;
break;
default:
return 0;
}
} else {
/* FIXME: check for float32 and AC3? */
}
return 1;
}
/*
* PCM stuff
*/
static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
return 0;
}
static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
return 0;
}
static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
snd_hda_codec_cleanup_stream(codec, hinfo->nid);
return 0;
}
static int __devinit set_pcm_default_values(struct hda_codec *codec,
struct hda_pcm_stream *info)
{
/* query support PCM information from the given NID */
if (info->nid && (!info->rates || !info->formats)) {
snd_hda_query_supported_pcm(codec, info->nid,
info->rates ? NULL : &info->rates,
info->formats ? NULL : &info->formats,
info->maxbps ? NULL : &info->maxbps);
}
if (info->ops.open == NULL)
info->ops.open = hda_pcm_default_open_close;
if (info->ops.close == NULL)
info->ops.close = hda_pcm_default_open_close;
if (info->ops.prepare == NULL) {
snd_assert(info->nid, return -EINVAL);
info->ops.prepare = hda_pcm_default_prepare;
}
if (info->ops.cleanup == NULL) {
snd_assert(info->nid, return -EINVAL);
info->ops.cleanup = hda_pcm_default_cleanup;
}
return 0;
}
/**
* snd_hda_build_pcms - build PCM information
* @bus: the BUS
*
* Create PCM information for each codec included in the bus.
*
* The build_pcms codec patch is requested to set up codec->num_pcms and
* codec->pcm_info properly. The array is referred by the top-level driver
* to create its PCM instances.
* The allocated codec->pcm_info should be released in codec->patch_ops.free
* callback.
*
* At least, substreams, channels_min and channels_max must be filled for
* each stream. substreams = 0 indicates that the stream doesn't exist.
* When rates and/or formats are zero, the supported values are queried
* from the given nid. The nid is used also by the default ops.prepare
* and ops.cleanup callbacks.
*
* The driver needs to call ops.open in its open callback. Similarly,
* ops.close is supposed to be called in the close callback.
* ops.prepare should be called in the prepare or hw_params callback
* with the proper parameters for set up.
* ops.cleanup should be called in hw_free for clean up of streams.
*
* This function returns 0 if successfull, or a negative error code.
*/
int __devinit snd_hda_build_pcms(struct hda_bus *bus)
{
struct hda_codec *codec;
list_for_each_entry(codec, &bus->codec_list, list) {
unsigned int pcm, s;
int err;
if (!codec->patch_ops.build_pcms)
continue;
err = codec->patch_ops.build_pcms(codec);
if (err < 0)
return err;
for (pcm = 0; pcm < codec->num_pcms; pcm++) {
for (s = 0; s < 2; s++) {
struct hda_pcm_stream *info;
info = &codec->pcm_info[pcm].stream[s];
if (!info->substreams)
continue;
err = set_pcm_default_values(codec, info);
if (err < 0)
return err;
}
}
}
return 0;
}
/**
* snd_hda_check_board_config - compare the current codec with the config table
* @codec: the HDA codec
* @num_configs: number of config enums
* @models: array of model name strings
* @tbl: configuration table, terminated by null entries
*
* Compares the modelname or PCI subsystem id of the current codec with the
* given configuration table. If a matching entry is found, returns its
* config value (supposed to be 0 or positive).
*
* If no entries are matching, the function returns a negative value.
*/
int snd_hda_check_board_config(struct hda_codec *codec,
int num_configs, const char **models,
const struct snd_pci_quirk *tbl)
{
if (codec->bus->modelname && models) {
int i;
for (i = 0; i < num_configs; i++) {
if (models[i] &&
!strcmp(codec->bus->modelname, models[i])) {
snd_printd(KERN_INFO "hda_codec: model '%s' is "
"selected\n", models[i]);
return i;
}
}
}
if (!codec->bus->pci || !tbl)
return -1;
tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
if (!tbl)
return -1;
if (tbl->value >= 0 && tbl->value < num_configs) {
#ifdef CONFIG_SND_DEBUG_DETECT
char tmp[10];
const char *model = NULL;
if (models)
model = models[tbl->value];
if (!model) {
sprintf(tmp, "#%d", tbl->value);
model = tmp;
}
snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
"for config %x:%x (%s)\n",
model, tbl->subvendor, tbl->subdevice,
(tbl->name ? tbl->name : "Unknown device"));
#endif
return tbl->value;
}
return -1;
}
/**
* snd_hda_add_new_ctls - create controls from the array
* @codec: the HDA codec
* @knew: the array of struct snd_kcontrol_new
*
* This helper function creates and add new controls in the given array.
* The array must be terminated with an empty entry as terminator.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
{
int err;
for (; knew->name; knew++) {
struct snd_kcontrol *kctl;
kctl = snd_ctl_new1(knew, codec);
if (!kctl)
return -ENOMEM;
err = snd_ctl_add(codec->bus->card, kctl);
if (err < 0) {
if (!codec->addr)
return err;
kctl = snd_ctl_new1(knew, codec);
if (!kctl)
return -ENOMEM;
kctl->id.device = codec->addr;
err = snd_ctl_add(codec->bus->card, kctl);
if (err < 0)
return err;
}
}
return 0;
}
#ifdef CONFIG_SND_HDA_POWER_SAVE
static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
unsigned int power_state);
static void hda_power_work(struct work_struct *work)
{
struct hda_codec *codec =
container_of(work, struct hda_codec, power_work.work);
if (!codec->power_on || codec->power_count) {
codec->power_transition = 0;
return;
}
hda_call_codec_suspend(codec);
if (codec->bus->ops.pm_notify)
codec->bus->ops.pm_notify(codec);
}
static void hda_keep_power_on(struct hda_codec *codec)
{
codec->power_count++;
codec->power_on = 1;
}
void snd_hda_power_up(struct hda_codec *codec)
{
codec->power_count++;
if (codec->power_on || codec->power_transition)
return;
codec->power_on = 1;
if (codec->bus->ops.pm_notify)
codec->bus->ops.pm_notify(codec);
hda_call_codec_resume(codec);
cancel_delayed_work(&codec->power_work);
codec->power_transition = 0;
}
void snd_hda_power_down(struct hda_codec *codec)
{
--codec->power_count;
if (!codec->power_on || codec->power_count || codec->power_transition)
return;
if (power_save) {
codec->power_transition = 1; /* avoid reentrance */
schedule_delayed_work(&codec->power_work,
msecs_to_jiffies(power_save * 1000));
}
}
int snd_hda_check_amp_list_power(struct hda_codec *codec,
struct hda_loopback_check *check,
hda_nid_t nid)
{
struct hda_amp_list *p;
int ch, v;
if (!check->amplist)
return 0;
for (p = check->amplist; p->nid; p++) {
if (p->nid == nid)
break;
}
if (!p->nid)
return 0; /* nothing changed */
for (p = check->amplist; p->nid; p++) {
for (ch = 0; ch < 2; ch++) {
v = snd_hda_codec_amp_read(codec, p->nid, ch, p->dir,
p->idx);
if (!(v & HDA_AMP_MUTE) && v > 0) {
if (!check->power_on) {
check->power_on = 1;
snd_hda_power_up(codec);
}
return 1;
}
}
}
if (check->power_on) {
check->power_on = 0;
snd_hda_power_down(codec);
}
return 0;
}
#endif
/*
* Channel mode helper
*/
int snd_hda_ch_mode_info(struct hda_codec *codec,
struct snd_ctl_elem_info *uinfo,
const struct hda_channel_mode *chmode,
int num_chmodes)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = num_chmodes;
if (uinfo->value.enumerated.item >= num_chmodes)
uinfo->value.enumerated.item = num_chmodes - 1;
sprintf(uinfo->value.enumerated.name, "%dch",
chmode[uinfo->value.enumerated.item].channels);
return 0;
}
int snd_hda_ch_mode_get(struct hda_codec *codec,
struct snd_ctl_elem_value *ucontrol,
const struct hda_channel_mode *chmode,
int num_chmodes,
int max_channels)
{
int i;
for (i = 0; i < num_chmodes; i++) {
if (max_channels == chmode[i].channels) {
ucontrol->value.enumerated.item[0] = i;
break;
}
}
return 0;
}
int snd_hda_ch_mode_put(struct hda_codec *codec,
struct snd_ctl_elem_value *ucontrol,
const struct hda_channel_mode *chmode,
int num_chmodes,
int *max_channelsp)
{
unsigned int mode;
mode = ucontrol->value.enumerated.item[0];
if (mode >= num_chmodes)
return -EINVAL;
if (*max_channelsp == chmode[mode].channels)
return 0;
/* change the current channel setting */
*max_channelsp = chmode[mode].channels;
if (chmode[mode].sequence)
snd_hda_sequence_write_cache(codec, chmode[mode].sequence);
return 1;
}
/*
* input MUX helper
*/
int snd_hda_input_mux_info(const struct hda_input_mux *imux,
struct snd_ctl_elem_info *uinfo)
{
unsigned int index;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = imux->num_items;
if (!imux->num_items)
return 0;
index = uinfo->value.enumerated.item;
if (index >= imux->num_items)
index = imux->num_items - 1;
strcpy(uinfo->value.enumerated.name, imux->items[index].label);
return 0;
}
int snd_hda_input_mux_put(struct hda_codec *codec,
const struct hda_input_mux *imux,
struct snd_ctl_elem_value *ucontrol,
hda_nid_t nid,
unsigned int *cur_val)
{
unsigned int idx;
if (!imux->num_items)
return 0;
idx = ucontrol->value.enumerated.item[0];
if (idx >= imux->num_items)
idx = imux->num_items - 1;
if (*cur_val == idx)
return 0;
snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
imux->items[idx].index);
*cur_val = idx;
return 1;
}
/*
* Multi-channel / digital-out PCM helper functions
*/
/* setup SPDIF output stream */
static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
unsigned int stream_tag, unsigned int format)
{
/* turn off SPDIF once; otherwise the IEC958 bits won't be updated */
if (codec->spdif_ctls & AC_DIG1_ENABLE)
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
codec->spdif_ctls & ~AC_DIG1_ENABLE & 0xff);
snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
/* turn on again (if needed) */
if (codec->spdif_ctls & AC_DIG1_ENABLE)
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
codec->spdif_ctls & 0xff);
}
/*
* open the digital out in the exclusive mode
*/
int snd_hda_multi_out_dig_open(struct hda_codec *codec,
struct hda_multi_out *mout)
{
mutex_lock(&codec->spdif_mutex);
if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
/* already opened as analog dup; reset it once */
snd_hda_codec_cleanup_stream(codec, mout->dig_out_nid);
mout->dig_out_used = HDA_DIG_EXCLUSIVE;
mutex_unlock(&codec->spdif_mutex);
return 0;
}
int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
struct hda_multi_out *mout,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
mutex_lock(&codec->spdif_mutex);
setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
mutex_unlock(&codec->spdif_mutex);
return 0;
}
/*
* release the digital out
*/
int snd_hda_multi_out_dig_close(struct hda_codec *codec,
struct hda_multi_out *mout)
{
mutex_lock(&codec->spdif_mutex);
mout->dig_out_used = 0;
mutex_unlock(&codec->spdif_mutex);
return 0;
}
/*
* set up more restrictions for analog out
*/
int snd_hda_multi_out_analog_open(struct hda_codec *codec,
struct hda_multi_out *mout,
struct snd_pcm_substream *substream,
struct hda_pcm_stream *hinfo)
{
struct snd_pcm_runtime *runtime = substream->runtime;
runtime->hw.channels_max = mout->max_channels;
if (mout->dig_out_nid) {
if (!mout->analog_rates) {
mout->analog_rates = hinfo->rates;
mout->analog_formats = hinfo->formats;
mout->analog_maxbps = hinfo->maxbps;
} else {
runtime->hw.rates = mout->analog_rates;
runtime->hw.formats = mout->analog_formats;
hinfo->maxbps = mout->analog_maxbps;
}
if (!mout->spdif_rates) {
snd_hda_query_supported_pcm(codec, mout->dig_out_nid,
&mout->spdif_rates,
&mout->spdif_formats,
&mout->spdif_maxbps);
}
mutex_lock(&codec->spdif_mutex);
if (mout->share_spdif) {
runtime->hw.rates &= mout->spdif_rates;
runtime->hw.formats &= mout->spdif_formats;
if (mout->spdif_maxbps < hinfo->maxbps)
hinfo->maxbps = mout->spdif_maxbps;
}
mutex_unlock(&codec->spdif_mutex);
}
return snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_CHANNELS, 2);
}
/*
* set up the i/o for analog out
* when the digital out is available, copy the front out to digital out, too.
*/
int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
struct hda_multi_out *mout,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
hda_nid_t *nids = mout->dac_nids;
int chs = substream->runtime->channels;
int i;
mutex_lock(&codec->spdif_mutex);
if (mout->dig_out_nid && mout->share_spdif &&
mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
if (chs == 2 &&
snd_hda_is_supported_format(codec, mout->dig_out_nid,
format) &&
!(codec->spdif_status & IEC958_AES0_NONAUDIO)) {
mout->dig_out_used = HDA_DIG_ANALOG_DUP;
setup_dig_out_stream(codec, mout->dig_out_nid,
stream_tag, format);
} else {
mout->dig_out_used = 0;
snd_hda_codec_cleanup_stream(codec, mout->dig_out_nid);
}
}
mutex_unlock(&codec->spdif_mutex);
/* front */
snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
0, format);
if (!mout->no_share_stream &&
mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
/* headphone out will just decode front left/right (stereo) */
snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
0, format);
/* extra outputs copied from front */
for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
if (!mout->no_share_stream && mout->extra_out_nid[i])
snd_hda_codec_setup_stream(codec,
mout->extra_out_nid[i],
stream_tag, 0, format);
/* surrounds */
for (i = 1; i < mout->num_dacs; i++) {
if (chs >= (i + 1) * 2) /* independent out */
snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
i * 2, format);
else if (!mout->no_share_stream) /* copy front */
snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
0, format);
}
return 0;
}
/*
* clean up the setting for analog out
*/
int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
struct hda_multi_out *mout)
{
hda_nid_t *nids = mout->dac_nids;
int i;
for (i = 0; i < mout->num_dacs; i++)
snd_hda_codec_cleanup_stream(codec, nids[i]);
if (mout->hp_nid)
snd_hda_codec_cleanup_stream(codec, mout->hp_nid);
for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
if (mout->extra_out_nid[i])
snd_hda_codec_cleanup_stream(codec,
mout->extra_out_nid[i]);
mutex_lock(&codec->spdif_mutex);
if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
snd_hda_codec_cleanup_stream(codec, mout->dig_out_nid);
mout->dig_out_used = 0;
}
mutex_unlock(&codec->spdif_mutex);
return 0;
}
/*
* Helper for automatic ping configuration
*/
static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
{
for (; *list; list++)
if (*list == nid)
return 1;
return 0;
}
/*
* Sort an associated group of pins according to their sequence numbers.
*/
static void sort_pins_by_sequence(hda_nid_t * pins, short * sequences,
int num_pins)
{
int i, j;
short seq;
hda_nid_t nid;
for (i = 0; i < num_pins; i++) {
for (j = i + 1; j < num_pins; j++) {
if (sequences[i] > sequences[j]) {
seq = sequences[i];
sequences[i] = sequences[j];
sequences[j] = seq;
nid = pins[i];
pins[i] = pins[j];
pins[j] = nid;
}
}
}
}
/*
* Parse all pin widgets and store the useful pin nids to cfg
*
* The number of line-outs or any primary output is stored in line_outs,
* and the corresponding output pins are assigned to line_out_pins[],
* in the order of front, rear, CLFE, side, ...
*
* If more extra outputs (speaker and headphone) are found, the pins are
* assisnged to hp_pins[] and speaker_pins[], respectively. If no line-out jack
* is detected, one of speaker of HP pins is assigned as the primary
* output, i.e. to line_out_pins[0]. So, line_outs is always positive
* if any analog output exists.
*
* The analog input pins are assigned to input_pins array.
* The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
* respectively.
*/
int snd_hda_parse_pin_def_config(struct hda_codec *codec,
struct auto_pin_cfg *cfg,
hda_nid_t *ignore_nids)
{
hda_nid_t nid, end_nid;
short seq, assoc_line_out, assoc_speaker;
short sequences_line_out[ARRAY_SIZE(cfg->line_out_pins)];
short sequences_speaker[ARRAY_SIZE(cfg->speaker_pins)];
short sequences_hp[ARRAY_SIZE(cfg->hp_pins)];
memset(cfg, 0, sizeof(*cfg));
memset(sequences_line_out, 0, sizeof(sequences_line_out));
memset(sequences_speaker, 0, sizeof(sequences_speaker));
memset(sequences_hp, 0, sizeof(sequences_hp));
assoc_line_out = assoc_speaker = 0;
end_nid = codec->start_nid + codec->num_nodes;
for (nid = codec->start_nid; nid < end_nid; nid++) {
unsigned int wid_caps = get_wcaps(codec, nid);
unsigned int wid_type =
(wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
unsigned int def_conf;
short assoc, loc;
/* read all default configuration for pin complex */
if (wid_type != AC_WID_PIN)
continue;
/* ignore the given nids (e.g. pc-beep returns error) */
if (ignore_nids && is_in_nid_list(nid, ignore_nids))
continue;
def_conf = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_CONFIG_DEFAULT, 0);
if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
continue;
loc = get_defcfg_location(def_conf);
switch (get_defcfg_device(def_conf)) {
case AC_JACK_LINE_OUT:
seq = get_defcfg_sequence(def_conf);
assoc = get_defcfg_association(def_conf);
if (!(wid_caps & AC_WCAP_STEREO))
if (!cfg->mono_out_pin)
cfg->mono_out_pin = nid;
if (!assoc)
continue;
if (!assoc_line_out)
assoc_line_out = assoc;
else if (assoc_line_out != assoc)
continue;
if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
continue;
cfg->line_out_pins[cfg->line_outs] = nid;
sequences_line_out[cfg->line_outs] = seq;
cfg->line_outs++;
break;
case AC_JACK_SPEAKER:
seq = get_defcfg_sequence(def_conf);
assoc = get_defcfg_association(def_conf);
if (! assoc)
continue;
if (! assoc_speaker)
assoc_speaker = assoc;
else if (assoc_speaker != assoc)
continue;
if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
continue;
cfg->speaker_pins[cfg->speaker_outs] = nid;
sequences_speaker[cfg->speaker_outs] = seq;
cfg->speaker_outs++;
break;
case AC_JACK_HP_OUT:
seq = get_defcfg_sequence(def_conf);
assoc = get_defcfg_association(def_conf);
if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
continue;
cfg->hp_pins[cfg->hp_outs] = nid;
sequences_hp[cfg->hp_outs] = (assoc << 4) | seq;
cfg->hp_outs++;
break;
case AC_JACK_MIC_IN: {
int preferred, alt;
if (loc == AC_JACK_LOC_FRONT) {
preferred = AUTO_PIN_FRONT_MIC;
alt = AUTO_PIN_MIC;
} else {
preferred = AUTO_PIN_MIC;
alt = AUTO_PIN_FRONT_MIC;
}
if (!cfg->input_pins[preferred])
cfg->input_pins[preferred] = nid;
else if (!cfg->input_pins[alt])
cfg->input_pins[alt] = nid;
break;
}
case AC_JACK_LINE_IN:
if (loc == AC_JACK_LOC_FRONT)
cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
else
cfg->input_pins[AUTO_PIN_LINE] = nid;
break;
case AC_JACK_CD:
cfg->input_pins[AUTO_PIN_CD] = nid;
break;
case AC_JACK_AUX:
cfg->input_pins[AUTO_PIN_AUX] = nid;
break;
case AC_JACK_SPDIF_OUT:
cfg->dig_out_pin = nid;
break;
case AC_JACK_SPDIF_IN:
cfg->dig_in_pin = nid;
break;
}
}
/* FIX-UP:
* If no line-out is defined but multiple HPs are found,
* some of them might be the real line-outs.
*/
if (!cfg->line_outs && cfg->hp_outs > 1) {
int i = 0;
while (i < cfg->hp_outs) {
/* The real HPs should have the sequence 0x0f */
if ((sequences_hp[i] & 0x0f) == 0x0f) {
i++;
continue;
}
/* Move it to the line-out table */
cfg->line_out_pins[cfg->line_outs] = cfg->hp_pins[i];
sequences_line_out[cfg->line_outs] = sequences_hp[i];
cfg->line_outs++;
cfg->hp_outs--;
memmove(cfg->hp_pins + i, cfg->hp_pins + i + 1,
sizeof(cfg->hp_pins[0]) * (cfg->hp_outs - i));
memmove(sequences_hp + i - 1, sequences_hp + i,
sizeof(sequences_hp[0]) * (cfg->hp_outs - i));
}
}
/* sort by sequence */
sort_pins_by_sequence(cfg->line_out_pins, sequences_line_out,
cfg->line_outs);
sort_pins_by_sequence(cfg->speaker_pins, sequences_speaker,
cfg->speaker_outs);
sort_pins_by_sequence(cfg->hp_pins, sequences_hp,
cfg->hp_outs);
/* if we have only one mic, make it AUTO_PIN_MIC */
if (!cfg->input_pins[AUTO_PIN_MIC] &&
cfg->input_pins[AUTO_PIN_FRONT_MIC]) {
cfg->input_pins[AUTO_PIN_MIC] =
cfg->input_pins[AUTO_PIN_FRONT_MIC];
cfg->input_pins[AUTO_PIN_FRONT_MIC] = 0;
}
/* ditto for line-in */
if (!cfg->input_pins[AUTO_PIN_LINE] &&
cfg->input_pins[AUTO_PIN_FRONT_LINE]) {
cfg->input_pins[AUTO_PIN_LINE] =
cfg->input_pins[AUTO_PIN_FRONT_LINE];
cfg->input_pins[AUTO_PIN_FRONT_LINE] = 0;
}
/*
* FIX-UP: if no line-outs are detected, try to use speaker or HP pin
* as a primary output
*/
if (!cfg->line_outs) {
if (cfg->speaker_outs) {
cfg->line_outs = cfg->speaker_outs;
memcpy(cfg->line_out_pins, cfg->speaker_pins,
sizeof(cfg->speaker_pins));
cfg->speaker_outs = 0;
memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
} else if (cfg->hp_outs) {
cfg->line_outs = cfg->hp_outs;
memcpy(cfg->line_out_pins, cfg->hp_pins,
sizeof(cfg->hp_pins));
cfg->hp_outs = 0;
memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
cfg->line_out_type = AUTO_PIN_HP_OUT;
}
}
/* Reorder the surround channels
* ALSA sequence is front/surr/clfe/side
* HDA sequence is:
* 4-ch: front/surr => OK as it is
* 6-ch: front/clfe/surr
* 8-ch: front/clfe/rear/side|fc
*/
switch (cfg->line_outs) {
case 3:
case 4:
nid = cfg->line_out_pins[1];
cfg->line_out_pins[1] = cfg->line_out_pins[2];
cfg->line_out_pins[2] = nid;
break;
}
/*
* debug prints of the parsed results
*/
snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
cfg->line_out_pins[2], cfg->line_out_pins[3],
cfg->line_out_pins[4]);
snd_printd(" speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
cfg->speaker_outs, cfg->speaker_pins[0],
cfg->speaker_pins[1], cfg->speaker_pins[2],
cfg->speaker_pins[3], cfg->speaker_pins[4]);
snd_printd(" hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
cfg->hp_outs, cfg->hp_pins[0],
cfg->hp_pins[1], cfg->hp_pins[2],
cfg->hp_pins[3], cfg->hp_pins[4]);
snd_printd(" mono: mono_out=0x%x\n", cfg->mono_out_pin);
snd_printd(" inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
" cd=0x%x, aux=0x%x\n",
cfg->input_pins[AUTO_PIN_MIC],
cfg->input_pins[AUTO_PIN_FRONT_MIC],
cfg->input_pins[AUTO_PIN_LINE],
cfg->input_pins[AUTO_PIN_FRONT_LINE],
cfg->input_pins[AUTO_PIN_CD],
cfg->input_pins[AUTO_PIN_AUX]);
return 0;
}
/* labels for input pins */
const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
"Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
};
#ifdef CONFIG_PM
/*
* power management
*/
/**
* snd_hda_suspend - suspend the codecs
* @bus: the HDA bus
* @state: suspsend state
*
* Returns 0 if successful.
*/
int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
{
struct hda_codec *codec;
list_for_each_entry(codec, &bus->codec_list, list) {
#ifdef CONFIG_SND_HDA_POWER_SAVE
if (!codec->power_on)
continue;
#endif
hda_call_codec_suspend(codec);
}
return 0;
}
/**
* snd_hda_resume - resume the codecs
* @bus: the HDA bus
* @state: resume state
*
* Returns 0 if successful.
*
* This fucntion is defined only when POWER_SAVE isn't set.
* In the power-save mode, the codec is resumed dynamically.
*/
int snd_hda_resume(struct hda_bus *bus)
{
struct hda_codec *codec;
list_for_each_entry(codec, &bus->codec_list, list) {
if (snd_hda_codec_needs_resume(codec))
hda_call_codec_resume(codec);
}
return 0;
}
#ifdef CONFIG_SND_HDA_POWER_SAVE
int snd_hda_codecs_inuse(struct hda_bus *bus)
{
struct hda_codec *codec;
list_for_each_entry(codec, &bus->codec_list, list) {
if (snd_hda_codec_needs_resume(codec))
return 1;
}
return 0;
}
#endif
#endif