| /* |
| * PPP async serial channel driver for Linux. |
| * |
| * Copyright 1999 Paul Mackerras. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * This driver provides the encapsulation and framing for sending |
| * and receiving PPP frames over async serial lines. It relies on |
| * the generic PPP layer to give it frames to send and to process |
| * received frames. It implements the PPP line discipline. |
| * |
| * Part of the code in this driver was inspired by the old async-only |
| * PPP driver, written by Michael Callahan and Al Longyear, and |
| * subsequently hacked by Paul Mackerras. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/skbuff.h> |
| #include <linux/tty.h> |
| #include <linux/netdevice.h> |
| #include <linux/poll.h> |
| #include <linux/crc-ccitt.h> |
| #include <linux/ppp_defs.h> |
| #include <linux/if_ppp.h> |
| #include <linux/ppp_channel.h> |
| #include <linux/spinlock.h> |
| #include <linux/init.h> |
| #include <linux/jiffies.h> |
| #include <asm/uaccess.h> |
| #include <asm/string.h> |
| |
| #define PPP_VERSION "2.4.2" |
| |
| #define OBUFSIZE 256 |
| |
| /* Structure for storing local state. */ |
| struct asyncppp { |
| struct tty_struct *tty; |
| unsigned int flags; |
| unsigned int state; |
| unsigned int rbits; |
| int mru; |
| spinlock_t xmit_lock; |
| spinlock_t recv_lock; |
| unsigned long xmit_flags; |
| u32 xaccm[8]; |
| u32 raccm; |
| unsigned int bytes_sent; |
| unsigned int bytes_rcvd; |
| |
| struct sk_buff *tpkt; |
| int tpkt_pos; |
| u16 tfcs; |
| unsigned char *optr; |
| unsigned char *olim; |
| unsigned long last_xmit; |
| |
| struct sk_buff *rpkt; |
| int lcp_fcs; |
| struct sk_buff_head rqueue; |
| |
| struct tasklet_struct tsk; |
| |
| atomic_t refcnt; |
| struct semaphore dead_sem; |
| struct ppp_channel chan; /* interface to generic ppp layer */ |
| unsigned char obuf[OBUFSIZE]; |
| }; |
| |
| /* Bit numbers in xmit_flags */ |
| #define XMIT_WAKEUP 0 |
| #define XMIT_FULL 1 |
| #define XMIT_BUSY 2 |
| |
| /* State bits */ |
| #define SC_TOSS 1 |
| #define SC_ESCAPE 2 |
| #define SC_PREV_ERROR 4 |
| |
| /* Bits in rbits */ |
| #define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP) |
| |
| static int flag_time = HZ; |
| module_param(flag_time, int, 0); |
| MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS_LDISC(N_PPP); |
| |
| /* |
| * Prototypes. |
| */ |
| static int ppp_async_encode(struct asyncppp *ap); |
| static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb); |
| static int ppp_async_push(struct asyncppp *ap); |
| static void ppp_async_flush_output(struct asyncppp *ap); |
| static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf, |
| char *flags, int count); |
| static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, |
| unsigned long arg); |
| static void ppp_async_process(unsigned long arg); |
| |
| static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, |
| int len, int inbound); |
| |
| static struct ppp_channel_ops async_ops = { |
| ppp_async_send, |
| ppp_async_ioctl |
| }; |
| |
| /* |
| * Routines implementing the PPP line discipline. |
| */ |
| |
| /* |
| * We have a potential race on dereferencing tty->disc_data, |
| * because the tty layer provides no locking at all - thus one |
| * cpu could be running ppp_asynctty_receive while another |
| * calls ppp_asynctty_close, which zeroes tty->disc_data and |
| * frees the memory that ppp_asynctty_receive is using. The best |
| * way to fix this is to use a rwlock in the tty struct, but for now |
| * we use a single global rwlock for all ttys in ppp line discipline. |
| * |
| * FIXME: this is no longer true. The _close path for the ldisc is |
| * now guaranteed to be sane. |
| */ |
| static DEFINE_RWLOCK(disc_data_lock); |
| |
| static struct asyncppp *ap_get(struct tty_struct *tty) |
| { |
| struct asyncppp *ap; |
| |
| read_lock(&disc_data_lock); |
| ap = tty->disc_data; |
| if (ap != NULL) |
| atomic_inc(&ap->refcnt); |
| read_unlock(&disc_data_lock); |
| return ap; |
| } |
| |
| static void ap_put(struct asyncppp *ap) |
| { |
| if (atomic_dec_and_test(&ap->refcnt)) |
| up(&ap->dead_sem); |
| } |
| |
| /* |
| * Called when a tty is put into PPP line discipline. Called in process |
| * context. |
| */ |
| static int |
| ppp_asynctty_open(struct tty_struct *tty) |
| { |
| struct asyncppp *ap; |
| int err; |
| |
| if (tty->ops->write == NULL) |
| return -EOPNOTSUPP; |
| |
| err = -ENOMEM; |
| ap = kzalloc(sizeof(*ap), GFP_KERNEL); |
| if (!ap) |
| goto out; |
| |
| /* initialize the asyncppp structure */ |
| ap->tty = tty; |
| ap->mru = PPP_MRU; |
| spin_lock_init(&ap->xmit_lock); |
| spin_lock_init(&ap->recv_lock); |
| ap->xaccm[0] = ~0U; |
| ap->xaccm[3] = 0x60000000U; |
| ap->raccm = ~0U; |
| ap->optr = ap->obuf; |
| ap->olim = ap->obuf; |
| ap->lcp_fcs = -1; |
| |
| skb_queue_head_init(&ap->rqueue); |
| tasklet_init(&ap->tsk, ppp_async_process, (unsigned long) ap); |
| |
| atomic_set(&ap->refcnt, 1); |
| init_MUTEX_LOCKED(&ap->dead_sem); |
| |
| ap->chan.private = ap; |
| ap->chan.ops = &async_ops; |
| ap->chan.mtu = PPP_MRU; |
| err = ppp_register_channel(&ap->chan); |
| if (err) |
| goto out_free; |
| |
| tty->disc_data = ap; |
| tty->receive_room = 65536; |
| return 0; |
| |
| out_free: |
| kfree(ap); |
| out: |
| return err; |
| } |
| |
| /* |
| * Called when the tty is put into another line discipline |
| * or it hangs up. We have to wait for any cpu currently |
| * executing in any of the other ppp_asynctty_* routines to |
| * finish before we can call ppp_unregister_channel and free |
| * the asyncppp struct. This routine must be called from |
| * process context, not interrupt or softirq context. |
| */ |
| static void |
| ppp_asynctty_close(struct tty_struct *tty) |
| { |
| struct asyncppp *ap; |
| |
| write_lock_irq(&disc_data_lock); |
| ap = tty->disc_data; |
| tty->disc_data = NULL; |
| write_unlock_irq(&disc_data_lock); |
| if (!ap) |
| return; |
| |
| /* |
| * We have now ensured that nobody can start using ap from now |
| * on, but we have to wait for all existing users to finish. |
| * Note that ppp_unregister_channel ensures that no calls to |
| * our channel ops (i.e. ppp_async_send/ioctl) are in progress |
| * by the time it returns. |
| */ |
| if (!atomic_dec_and_test(&ap->refcnt)) |
| down(&ap->dead_sem); |
| tasklet_kill(&ap->tsk); |
| |
| ppp_unregister_channel(&ap->chan); |
| if (ap->rpkt) |
| kfree_skb(ap->rpkt); |
| skb_queue_purge(&ap->rqueue); |
| if (ap->tpkt) |
| kfree_skb(ap->tpkt); |
| kfree(ap); |
| } |
| |
| /* |
| * Called on tty hangup in process context. |
| * |
| * Wait for I/O to driver to complete and unregister PPP channel. |
| * This is already done by the close routine, so just call that. |
| */ |
| static int ppp_asynctty_hangup(struct tty_struct *tty) |
| { |
| ppp_asynctty_close(tty); |
| return 0; |
| } |
| |
| /* |
| * Read does nothing - no data is ever available this way. |
| * Pppd reads and writes packets via /dev/ppp instead. |
| */ |
| static ssize_t |
| ppp_asynctty_read(struct tty_struct *tty, struct file *file, |
| unsigned char __user *buf, size_t count) |
| { |
| return -EAGAIN; |
| } |
| |
| /* |
| * Write on the tty does nothing, the packets all come in |
| * from the ppp generic stuff. |
| */ |
| static ssize_t |
| ppp_asynctty_write(struct tty_struct *tty, struct file *file, |
| const unsigned char *buf, size_t count) |
| { |
| return -EAGAIN; |
| } |
| |
| /* |
| * Called in process context only. May be re-entered by multiple |
| * ioctl calling threads. |
| */ |
| |
| static int |
| ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct asyncppp *ap = ap_get(tty); |
| int err, val; |
| int __user *p = (int __user *)arg; |
| |
| if (!ap) |
| return -ENXIO; |
| err = -EFAULT; |
| switch (cmd) { |
| case PPPIOCGCHAN: |
| err = -ENXIO; |
| if (!ap) |
| break; |
| err = -EFAULT; |
| if (put_user(ppp_channel_index(&ap->chan), p)) |
| break; |
| err = 0; |
| break; |
| |
| case PPPIOCGUNIT: |
| err = -ENXIO; |
| if (!ap) |
| break; |
| err = -EFAULT; |
| if (put_user(ppp_unit_number(&ap->chan), p)) |
| break; |
| err = 0; |
| break; |
| |
| case TCFLSH: |
| /* flush our buffers and the serial port's buffer */ |
| if (arg == TCIOFLUSH || arg == TCOFLUSH) |
| ppp_async_flush_output(ap); |
| err = tty_perform_flush(tty, arg); |
| break; |
| |
| case FIONREAD: |
| val = 0; |
| if (put_user(val, p)) |
| break; |
| err = 0; |
| break; |
| |
| default: |
| /* Try the various mode ioctls */ |
| err = tty_mode_ioctl(tty, file, cmd, arg); |
| } |
| |
| ap_put(ap); |
| return err; |
| } |
| |
| /* No kernel lock - fine */ |
| static unsigned int |
| ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait) |
| { |
| return 0; |
| } |
| |
| /* |
| * This can now be called from hard interrupt level as well |
| * as soft interrupt level or mainline. |
| */ |
| static void |
| ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf, |
| char *cflags, int count) |
| { |
| struct asyncppp *ap = ap_get(tty); |
| unsigned long flags; |
| |
| if (!ap) |
| return; |
| spin_lock_irqsave(&ap->recv_lock, flags); |
| ppp_async_input(ap, buf, cflags, count); |
| spin_unlock_irqrestore(&ap->recv_lock, flags); |
| if (!skb_queue_empty(&ap->rqueue)) |
| tasklet_schedule(&ap->tsk); |
| ap_put(ap); |
| if (test_and_clear_bit(TTY_THROTTLED, &tty->flags) |
| && tty->ops->unthrottle) |
| tty->ops->unthrottle(tty); |
| } |
| |
| static void |
| ppp_asynctty_wakeup(struct tty_struct *tty) |
| { |
| struct asyncppp *ap = ap_get(tty); |
| |
| clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); |
| if (!ap) |
| return; |
| set_bit(XMIT_WAKEUP, &ap->xmit_flags); |
| tasklet_schedule(&ap->tsk); |
| ap_put(ap); |
| } |
| |
| |
| static struct tty_ldisc ppp_ldisc = { |
| .owner = THIS_MODULE, |
| .magic = TTY_LDISC_MAGIC, |
| .name = "ppp", |
| .open = ppp_asynctty_open, |
| .close = ppp_asynctty_close, |
| .hangup = ppp_asynctty_hangup, |
| .read = ppp_asynctty_read, |
| .write = ppp_asynctty_write, |
| .ioctl = ppp_asynctty_ioctl, |
| .poll = ppp_asynctty_poll, |
| .receive_buf = ppp_asynctty_receive, |
| .write_wakeup = ppp_asynctty_wakeup, |
| }; |
| |
| static int __init |
| ppp_async_init(void) |
| { |
| int err; |
| |
| err = tty_register_ldisc(N_PPP, &ppp_ldisc); |
| if (err != 0) |
| printk(KERN_ERR "PPP_async: error %d registering line disc.\n", |
| err); |
| return err; |
| } |
| |
| /* |
| * The following routines provide the PPP channel interface. |
| */ |
| static int |
| ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg) |
| { |
| struct asyncppp *ap = chan->private; |
| void __user *argp = (void __user *)arg; |
| int __user *p = argp; |
| int err, val; |
| u32 accm[8]; |
| |
| err = -EFAULT; |
| switch (cmd) { |
| case PPPIOCGFLAGS: |
| val = ap->flags | ap->rbits; |
| if (put_user(val, p)) |
| break; |
| err = 0; |
| break; |
| case PPPIOCSFLAGS: |
| if (get_user(val, p)) |
| break; |
| ap->flags = val & ~SC_RCV_BITS; |
| spin_lock_irq(&ap->recv_lock); |
| ap->rbits = val & SC_RCV_BITS; |
| spin_unlock_irq(&ap->recv_lock); |
| err = 0; |
| break; |
| |
| case PPPIOCGASYNCMAP: |
| if (put_user(ap->xaccm[0], (u32 __user *)argp)) |
| break; |
| err = 0; |
| break; |
| case PPPIOCSASYNCMAP: |
| if (get_user(ap->xaccm[0], (u32 __user *)argp)) |
| break; |
| err = 0; |
| break; |
| |
| case PPPIOCGRASYNCMAP: |
| if (put_user(ap->raccm, (u32 __user *)argp)) |
| break; |
| err = 0; |
| break; |
| case PPPIOCSRASYNCMAP: |
| if (get_user(ap->raccm, (u32 __user *)argp)) |
| break; |
| err = 0; |
| break; |
| |
| case PPPIOCGXASYNCMAP: |
| if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm))) |
| break; |
| err = 0; |
| break; |
| case PPPIOCSXASYNCMAP: |
| if (copy_from_user(accm, argp, sizeof(accm))) |
| break; |
| accm[2] &= ~0x40000000U; /* can't escape 0x5e */ |
| accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */ |
| memcpy(ap->xaccm, accm, sizeof(ap->xaccm)); |
| err = 0; |
| break; |
| |
| case PPPIOCGMRU: |
| if (put_user(ap->mru, p)) |
| break; |
| err = 0; |
| break; |
| case PPPIOCSMRU: |
| if (get_user(val, p)) |
| break; |
| if (val < PPP_MRU) |
| val = PPP_MRU; |
| ap->mru = val; |
| err = 0; |
| break; |
| |
| default: |
| err = -ENOTTY; |
| } |
| |
| return err; |
| } |
| |
| /* |
| * This is called at softirq level to deliver received packets |
| * to the ppp_generic code, and to tell the ppp_generic code |
| * if we can accept more output now. |
| */ |
| static void ppp_async_process(unsigned long arg) |
| { |
| struct asyncppp *ap = (struct asyncppp *) arg; |
| struct sk_buff *skb; |
| |
| /* process received packets */ |
| while ((skb = skb_dequeue(&ap->rqueue)) != NULL) { |
| if (skb->cb[0]) |
| ppp_input_error(&ap->chan, 0); |
| ppp_input(&ap->chan, skb); |
| } |
| |
| /* try to push more stuff out */ |
| if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap)) |
| ppp_output_wakeup(&ap->chan); |
| } |
| |
| /* |
| * Procedures for encapsulation and framing. |
| */ |
| |
| /* |
| * Procedure to encode the data for async serial transmission. |
| * Does octet stuffing (escaping), puts the address/control bytes |
| * on if A/C compression is disabled, and does protocol compression. |
| * Assumes ap->tpkt != 0 on entry. |
| * Returns 1 if we finished the current frame, 0 otherwise. |
| */ |
| |
| #define PUT_BYTE(ap, buf, c, islcp) do { \ |
| if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\ |
| *buf++ = PPP_ESCAPE; \ |
| *buf++ = c ^ 0x20; \ |
| } else \ |
| *buf++ = c; \ |
| } while (0) |
| |
| static int |
| ppp_async_encode(struct asyncppp *ap) |
| { |
| int fcs, i, count, c, proto; |
| unsigned char *buf, *buflim; |
| unsigned char *data; |
| int islcp; |
| |
| buf = ap->obuf; |
| ap->olim = buf; |
| ap->optr = buf; |
| i = ap->tpkt_pos; |
| data = ap->tpkt->data; |
| count = ap->tpkt->len; |
| fcs = ap->tfcs; |
| proto = (data[0] << 8) + data[1]; |
| |
| /* |
| * LCP packets with code values between 1 (configure-reqest) |
| * and 7 (code-reject) must be sent as though no options |
| * had been negotiated. |
| */ |
| islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7; |
| |
| if (i == 0) { |
| if (islcp) |
| async_lcp_peek(ap, data, count, 0); |
| |
| /* |
| * Start of a new packet - insert the leading FLAG |
| * character if necessary. |
| */ |
| if (islcp || flag_time == 0 |
| || time_after_eq(jiffies, ap->last_xmit + flag_time)) |
| *buf++ = PPP_FLAG; |
| ap->last_xmit = jiffies; |
| fcs = PPP_INITFCS; |
| |
| /* |
| * Put in the address/control bytes if necessary |
| */ |
| if ((ap->flags & SC_COMP_AC) == 0 || islcp) { |
| PUT_BYTE(ap, buf, 0xff, islcp); |
| fcs = PPP_FCS(fcs, 0xff); |
| PUT_BYTE(ap, buf, 0x03, islcp); |
| fcs = PPP_FCS(fcs, 0x03); |
| } |
| } |
| |
| /* |
| * Once we put in the last byte, we need to put in the FCS |
| * and closing flag, so make sure there is at least 7 bytes |
| * of free space in the output buffer. |
| */ |
| buflim = ap->obuf + OBUFSIZE - 6; |
| while (i < count && buf < buflim) { |
| c = data[i++]; |
| if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT)) |
| continue; /* compress protocol field */ |
| fcs = PPP_FCS(fcs, c); |
| PUT_BYTE(ap, buf, c, islcp); |
| } |
| |
| if (i < count) { |
| /* |
| * Remember where we are up to in this packet. |
| */ |
| ap->olim = buf; |
| ap->tpkt_pos = i; |
| ap->tfcs = fcs; |
| return 0; |
| } |
| |
| /* |
| * We have finished the packet. Add the FCS and flag. |
| */ |
| fcs = ~fcs; |
| c = fcs & 0xff; |
| PUT_BYTE(ap, buf, c, islcp); |
| c = (fcs >> 8) & 0xff; |
| PUT_BYTE(ap, buf, c, islcp); |
| *buf++ = PPP_FLAG; |
| ap->olim = buf; |
| |
| kfree_skb(ap->tpkt); |
| ap->tpkt = NULL; |
| return 1; |
| } |
| |
| /* |
| * Transmit-side routines. |
| */ |
| |
| /* |
| * Send a packet to the peer over an async tty line. |
| * Returns 1 iff the packet was accepted. |
| * If the packet was not accepted, we will call ppp_output_wakeup |
| * at some later time. |
| */ |
| static int |
| ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb) |
| { |
| struct asyncppp *ap = chan->private; |
| |
| ppp_async_push(ap); |
| |
| if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags)) |
| return 0; /* already full */ |
| ap->tpkt = skb; |
| ap->tpkt_pos = 0; |
| |
| ppp_async_push(ap); |
| return 1; |
| } |
| |
| /* |
| * Push as much data as possible out to the tty. |
| */ |
| static int |
| ppp_async_push(struct asyncppp *ap) |
| { |
| int avail, sent, done = 0; |
| struct tty_struct *tty = ap->tty; |
| int tty_stuffed = 0; |
| |
| /* |
| * We can get called recursively here if the tty write |
| * function calls our wakeup function. This can happen |
| * for example on a pty with both the master and slave |
| * set to PPP line discipline. |
| * We use the XMIT_BUSY bit to detect this and get out, |
| * leaving the XMIT_WAKEUP bit set to tell the other |
| * instance that it may now be able to write more now. |
| */ |
| if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) |
| return 0; |
| spin_lock_bh(&ap->xmit_lock); |
| for (;;) { |
| if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags)) |
| tty_stuffed = 0; |
| if (!tty_stuffed && ap->optr < ap->olim) { |
| avail = ap->olim - ap->optr; |
| set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); |
| sent = tty->ops->write(tty, ap->optr, avail); |
| if (sent < 0) |
| goto flush; /* error, e.g. loss of CD */ |
| ap->optr += sent; |
| if (sent < avail) |
| tty_stuffed = 1; |
| continue; |
| } |
| if (ap->optr >= ap->olim && ap->tpkt) { |
| if (ppp_async_encode(ap)) { |
| /* finished processing ap->tpkt */ |
| clear_bit(XMIT_FULL, &ap->xmit_flags); |
| done = 1; |
| } |
| continue; |
| } |
| /* |
| * We haven't made any progress this time around. |
| * Clear XMIT_BUSY to let other callers in, but |
| * after doing so we have to check if anyone set |
| * XMIT_WAKEUP since we last checked it. If they |
| * did, we should try again to set XMIT_BUSY and go |
| * around again in case XMIT_BUSY was still set when |
| * the other caller tried. |
| */ |
| clear_bit(XMIT_BUSY, &ap->xmit_flags); |
| /* any more work to do? if not, exit the loop */ |
| if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) |
| || (!tty_stuffed && ap->tpkt))) |
| break; |
| /* more work to do, see if we can do it now */ |
| if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) |
| break; |
| } |
| spin_unlock_bh(&ap->xmit_lock); |
| return done; |
| |
| flush: |
| clear_bit(XMIT_BUSY, &ap->xmit_flags); |
| if (ap->tpkt) { |
| kfree_skb(ap->tpkt); |
| ap->tpkt = NULL; |
| clear_bit(XMIT_FULL, &ap->xmit_flags); |
| done = 1; |
| } |
| ap->optr = ap->olim; |
| spin_unlock_bh(&ap->xmit_lock); |
| return done; |
| } |
| |
| /* |
| * Flush output from our internal buffers. |
| * Called for the TCFLSH ioctl. Can be entered in parallel |
| * but this is covered by the xmit_lock. |
| */ |
| static void |
| ppp_async_flush_output(struct asyncppp *ap) |
| { |
| int done = 0; |
| |
| spin_lock_bh(&ap->xmit_lock); |
| ap->optr = ap->olim; |
| if (ap->tpkt != NULL) { |
| kfree_skb(ap->tpkt); |
| ap->tpkt = NULL; |
| clear_bit(XMIT_FULL, &ap->xmit_flags); |
| done = 1; |
| } |
| spin_unlock_bh(&ap->xmit_lock); |
| if (done) |
| ppp_output_wakeup(&ap->chan); |
| } |
| |
| /* |
| * Receive-side routines. |
| */ |
| |
| /* see how many ordinary chars there are at the start of buf */ |
| static inline int |
| scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count) |
| { |
| int i, c; |
| |
| for (i = 0; i < count; ++i) { |
| c = buf[i]; |
| if (c == PPP_ESCAPE || c == PPP_FLAG |
| || (c < 0x20 && (ap->raccm & (1 << c)) != 0)) |
| break; |
| } |
| return i; |
| } |
| |
| /* called when a flag is seen - do end-of-packet processing */ |
| static void |
| process_input_packet(struct asyncppp *ap) |
| { |
| struct sk_buff *skb; |
| unsigned char *p; |
| unsigned int len, fcs, proto; |
| |
| skb = ap->rpkt; |
| if (ap->state & (SC_TOSS | SC_ESCAPE)) |
| goto err; |
| |
| if (skb == NULL) |
| return; /* 0-length packet */ |
| |
| /* check the FCS */ |
| p = skb->data; |
| len = skb->len; |
| if (len < 3) |
| goto err; /* too short */ |
| fcs = PPP_INITFCS; |
| for (; len > 0; --len) |
| fcs = PPP_FCS(fcs, *p++); |
| if (fcs != PPP_GOODFCS) |
| goto err; /* bad FCS */ |
| skb_trim(skb, skb->len - 2); |
| |
| /* check for address/control and protocol compression */ |
| p = skb->data; |
| if (p[0] == PPP_ALLSTATIONS) { |
| /* chop off address/control */ |
| if (p[1] != PPP_UI || skb->len < 3) |
| goto err; |
| p = skb_pull(skb, 2); |
| } |
| proto = p[0]; |
| if (proto & 1) { |
| /* protocol is compressed */ |
| skb_push(skb, 1)[0] = 0; |
| } else { |
| if (skb->len < 2) |
| goto err; |
| proto = (proto << 8) + p[1]; |
| if (proto == PPP_LCP) |
| async_lcp_peek(ap, p, skb->len, 1); |
| } |
| |
| /* queue the frame to be processed */ |
| skb->cb[0] = ap->state; |
| skb_queue_tail(&ap->rqueue, skb); |
| ap->rpkt = NULL; |
| ap->state = 0; |
| return; |
| |
| err: |
| /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */ |
| ap->state = SC_PREV_ERROR; |
| if (skb) { |
| /* make skb appear as freshly allocated */ |
| skb_trim(skb, 0); |
| skb_reserve(skb, - skb_headroom(skb)); |
| } |
| } |
| |
| /* Called when the tty driver has data for us. Runs parallel with the |
| other ldisc functions but will not be re-entered */ |
| |
| static void |
| ppp_async_input(struct asyncppp *ap, const unsigned char *buf, |
| char *flags, int count) |
| { |
| struct sk_buff *skb; |
| int c, i, j, n, s, f; |
| unsigned char *sp; |
| |
| /* update bits used for 8-bit cleanness detection */ |
| if (~ap->rbits & SC_RCV_BITS) { |
| s = 0; |
| for (i = 0; i < count; ++i) { |
| c = buf[i]; |
| if (flags && flags[i] != 0) |
| continue; |
| s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0; |
| c = ((c >> 4) ^ c) & 0xf; |
| s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP; |
| } |
| ap->rbits |= s; |
| } |
| |
| while (count > 0) { |
| /* scan through and see how many chars we can do in bulk */ |
| if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE) |
| n = 1; |
| else |
| n = scan_ordinary(ap, buf, count); |
| |
| f = 0; |
| if (flags && (ap->state & SC_TOSS) == 0) { |
| /* check the flags to see if any char had an error */ |
| for (j = 0; j < n; ++j) |
| if ((f = flags[j]) != 0) |
| break; |
| } |
| if (f != 0) { |
| /* start tossing */ |
| ap->state |= SC_TOSS; |
| |
| } else if (n > 0 && (ap->state & SC_TOSS) == 0) { |
| /* stuff the chars in the skb */ |
| skb = ap->rpkt; |
| if (!skb) { |
| skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); |
| if (!skb) |
| goto nomem; |
| ap->rpkt = skb; |
| } |
| if (skb->len == 0) { |
| /* Try to get the payload 4-byte aligned. |
| * This should match the |
| * PPP_ALLSTATIONS/PPP_UI/compressed tests in |
| * process_input_packet, but we do not have |
| * enough chars here to test buf[1] and buf[2]. |
| */ |
| if (buf[0] != PPP_ALLSTATIONS) |
| skb_reserve(skb, 2 + (buf[0] & 1)); |
| } |
| if (n > skb_tailroom(skb)) { |
| /* packet overflowed MRU */ |
| ap->state |= SC_TOSS; |
| } else { |
| sp = skb_put(skb, n); |
| memcpy(sp, buf, n); |
| if (ap->state & SC_ESCAPE) { |
| sp[0] ^= 0x20; |
| ap->state &= ~SC_ESCAPE; |
| } |
| } |
| } |
| |
| if (n >= count) |
| break; |
| |
| c = buf[n]; |
| if (flags != NULL && flags[n] != 0) { |
| ap->state |= SC_TOSS; |
| } else if (c == PPP_FLAG) { |
| process_input_packet(ap); |
| } else if (c == PPP_ESCAPE) { |
| ap->state |= SC_ESCAPE; |
| } else if (I_IXON(ap->tty)) { |
| if (c == START_CHAR(ap->tty)) |
| start_tty(ap->tty); |
| else if (c == STOP_CHAR(ap->tty)) |
| stop_tty(ap->tty); |
| } |
| /* otherwise it's a char in the recv ACCM */ |
| ++n; |
| |
| buf += n; |
| if (flags) |
| flags += n; |
| count -= n; |
| } |
| return; |
| |
| nomem: |
| printk(KERN_ERR "PPPasync: no memory (input pkt)\n"); |
| ap->state |= SC_TOSS; |
| } |
| |
| /* |
| * We look at LCP frames going past so that we can notice |
| * and react to the LCP configure-ack from the peer. |
| * In the situation where the peer has been sent a configure-ack |
| * already, LCP is up once it has sent its configure-ack |
| * so the immediately following packet can be sent with the |
| * configured LCP options. This allows us to process the following |
| * packet correctly without pppd needing to respond quickly. |
| * |
| * We only respond to the received configure-ack if we have just |
| * sent a configure-request, and the configure-ack contains the |
| * same data (this is checked using a 16-bit crc of the data). |
| */ |
| #define CONFREQ 1 /* LCP code field values */ |
| #define CONFACK 2 |
| #define LCP_MRU 1 /* LCP option numbers */ |
| #define LCP_ASYNCMAP 2 |
| |
| static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, |
| int len, int inbound) |
| { |
| int dlen, fcs, i, code; |
| u32 val; |
| |
| data += 2; /* skip protocol bytes */ |
| len -= 2; |
| if (len < 4) /* 4 = code, ID, length */ |
| return; |
| code = data[0]; |
| if (code != CONFACK && code != CONFREQ) |
| return; |
| dlen = (data[2] << 8) + data[3]; |
| if (len < dlen) |
| return; /* packet got truncated or length is bogus */ |
| |
| if (code == (inbound? CONFACK: CONFREQ)) { |
| /* |
| * sent confreq or received confack: |
| * calculate the crc of the data from the ID field on. |
| */ |
| fcs = PPP_INITFCS; |
| for (i = 1; i < dlen; ++i) |
| fcs = PPP_FCS(fcs, data[i]); |
| |
| if (!inbound) { |
| /* outbound confreq - remember the crc for later */ |
| ap->lcp_fcs = fcs; |
| return; |
| } |
| |
| /* received confack, check the crc */ |
| fcs ^= ap->lcp_fcs; |
| ap->lcp_fcs = -1; |
| if (fcs != 0) |
| return; |
| } else if (inbound) |
| return; /* not interested in received confreq */ |
| |
| /* process the options in the confack */ |
| data += 4; |
| dlen -= 4; |
| /* data[0] is code, data[1] is length */ |
| while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) { |
| switch (data[0]) { |
| case LCP_MRU: |
| val = (data[2] << 8) + data[3]; |
| if (inbound) |
| ap->mru = val; |
| else |
| ap->chan.mtu = val; |
| break; |
| case LCP_ASYNCMAP: |
| val = (data[2] << 24) + (data[3] << 16) |
| + (data[4] << 8) + data[5]; |
| if (inbound) |
| ap->raccm = val; |
| else |
| ap->xaccm[0] = val; |
| break; |
| } |
| dlen -= data[1]; |
| data += data[1]; |
| } |
| } |
| |
| static void __exit ppp_async_cleanup(void) |
| { |
| if (tty_unregister_ldisc(N_PPP) != 0) |
| printk(KERN_ERR "failed to unregister PPP line discipline\n"); |
| } |
| |
| module_init(ppp_async_init); |
| module_exit(ppp_async_cleanup); |