blob: 6352d54a0b87ff91a2024921a63c7dcaa93e5ba0 [file] [log] [blame]
/*
* Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/console.h>
#include <linux/io.h>
#include <linux/ipc_logging.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/qcom-geni-se.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/slab.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
/* UART specific GENI registers */
#define SE_UART_LOOPBACK_CFG (0x22C)
#define SE_UART_TX_TRANS_CFG (0x25C)
#define SE_UART_TX_WORD_LEN (0x268)
#define SE_UART_TX_STOP_BIT_LEN (0x26C)
#define SE_UART_TX_TRANS_LEN (0x270)
#define SE_UART_RX_TRANS_CFG (0x280)
#define SE_UART_RX_WORD_LEN (0x28C)
#define SE_UART_RX_STALE_CNT (0x294)
#define SE_UART_TX_PARITY_CFG (0x2A4)
#define SE_UART_RX_PARITY_CFG (0x2A8)
#define SE_UART_MANUAL_RFR (0x2AC)
/* SE_UART_LOOPBACK_CFG */
#define NO_LOOPBACK (0)
#define TX_RX_LOOPBACK (0x1)
#define CTS_RFR_LOOPBACK (0x2)
#define CTSRFR_TXRX_LOOPBACK (0x3)
/* SE_UART_TRANS_CFG */
#define UART_TX_PAR_EN (BIT(0))
#define UART_CTS_MASK (BIT(1))
/* SE_UART_TX_WORD_LEN */
#define TX_WORD_LEN_MSK (GENMASK(9, 0))
/* SE_UART_TX_STOP_BIT_LEN */
#define TX_STOP_BIT_LEN_MSK (GENMASK(23, 0))
#define TX_STOP_BIT_LEN_1 (0)
#define TX_STOP_BIT_LEN_1_5 (1)
#define TX_STOP_BIT_LEN_2 (2)
/* SE_UART_TX_TRANS_LEN */
#define TX_TRANS_LEN_MSK (GENMASK(23, 0))
/* SE_UART_RX_TRANS_CFG */
#define UART_RX_INS_STATUS_BIT (BIT(2))
#define UART_RX_PAR_EN (BIT(3))
/* SE_UART_RX_WORD_LEN */
#define RX_WORD_LEN_MASK (GENMASK(9, 0))
/* SE_UART_RX_STALE_CNT */
#define RX_STALE_CNT (GENMASK(23, 0))
/* SE_UART_TX_PARITY_CFG/RX_PARITY_CFG */
#define PAR_CALC_EN (BIT(0))
#define PAR_MODE_MSK (GENMASK(2, 1))
#define PAR_MODE_SHFT (1)
#define PAR_EVEN (0x00)
#define PAR_ODD (0x01)
#define PAR_SPACE (0x10)
#define PAR_MARK (0x11)
/* SE_UART_MANUAL_RFR register fields */
#define UART_MANUAL_RFR_EN (BIT(31))
#define UART_RFR_NOT_READY (BIT(1))
#define UART_RFR_READY (BIT(0))
/* UART M_CMD OP codes */
#define UART_START_TX (0x1)
#define UART_START_BREAK (0x4)
#define UART_STOP_BREAK (0x5)
/* UART S_CMD OP codes */
#define UART_START_READ (0x1)
#define UART_PARAM (0x1)
#define UART_PARAM_RFR_OPEN (BIT(7))
/* UART DMA Rx GP_IRQ_BITS */
#define UART_DMA_RX_PARITY_ERR BIT(5)
#define UART_DMA_RX_ERRS (GENMASK(5, 6))
#define UART_DMA_RX_BREAK (GENMASK(7, 8))
#define UART_OVERSAMPLING (32)
#define STALE_TIMEOUT (16)
#define DEFAULT_BITS_PER_CHAR (10)
#define GENI_UART_NR_PORTS (15)
#define GENI_UART_CONS_PORTS (1)
#define DEF_FIFO_DEPTH_WORDS (16)
#define DEF_TX_WM (2)
#define DEF_FIFO_WIDTH_BITS (32)
#define UART_CORE2X_VOTE (10000)
#define UART_CONSOLE_CORE2X_VOTE (960)
#define WAKEBYTE_TIMEOUT_MSEC (2000)
#define WAIT_XFER_MAX_ITER (50)
#define WAIT_XFER_MAX_TIMEOUT_US (10000)
#define WAIT_XFER_MIN_TIMEOUT_US (9000)
#define IPC_LOG_PWR_PAGES (6)
#define IPC_LOG_MISC_PAGES (10)
#define IPC_LOG_TX_RX_PAGES (8)
#define DATA_BYTES_PER_LINE (32)
#define IPC_LOG_MSG(ctx, x...) do { \
if (ctx) \
ipc_log_string(ctx, x); \
} while (0)
#define DMA_RX_BUF_SIZE (2048)
#define UART_CONSOLE_RX_WM (2)
struct msm_geni_serial_port {
struct uart_port uport;
char name[20];
unsigned int tx_fifo_depth;
unsigned int tx_fifo_width;
unsigned int rx_fifo_depth;
unsigned int tx_wm;
unsigned int rx_wm;
unsigned int rx_rfr;
int xfer_mode;
struct dentry *dbg;
bool port_setup;
unsigned int *rx_fifo;
int (*handle_rx)(struct uart_port *uport,
unsigned int rx_fifo_wc,
unsigned int rx_last_byte_valid,
unsigned int rx_last,
bool drop_rx);
struct device *wrapper_dev;
struct se_geni_rsc serial_rsc;
dma_addr_t tx_dma;
unsigned int xmit_size;
void *rx_buf;
dma_addr_t rx_dma;
int loopback;
int wakeup_irq;
unsigned char wakeup_byte;
struct wakeup_source geni_wake;
void *ipc_log_tx;
void *ipc_log_rx;
void *ipc_log_pwr;
void *ipc_log_misc;
unsigned int cur_baud;
int ioctl_count;
int edge_count;
bool manual_flow;
};
static const struct uart_ops msm_geni_serial_pops;
static struct uart_driver msm_geni_console_driver;
static struct uart_driver msm_geni_serial_hs_driver;
static int handle_rx_console(struct uart_port *uport,
unsigned int rx_fifo_wc,
unsigned int rx_last_byte_valid,
unsigned int rx_last,
bool drop_rx);
static int handle_rx_hs(struct uart_port *uport,
unsigned int rx_fifo_wc,
unsigned int rx_last_byte_valid,
unsigned int rx_last,
bool drop_rx);
static unsigned int msm_geni_serial_tx_empty(struct uart_port *port);
static int msm_geni_serial_power_on(struct uart_port *uport);
static void msm_geni_serial_power_off(struct uart_port *uport);
static int msm_geni_serial_poll_bit(struct uart_port *uport,
int offset, int bit_field, bool set);
static void msm_geni_serial_stop_rx(struct uart_port *uport);
static int msm_geni_serial_runtime_resume(struct device *dev);
static int msm_geni_serial_runtime_suspend(struct device *dev);
static atomic_t uart_line_id = ATOMIC_INIT(0);
#define GET_DEV_PORT(uport) \
container_of(uport, struct msm_geni_serial_port, uport)
static struct msm_geni_serial_port msm_geni_console_port;
static struct msm_geni_serial_port msm_geni_serial_ports[GENI_UART_NR_PORTS];
static void msm_geni_serial_config_port(struct uart_port *uport, int cfg_flags)
{
if (cfg_flags & UART_CONFIG_TYPE)
uport->type = PORT_MSM;
}
static ssize_t msm_geni_serial_loopback_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_geni_serial_port *port = platform_get_drvdata(pdev);
return snprintf(buf, sizeof(int), "%d\n", port->loopback);
}
static ssize_t msm_geni_serial_loopback_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t size)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_geni_serial_port *port = platform_get_drvdata(pdev);
if (kstrtoint(buf, 0, &port->loopback)) {
dev_err(dev, "Invalid input\n");
return -EINVAL;
}
return size;
}
static DEVICE_ATTR(loopback, 0644, msm_geni_serial_loopback_show,
msm_geni_serial_loopback_store);
static void dump_ipc(void *ipc_ctx, char *prefix, char *string,
u64 addr, int size)
{
char buf[DATA_BYTES_PER_LINE * 2];
int len = 0;
if (!ipc_ctx)
return;
len = min(size, DATA_BYTES_PER_LINE);
hex_dump_to_buffer(string, len, DATA_BYTES_PER_LINE, 1, buf,
sizeof(buf), false);
ipc_log_string(ipc_ctx, "%s[0x%.10x:%d] : %s", prefix,
(unsigned int)addr, size, buf);
}
static bool device_pending_suspend(struct uart_port *uport)
{
int usage_count = atomic_read(&uport->dev->power.usage_count);
return (pm_runtime_status_suspended(uport->dev) || !usage_count);
}
static bool check_transfers_inflight(struct uart_port *uport)
{
bool xfer_on = false;
bool tx_active = false;
bool tx_fifo_status = false;
bool m_cmd_active = false;
bool rx_active = false;
u32 rx_fifo_status = 0;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
u32 geni_status = geni_read_reg_nolog(uport->membase,
SE_GENI_STATUS);
struct circ_buf *xmit = &uport->state->xmit;
/* Possible stop tx is called multiple times. */
m_cmd_active = geni_status & M_GENI_CMD_ACTIVE;
if (port->xfer_mode == SE_DMA) {
tx_fifo_status = port->tx_dma ? 1 : 0;
rx_fifo_status =
geni_read_reg_nolog(uport->membase, SE_DMA_RX_LEN_IN);
} else {
tx_fifo_status = geni_read_reg_nolog(uport->membase,
SE_GENI_TX_FIFO_STATUS);
rx_fifo_status = geni_read_reg_nolog(uport->membase,
SE_GENI_RX_FIFO_STATUS);
}
tx_active = m_cmd_active || tx_fifo_status;
rx_active = rx_fifo_status ? true : false;
if (rx_active || tx_active || !uart_circ_empty(xmit))
xfer_on = true;
return xfer_on;
}
static void wait_for_transfers_inflight(struct uart_port *uport)
{
int iter = 0;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
while (iter < WAIT_XFER_MAX_ITER) {
if (check_transfers_inflight(uport)) {
usleep_range(WAIT_XFER_MIN_TIMEOUT_US,
WAIT_XFER_MAX_TIMEOUT_US);
iter++;
} else {
break;
}
}
if (check_transfers_inflight(uport)) {
u32 geni_status = geni_read_reg_nolog(uport->membase,
SE_GENI_STATUS);
u32 geni_ios = geni_read_reg_nolog(uport->membase, SE_GENI_IOS);
u32 rx_fifo_status = geni_read_reg_nolog(uport->membase,
SE_GENI_RX_FIFO_STATUS);
u32 rx_dma =
geni_read_reg_nolog(uport->membase, SE_DMA_RX_LEN_IN);
IPC_LOG_MSG(port->ipc_log_misc,
"%s IOS 0x%x geni status 0x%x rx: fifo 0x%x dma 0x%x\n",
__func__, geni_ios, geni_status, rx_fifo_status, rx_dma);
}
}
static int vote_clock_on(struct uart_port *uport)
{
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
int usage_count = atomic_read(&uport->dev->power.usage_count);
int ret = 0;
ret = msm_geni_serial_power_on(uport);
if (ret) {
dev_err(uport->dev, "Failed to vote clock on\n");
return ret;
}
port->ioctl_count++;
IPC_LOG_MSG(port->ipc_log_pwr, "%s%s ioctl %d usage_count %d\n",
__func__, current->comm, port->ioctl_count, usage_count);
return 0;
}
static int vote_clock_off(struct uart_port *uport)
{
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
int usage_count = atomic_read(&uport->dev->power.usage_count);
if (!pm_runtime_enabled(uport->dev)) {
dev_err(uport->dev, "RPM not available.Can't enable clocks\n");
return -EPERM;
}
if (!port->ioctl_count) {
dev_warn(uport->dev, "%s:Imbalanced vote off ioctl %d\n",
__func__, port->ioctl_count);
IPC_LOG_MSG(port->ipc_log_pwr,
"%s:Imbalanced vote_off from userspace. %d",
__func__, port->ioctl_count);
return -EPERM;
}
wait_for_transfers_inflight(uport);
port->ioctl_count--;
msm_geni_serial_power_off(uport);
IPC_LOG_MSG(port->ipc_log_pwr, "%s%s ioctl %d usage_count %d\n",
__func__, current->comm, port->ioctl_count, usage_count);
return 0;
};
static int msm_geni_serial_ioctl(struct uart_port *uport, unsigned int cmd,
unsigned long arg)
{
int ret = -ENOIOCTLCMD;
switch (cmd) {
case TIOCPMGET: {
ret = vote_clock_on(uport);
break;
}
case TIOCPMPUT: {
ret = vote_clock_off(uport);
break;
}
case TIOCPMACT: {
ret = !pm_runtime_status_suspended(uport->dev);
break;
}
default:
break;
}
return ret;
}
static void msm_geni_serial_break_ctl(struct uart_port *uport, int ctl)
{
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
if (!uart_console(uport) && device_pending_suspend(uport)) {
IPC_LOG_MSG(port->ipc_log_misc,
"%s.Device is suspended.\n", __func__);
return;
}
if (ctl) {
wait_for_transfers_inflight(uport);
geni_setup_m_cmd(uport->membase, UART_START_BREAK, 0);
} else {
geni_setup_m_cmd(uport->membase, UART_STOP_BREAK, 0);
}
/* Ensure break start/stop command is setup before returning.*/
mb();
}
static unsigned int msm_geni_cons_get_mctrl(struct uart_port *uport)
{
return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS;
}
static unsigned int msm_geni_serial_get_mctrl(struct uart_port *uport)
{
u32 geni_ios = 0;
unsigned int mctrl = TIOCM_DSR | TIOCM_CAR;
if (device_pending_suspend(uport))
return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS;
geni_ios = geni_read_reg_nolog(uport->membase, SE_GENI_IOS);
if (!(geni_ios & IO2_DATA_IN))
mctrl |= TIOCM_CTS;
return mctrl;
}
static void msm_geni_cons_set_mctrl(struct uart_port *uport,
unsigned int mctrl)
{
}
static void msm_geni_serial_set_mctrl(struct uart_port *uport,
unsigned int mctrl)
{
u32 uart_manual_rfr = 0;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
if (device_pending_suspend(uport)) {
IPC_LOG_MSG(port->ipc_log_misc,
"%s.Device is suspended.\n", __func__);
return;
}
if (!(mctrl & TIOCM_RTS)) {
uart_manual_rfr |= (UART_MANUAL_RFR_EN | UART_RFR_NOT_READY);
port->manual_flow = true;
} else {
port->manual_flow = false;
}
geni_write_reg_nolog(uart_manual_rfr, uport->membase,
SE_UART_MANUAL_RFR);
/* Write to flow control must complete before return to client*/
mb();
IPC_LOG_MSG(port->ipc_log_misc, "%s: Manual_rfr 0x%x\n",
__func__, uart_manual_rfr);
}
static const char *msm_geni_serial_get_type(struct uart_port *uport)
{
return "MSM";
}
static struct msm_geni_serial_port *get_port_from_line(int line,
bool is_console)
{
struct msm_geni_serial_port *port = NULL;
if (is_console) {
if ((line < 0) || (line >= GENI_UART_CONS_PORTS))
port = ERR_PTR(-ENXIO);
port = &msm_geni_console_port;
} else {
if ((line < 0) || (line >= GENI_UART_NR_PORTS))
return ERR_PTR(-ENXIO);
port = &msm_geni_serial_ports[line];
}
return port;
}
static int msm_geni_serial_power_on(struct uart_port *uport)
{
int ret = 0;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
if (!pm_runtime_enabled(uport->dev)) {
if (pm_runtime_status_suspended(uport->dev)) {
struct uart_state *state = uport->state;
struct tty_port *tport = &state->port;
int lock = mutex_trylock(&tport->mutex);
IPC_LOG_MSG(port->ipc_log_pwr,
"%s:Manual resume\n", __func__);
pm_runtime_disable(uport->dev);
ret = msm_geni_serial_runtime_resume(uport->dev);
if (ret) {
IPC_LOG_MSG(port->ipc_log_pwr,
"%s:Manual RPM CB failed %d\n",
__func__, ret);
} else {
pm_runtime_get_noresume(uport->dev);
pm_runtime_set_active(uport->dev);
enable_irq(uport->irq);
}
pm_runtime_enable(uport->dev);
if (lock)
mutex_unlock(&tport->mutex);
}
} else {
ret = pm_runtime_get_sync(uport->dev);
if (ret < 0) {
IPC_LOG_MSG(port->ipc_log_pwr, "%s Err\n", __func__);
WARN_ON_ONCE(1);
pm_runtime_put_noidle(uport->dev);
pm_runtime_set_suspended(uport->dev);
return ret;
}
}
return 0;
}
static void msm_geni_serial_power_off(struct uart_port *uport)
{
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
int usage_count = atomic_read(&uport->dev->power.usage_count);
if (!usage_count) {
IPC_LOG_MSG(port->ipc_log_pwr, "%s: Usage Count is already 0\n",
__func__);
return;
}
pm_runtime_mark_last_busy(uport->dev);
pm_runtime_put_autosuspend(uport->dev);
}
static int msm_geni_serial_poll_bit(struct uart_port *uport,
int offset, int bit_field, bool set)
{
int iter = 0;
unsigned int reg;
bool met = false;
struct msm_geni_serial_port *port = NULL;
bool cond = false;
unsigned int baud = 115200;
unsigned int fifo_bits = DEF_FIFO_DEPTH_WORDS * DEF_FIFO_WIDTH_BITS;
unsigned long total_iter = 1000;
if (uport->private_data && !uart_console(uport)) {
port = GET_DEV_PORT(uport);
baud = (port->cur_baud ? port->cur_baud : 115200);
fifo_bits = port->tx_fifo_depth * port->tx_fifo_width;
/*
* Total polling iterations based on FIFO worth of bytes to be
* sent at current baud .Add a little fluff to the wait.
*/
total_iter = ((fifo_bits * USEC_PER_SEC) / baud) / 10;
total_iter += 50;
}
while (iter < total_iter) {
reg = geni_read_reg_nolog(uport->membase, offset);
cond = reg & bit_field;
if (cond == set) {
met = true;
break;
}
udelay(10);
iter++;
}
return met;
}
static void msm_geni_serial_setup_tx(struct uart_port *uport,
unsigned int xmit_size)
{
u32 m_cmd = 0;
geni_write_reg_nolog(xmit_size, uport->membase, SE_UART_TX_TRANS_LEN);
m_cmd |= (UART_START_TX << M_OPCODE_SHFT);
geni_write_reg_nolog(m_cmd, uport->membase, SE_GENI_M_CMD0);
/*
* Writes to enable the primary sequencer should go through before
* exiting this function.
*/
mb();
}
static void msm_geni_serial_poll_cancel_tx(struct uart_port *uport)
{
int done = 0;
unsigned int irq_clear = M_CMD_DONE_EN;
done = msm_geni_serial_poll_bit(uport, SE_GENI_M_IRQ_STATUS,
M_CMD_DONE_EN, true);
if (!done) {
geni_write_reg_nolog(M_GENI_CMD_ABORT, uport->membase,
SE_GENI_M_CMD_CTRL_REG);
irq_clear |= M_CMD_ABORT_EN;
msm_geni_serial_poll_bit(uport, SE_GENI_M_IRQ_STATUS,
M_CMD_ABORT_EN, true);
}
geni_write_reg_nolog(irq_clear, uport->membase, SE_GENI_M_IRQ_CLEAR);
}
static void msm_geni_serial_abort_rx(struct uart_port *uport)
{
unsigned int irq_clear = S_CMD_DONE_EN;
geni_abort_s_cmd(uport->membase);
/* Ensure this goes through before polling. */
mb();
irq_clear |= S_CMD_ABORT_EN;
msm_geni_serial_poll_bit(uport, SE_GENI_S_CMD_CTRL_REG,
S_GENI_CMD_ABORT, false);
geni_write_reg_nolog(irq_clear, uport->membase, SE_GENI_S_IRQ_CLEAR);
geni_write_reg(FORCE_DEFAULT, uport->membase, GENI_FORCE_DEFAULT_REG);
}
static void msm_geni_serial_complete_rx_eot(struct uart_port *uport)
{
int poll_done = 0, tries = 0;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
do {
poll_done = msm_geni_serial_poll_bit(uport, SE_DMA_RX_IRQ_STAT,
RX_EOT, true);
tries++;
} while (!poll_done && tries < 5);
if (!poll_done)
IPC_LOG_MSG(port->ipc_log_misc,
"%s: RX_EOT, GENI:0x%x, DMA_DEBUG:0x%x\n", __func__,
geni_read_reg_nolog(uport->membase, SE_GENI_STATUS),
geni_read_reg_nolog(uport->membase, SE_DMA_DEBUG_REG0));
else
geni_write_reg_nolog(RX_EOT, uport->membase, SE_DMA_RX_IRQ_CLR);
}
#ifdef CONFIG_CONSOLE_POLL
static int msm_geni_serial_get_char(struct uart_port *uport)
{
unsigned int rx_fifo;
unsigned int m_irq_status;
unsigned int s_irq_status;
if (!(msm_geni_serial_poll_bit(uport, SE_GENI_M_IRQ_STATUS,
M_SEC_IRQ_EN, true)))
return -ENXIO;
m_irq_status = geni_read_reg_nolog(uport->membase,
SE_GENI_M_IRQ_STATUS);
s_irq_status = geni_read_reg_nolog(uport->membase,
SE_GENI_S_IRQ_STATUS);
geni_write_reg_nolog(m_irq_status, uport->membase,
SE_GENI_M_IRQ_CLEAR);
geni_write_reg_nolog(s_irq_status, uport->membase,
SE_GENI_S_IRQ_CLEAR);
if (!(msm_geni_serial_poll_bit(uport, SE_GENI_RX_FIFO_STATUS,
RX_FIFO_WC_MSK, true)))
return -ENXIO;
/*
* Read the Rx FIFO only after clearing the interrupt registers and
* getting valid RX fifo status.
*/
mb();
rx_fifo = geni_read_reg_nolog(uport->membase, SE_GENI_RX_FIFOn);
rx_fifo &= 0xFF;
return rx_fifo;
}
static void msm_geni_serial_poll_put_char(struct uart_port *uport,
unsigned char c)
{
int b = (int) c;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
geni_write_reg_nolog(port->tx_wm, uport->membase,
SE_GENI_TX_WATERMARK_REG);
msm_geni_serial_setup_tx(uport, 1);
if (!msm_geni_serial_poll_bit(uport, SE_GENI_M_IRQ_STATUS,
M_TX_FIFO_WATERMARK_EN, true))
WARN_ON(1);
geni_write_reg_nolog(b, uport->membase, SE_GENI_TX_FIFOn);
geni_write_reg_nolog(M_TX_FIFO_WATERMARK_EN, uport->membase,
SE_GENI_M_IRQ_CLEAR);
/*
* Ensure FIFO write goes through before polling for status but.
*/
mb();
msm_geni_serial_poll_cancel_tx(uport);
}
#endif
#if defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(CONFIG_CONSOLE_POLL)
static void msm_geni_serial_wr_char(struct uart_port *uport, int ch)
{
geni_write_reg_nolog(ch, uport->membase, SE_GENI_TX_FIFOn);
/*
* Ensure FIFO write clear goes through before
* next iteration.
*/
mb();
}
static void
__msm_geni_serial_console_write(struct uart_port *uport, const char *s,
unsigned int count)
{
int new_line = 0;
int i;
int bytes_to_send = count;
int fifo_depth = DEF_FIFO_DEPTH_WORDS;
int tx_wm = DEF_TX_WM;
for (i = 0; i < count; i++) {
if (s[i] == '\n')
new_line++;
}
bytes_to_send += new_line;
geni_write_reg_nolog(tx_wm, uport->membase,
SE_GENI_TX_WATERMARK_REG);
msm_geni_serial_setup_tx(uport, bytes_to_send);
i = 0;
while (i < count) {
u32 chars_to_write = 0;
u32 avail_fifo_bytes = (fifo_depth - tx_wm);
/*
* If the WM bit never set, then the Tx state machine is not
* in a valid state, so break, cancel/abort any existing
* command. Unfortunately the current data being written is
* lost.
*/
while (!msm_geni_serial_poll_bit(uport, SE_GENI_M_IRQ_STATUS,
M_TX_FIFO_WATERMARK_EN, true))
break;
chars_to_write = min((unsigned int)(count - i),
avail_fifo_bytes);
if ((chars_to_write << 1) > avail_fifo_bytes)
chars_to_write = (avail_fifo_bytes >> 1);
uart_console_write(uport, (s + i), chars_to_write,
msm_geni_serial_wr_char);
geni_write_reg_nolog(M_TX_FIFO_WATERMARK_EN, uport->membase,
SE_GENI_M_IRQ_CLEAR);
/* Ensure this goes through before polling for WM IRQ again.*/
mb();
i += chars_to_write;
}
msm_geni_serial_poll_cancel_tx(uport);
}
static void msm_geni_serial_console_write(struct console *co, const char *s,
unsigned int count)
{
struct uart_port *uport;
struct msm_geni_serial_port *port;
int locked = 1;
unsigned long flags;
WARN_ON(co->index < 0 || co->index >= GENI_UART_NR_PORTS);
port = get_port_from_line(co->index, true);
if (IS_ERR_OR_NULL(port))
return;
uport = &port->uport;
if (oops_in_progress)
locked = spin_trylock_irqsave(&uport->lock, flags);
else
spin_lock_irqsave(&uport->lock, flags);
if (locked) {
__msm_geni_serial_console_write(uport, s, count);
spin_unlock_irqrestore(&uport->lock, flags);
}
}
static int handle_rx_console(struct uart_port *uport,
unsigned int rx_fifo_wc,
unsigned int rx_last_byte_valid,
unsigned int rx_last,
bool drop_rx)
{
int i, c;
unsigned char *rx_char;
struct tty_port *tport;
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
tport = &uport->state->port;
for (i = 0; i < rx_fifo_wc; i++) {
int bytes = 4;
*(msm_port->rx_fifo) =
geni_read_reg_nolog(uport->membase, SE_GENI_RX_FIFOn);
if (drop_rx)
continue;
rx_char = (unsigned char *)msm_port->rx_fifo;
if (i == (rx_fifo_wc - 1)) {
if (rx_last && rx_last_byte_valid)
bytes = rx_last_byte_valid;
}
for (c = 0; c < bytes; c++) {
char flag = TTY_NORMAL;
int sysrq;
uport->icount.rx++;
sysrq = uart_handle_sysrq_char(uport, rx_char[c]);
if (!sysrq)
tty_insert_flip_char(tport, rx_char[c], flag);
}
}
if (!drop_rx)
tty_flip_buffer_push(tport);
return 0;
}
#else
static int handle_rx_console(struct uart_port *uport,
unsigned int rx_fifo_wc,
unsigned int rx_last_byte_valid,
unsigned int rx_last,
bool drop_rx)
{
return -EPERM;
}
#endif /* (CONFIG_SERIAL_CORE_CONSOLE) || defined(CONFIG_CONSOLE_POLL)) */
static int msm_geni_serial_prep_dma_tx(struct uart_port *uport)
{
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
struct circ_buf *xmit = &uport->state->xmit;
unsigned int xmit_size;
int ret = 0;
xmit_size = uart_circ_chars_pending(xmit);
if (xmit_size < WAKEUP_CHARS)
uart_write_wakeup(uport);
if (xmit_size > (UART_XMIT_SIZE - xmit->tail))
xmit_size = UART_XMIT_SIZE - xmit->tail;
if (!xmit_size)
return ret;
dump_ipc(msm_port->ipc_log_tx, "DMA Tx",
(char *)&xmit->buf[xmit->tail], 0, xmit_size);
msm_geni_serial_setup_tx(uport, xmit_size);
ret = geni_se_tx_dma_prep(msm_port->wrapper_dev, uport->membase,
&xmit->buf[xmit->tail], xmit_size, &msm_port->tx_dma);
if (!ret) {
msm_port->xmit_size = xmit_size;
} else {
geni_write_reg_nolog(0, uport->membase,
SE_UART_TX_TRANS_LEN);
geni_cancel_m_cmd(uport->membase);
if (!msm_geni_serial_poll_bit(uport, SE_GENI_M_IRQ_STATUS,
M_CMD_CANCEL_EN, true)) {
geni_abort_m_cmd(uport->membase);
msm_geni_serial_poll_bit(uport, SE_GENI_M_IRQ_STATUS,
M_CMD_ABORT_EN, true);
geni_write_reg_nolog(M_CMD_ABORT_EN, uport->membase,
SE_GENI_M_IRQ_CLEAR);
}
geni_write_reg_nolog(M_CMD_CANCEL_EN, uport->membase,
SE_GENI_M_IRQ_CLEAR);
IPC_LOG_MSG(msm_port->ipc_log_tx, "%s: DMA map failure %d\n",
__func__, ret);
msm_port->tx_dma = (dma_addr_t)NULL;
msm_port->xmit_size = 0;
}
return ret;
}
static void msm_geni_serial_start_tx(struct uart_port *uport)
{
unsigned int geni_m_irq_en;
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
unsigned int geni_status;
unsigned int geni_ios;
if (!uart_console(uport) && !pm_runtime_active(uport->dev)) {
IPC_LOG_MSG(msm_port->ipc_log_misc,
"%s.Putting in async RPM vote\n", __func__);
pm_runtime_get(uport->dev);
goto exit_start_tx;
}
if (!uart_console(uport)) {
IPC_LOG_MSG(msm_port->ipc_log_misc,
"%s.Power on.\n", __func__);
pm_runtime_get(uport->dev);
}
if (msm_port->xfer_mode == FIFO_MODE) {
geni_status = geni_read_reg_nolog(uport->membase,
SE_GENI_STATUS);
if (geni_status & M_GENI_CMD_ACTIVE)
goto check_flow_ctrl;
if (!msm_geni_serial_tx_empty(uport))
goto check_flow_ctrl;
geni_m_irq_en = geni_read_reg_nolog(uport->membase,
SE_GENI_M_IRQ_EN);
geni_m_irq_en |= (M_TX_FIFO_WATERMARK_EN | M_CMD_DONE_EN);
geni_write_reg_nolog(msm_port->tx_wm, uport->membase,
SE_GENI_TX_WATERMARK_REG);
geni_write_reg_nolog(geni_m_irq_en, uport->membase,
SE_GENI_M_IRQ_EN);
/* Geni command setup should complete before returning.*/
mb();
} else if (msm_port->xfer_mode == SE_DMA) {
if (msm_port->tx_dma)
goto check_flow_ctrl;
msm_geni_serial_prep_dma_tx(uport);
}
return;
check_flow_ctrl:
geni_ios = geni_read_reg_nolog(uport->membase, SE_GENI_IOS);
if (!(geni_ios & IO2_DATA_IN))
IPC_LOG_MSG(msm_port->ipc_log_misc, "%s: ios: 0x%08x\n",
__func__, geni_ios);
exit_start_tx:
if (!uart_console(uport))
msm_geni_serial_power_off(uport);
}
static void msm_geni_serial_tx_fsm_rst(struct uart_port *uport)
{
unsigned int tx_irq_en;
int done = 0;
int tries = 0;
tx_irq_en = geni_read_reg_nolog(uport->membase, SE_DMA_TX_IRQ_EN);
geni_write_reg_nolog(0, uport->membase, SE_DMA_TX_IRQ_EN_SET);
geni_write_reg_nolog(1, uport->membase, SE_DMA_TX_FSM_RST);
do {
done = msm_geni_serial_poll_bit(uport, SE_DMA_TX_IRQ_STAT,
TX_RESET_DONE, true);
tries++;
} while (!done && tries < 5);
geni_write_reg_nolog(TX_DMA_DONE | TX_RESET_DONE, uport->membase,
SE_DMA_TX_IRQ_CLR);
geni_write_reg_nolog(tx_irq_en, uport->membase, SE_DMA_TX_IRQ_EN_SET);
}
static void stop_tx_sequencer(struct uart_port *uport)
{
unsigned int geni_m_irq_en;
unsigned int geni_status;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
geni_m_irq_en = geni_read_reg_nolog(uport->membase, SE_GENI_M_IRQ_EN);
geni_m_irq_en &= ~M_CMD_DONE_EN;
if (port->xfer_mode == FIFO_MODE) {
geni_m_irq_en &= ~M_TX_FIFO_WATERMARK_EN;
geni_write_reg_nolog(0, uport->membase,
SE_GENI_TX_WATERMARK_REG);
} else if (port->xfer_mode == SE_DMA) {
if (port->tx_dma) {
msm_geni_serial_tx_fsm_rst(uport);
geni_se_tx_dma_unprep(port->wrapper_dev, port->tx_dma,
port->xmit_size);
port->tx_dma = (dma_addr_t)NULL;
}
}
port->xmit_size = 0;
geni_write_reg_nolog(geni_m_irq_en, uport->membase, SE_GENI_M_IRQ_EN);
geni_status = geni_read_reg_nolog(uport->membase,
SE_GENI_STATUS);
/* Possible stop tx is called multiple times. */
if (!(geni_status & M_GENI_CMD_ACTIVE))
return;
geni_cancel_m_cmd(uport->membase);
if (!msm_geni_serial_poll_bit(uport, SE_GENI_M_IRQ_STATUS,
M_CMD_CANCEL_EN, true)) {
geni_abort_m_cmd(uport->membase);
msm_geni_serial_poll_bit(uport, SE_GENI_M_IRQ_STATUS,
M_CMD_ABORT_EN, true);
geni_write_reg_nolog(M_CMD_ABORT_EN, uport->membase,
SE_GENI_M_IRQ_CLEAR);
}
geni_write_reg_nolog(M_CMD_CANCEL_EN, uport, SE_GENI_M_IRQ_CLEAR);
/*
* If we end up having to cancel an on-going Tx for non-console usecase
* then it means there was some unsent data in the Tx FIFO, consequently
* it means that there is a vote imbalance as we put in a vote during
* start_tx() that is removed only as part of a "done" ISR. To balance
* this out, remove the vote put in during start_tx().
*/
if (!uart_console(uport)) {
IPC_LOG_MSG(port->ipc_log_misc, "%s:Removing vote\n", __func__);
msm_geni_serial_power_off(uport);
}
IPC_LOG_MSG(port->ipc_log_misc, "%s:\n", __func__);
}
static void msm_geni_serial_stop_tx(struct uart_port *uport)
{
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
if (!uart_console(uport) && device_pending_suspend(uport)) {
dev_err(uport->dev, "%s.Device is suspended.\n", __func__);
IPC_LOG_MSG(port->ipc_log_misc,
"%s.Device is suspended.\n", __func__);
return;
}
stop_tx_sequencer(uport);
}
static void start_rx_sequencer(struct uart_port *uport)
{
unsigned int geni_s_irq_en;
unsigned int geni_m_irq_en;
unsigned int geni_status;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
int ret;
u32 geni_se_param = UART_PARAM_RFR_OPEN;
geni_status = geni_read_reg_nolog(uport->membase, SE_GENI_STATUS);
if (geni_status & S_GENI_CMD_ACTIVE)
msm_geni_serial_stop_rx(uport);
/* Start RX with the RFR_OPEN to keep RFR in always ready state */
geni_setup_s_cmd(uport->membase, UART_START_READ, geni_se_param);
if (port->xfer_mode == FIFO_MODE) {
geni_s_irq_en = geni_read_reg_nolog(uport->membase,
SE_GENI_S_IRQ_EN);
geni_m_irq_en = geni_read_reg_nolog(uport->membase,
SE_GENI_M_IRQ_EN);
geni_s_irq_en |= S_RX_FIFO_WATERMARK_EN | S_RX_FIFO_LAST_EN;
geni_m_irq_en |= M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN;
geni_write_reg_nolog(geni_s_irq_en, uport->membase,
SE_GENI_S_IRQ_EN);
geni_write_reg_nolog(geni_m_irq_en, uport->membase,
SE_GENI_M_IRQ_EN);
} else if (port->xfer_mode == SE_DMA) {
ret = geni_se_rx_dma_prep(port->wrapper_dev, uport->membase,
port->rx_buf, DMA_RX_BUF_SIZE, &port->rx_dma);
if (ret) {
dev_err(uport->dev, "%s: RX Prep dma failed %d\n",
__func__, ret);
msm_geni_serial_stop_rx(uport);
goto exit_start_rx_sequencer;
}
}
/*
* Ensure the writes to the secondary sequencer and interrupt enables
* go through.
*/
mb();
geni_status = geni_read_reg_nolog(uport->membase, SE_GENI_STATUS);
exit_start_rx_sequencer:
IPC_LOG_MSG(port->ipc_log_misc, "%s 0x%x\n", __func__, geni_status);
}
static void msm_geni_serial_start_rx(struct uart_port *uport)
{
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
if (!uart_console(uport) && device_pending_suspend(uport)) {
dev_err(uport->dev, "%s.Device is suspended.\n", __func__);
IPC_LOG_MSG(port->ipc_log_misc,
"%s.Device is suspended.\n", __func__);
return;
}
start_rx_sequencer(&port->uport);
}
static void msm_geni_serial_rx_fsm_rst(struct uart_port *uport)
{
unsigned int rx_irq_en;
int done = 0;
int tries = 0;
rx_irq_en = geni_read_reg_nolog(uport->membase, SE_DMA_RX_IRQ_EN);
geni_write_reg_nolog(0, uport->membase, SE_DMA_RX_IRQ_EN_SET);
geni_write_reg_nolog(1, uport->membase, SE_DMA_RX_FSM_RST);
do {
done = msm_geni_serial_poll_bit(uport, SE_DMA_RX_IRQ_STAT,
RX_RESET_DONE, true);
tries++;
} while (!done && tries < 5);
geni_write_reg_nolog(RX_DMA_DONE | RX_RESET_DONE, uport->membase,
SE_DMA_RX_IRQ_CLR);
geni_write_reg_nolog(rx_irq_en, uport->membase, SE_DMA_RX_IRQ_EN_SET);
}
static void stop_rx_sequencer(struct uart_port *uport)
{
unsigned int geni_s_irq_en;
unsigned int geni_m_irq_en;
unsigned int geni_status;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
u32 irq_clear = S_CMD_CANCEL_EN;
bool done;
IPC_LOG_MSG(port->ipc_log_misc, "%s\n", __func__);
if (port->xfer_mode == FIFO_MODE) {
geni_s_irq_en = geni_read_reg_nolog(uport->membase,
SE_GENI_S_IRQ_EN);
geni_m_irq_en = geni_read_reg_nolog(uport->membase,
SE_GENI_M_IRQ_EN);
geni_s_irq_en &= ~(S_RX_FIFO_WATERMARK_EN | S_RX_FIFO_LAST_EN);
geni_m_irq_en &= ~(M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN);
geni_write_reg_nolog(geni_s_irq_en, uport->membase,
SE_GENI_S_IRQ_EN);
geni_write_reg_nolog(geni_m_irq_en, uport->membase,
SE_GENI_M_IRQ_EN);
}
geni_status = geni_read_reg_nolog(uport->membase, SE_GENI_STATUS);
/* Possible stop rx is called multiple times. */
if (!(geni_status & S_GENI_CMD_ACTIVE))
goto exit_rx_seq;
geni_cancel_s_cmd(uport->membase);
/*
* Ensure that the cancel goes through before polling for the
* cancel control bit.
*/
mb();
if (!uart_console(uport))
msm_geni_serial_complete_rx_eot(uport);
done = msm_geni_serial_poll_bit(uport, SE_GENI_S_CMD_CTRL_REG,
S_GENI_CMD_CANCEL, false);
if (done) {
geni_write_reg_nolog(irq_clear, uport->membase,
SE_GENI_S_IRQ_CLEAR);
goto exit_rx_seq;
} else {
IPC_LOG_MSG(port->ipc_log_misc, "%s Cancel fail 0x%x\n",
__func__, geni_status);
}
geni_status = geni_read_reg_nolog(uport->membase, SE_GENI_STATUS);
if ((geni_status & S_GENI_CMD_ACTIVE)) {
IPC_LOG_MSG(port->ipc_log_misc, "%s:Abort Rx, GENI:0x%x\n",
__func__, geni_status);
msm_geni_serial_abort_rx(uport);
}
exit_rx_seq:
if (port->xfer_mode == SE_DMA && port->rx_dma) {
msm_geni_serial_rx_fsm_rst(uport);
geni_se_rx_dma_unprep(port->wrapper_dev, port->rx_dma,
DMA_RX_BUF_SIZE);
port->rx_dma = (dma_addr_t)NULL;
}
}
static void msm_geni_serial_stop_rx(struct uart_port *uport)
{
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
if (!uart_console(uport) && device_pending_suspend(uport)) {
IPC_LOG_MSG(port->ipc_log_misc,
"%s.Device is suspended.\n", __func__);
return;
}
stop_rx_sequencer(uport);
}
static int handle_rx_hs(struct uart_port *uport,
unsigned int rx_fifo_wc,
unsigned int rx_last_byte_valid,
unsigned int rx_last,
bool drop_rx)
{
unsigned char *rx_char;
struct tty_port *tport;
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
int ret;
int rx_bytes = 0;
rx_bytes = (msm_port->tx_fifo_width * (rx_fifo_wc - 1)) >> 3;
rx_bytes += ((rx_last && rx_last_byte_valid) ?
rx_last_byte_valid : msm_port->tx_fifo_width >> 3);
tport = &uport->state->port;
ioread32_rep((uport->membase + SE_GENI_RX_FIFOn), msm_port->rx_fifo,
rx_fifo_wc);
if (drop_rx)
return 0;
rx_char = (unsigned char *)msm_port->rx_fifo;
ret = tty_insert_flip_string(tport, rx_char, rx_bytes);
if (ret != rx_bytes) {
dev_err(uport->dev, "%s: ret %d rx_bytes %d\n", __func__,
ret, rx_bytes);
WARN_ON(1);
}
uport->icount.rx += ret;
tty_flip_buffer_push(tport);
dump_ipc(msm_port->ipc_log_rx, "Rx", (char *)msm_port->rx_fifo, 0,
rx_bytes);
return ret;
}
static int msm_geni_serial_handle_rx(struct uart_port *uport, bool drop_rx)
{
int ret = 0;
unsigned int rx_fifo_status;
unsigned int rx_fifo_wc = 0;
unsigned int rx_last_byte_valid = 0;
unsigned int rx_last = 0;
struct tty_port *tport;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
tport = &uport->state->port;
rx_fifo_status = geni_read_reg_nolog(uport->membase,
SE_GENI_RX_FIFO_STATUS);
rx_fifo_wc = rx_fifo_status & RX_FIFO_WC_MSK;
rx_last_byte_valid = ((rx_fifo_status & RX_LAST_BYTE_VALID_MSK) >>
RX_LAST_BYTE_VALID_SHFT);
rx_last = rx_fifo_status & RX_LAST;
if (rx_fifo_wc)
port->handle_rx(uport, rx_fifo_wc, rx_last_byte_valid,
rx_last, drop_rx);
return ret;
}
static int msm_geni_serial_handle_tx(struct uart_port *uport)
{
int ret = 0;
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
struct circ_buf *xmit = &uport->state->xmit;
unsigned int avail_fifo_bytes = 0;
unsigned int bytes_remaining = 0;
int i = 0;
unsigned int tx_fifo_status;
unsigned int xmit_size;
unsigned int fifo_width_bytes =
(uart_console(uport) ? 1 : (msm_port->tx_fifo_width >> 3));
int temp_tail = 0;
xmit_size = uart_circ_chars_pending(xmit);
tx_fifo_status = geni_read_reg_nolog(uport->membase,
SE_GENI_TX_FIFO_STATUS);
/* Both FIFO and framework buffer are drained */
if (!xmit_size && !tx_fifo_status) {
msm_geni_serial_stop_tx(uport);
goto exit_handle_tx;
}
avail_fifo_bytes = (msm_port->tx_fifo_depth - msm_port->tx_wm) *
fifo_width_bytes;
temp_tail = xmit->tail & (UART_XMIT_SIZE - 1);
if (xmit_size > (UART_XMIT_SIZE - temp_tail))
xmit_size = (UART_XMIT_SIZE - temp_tail);
if (xmit_size > avail_fifo_bytes)
xmit_size = avail_fifo_bytes;
if (!xmit_size)
goto exit_handle_tx;
msm_geni_serial_setup_tx(uport, xmit_size);
bytes_remaining = xmit_size;
while (i < xmit_size) {
unsigned int tx_bytes;
unsigned int buf = 0;
int c;
tx_bytes = ((bytes_remaining < fifo_width_bytes) ?
bytes_remaining : fifo_width_bytes);
for (c = 0; c < tx_bytes ; c++)
buf |= (xmit->buf[temp_tail + c] << (c * 8));
geni_write_reg_nolog(buf, uport->membase, SE_GENI_TX_FIFOn);
i += tx_bytes;
bytes_remaining -= tx_bytes;
uport->icount.tx += tx_bytes;
temp_tail += tx_bytes;
/* Ensure FIFO write goes through */
wmb();
}
xmit->tail = temp_tail & (UART_XMIT_SIZE - 1);
if (uart_console(uport))
msm_geni_serial_poll_cancel_tx(uport);
exit_handle_tx:
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(uport);
return ret;
}
static int msm_geni_serial_handle_dma_rx(struct uart_port *uport, bool drop_rx)
{
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
unsigned int rx_bytes = 0;
struct tty_port *tport;
int ret;
unsigned int geni_status;
geni_status = geni_read_reg_nolog(uport->membase, SE_GENI_STATUS);
/* Possible stop rx is called */
if (!(geni_status & S_GENI_CMD_ACTIVE))
return 0;
geni_se_rx_dma_unprep(msm_port->wrapper_dev, msm_port->rx_dma,
DMA_RX_BUF_SIZE);
msm_port->rx_dma = (dma_addr_t)NULL;
rx_bytes = geni_read_reg_nolog(uport->membase, SE_DMA_RX_LEN_IN);
if (unlikely(!msm_port->rx_buf)) {
IPC_LOG_MSG(msm_port->ipc_log_rx, "%s: NULL Rx_buf\n",
__func__);
return 0;
}
if (unlikely(!rx_bytes)) {
IPC_LOG_MSG(msm_port->ipc_log_rx, "%s: Size %d\n",
__func__, rx_bytes);
goto exit_handle_dma_rx;
}
if (drop_rx)
goto exit_handle_dma_rx;
tport = &uport->state->port;
ret = tty_insert_flip_string(tport, (unsigned char *)(msm_port->rx_buf),
rx_bytes);
if (ret != rx_bytes) {
dev_err(uport->dev, "%s: ret %d rx_bytes %d\n", __func__,
ret, rx_bytes);
WARN_ON(1);
}
uport->icount.rx += ret;
tty_flip_buffer_push(tport);
dump_ipc(msm_port->ipc_log_rx, "DMA Rx", (char *)msm_port->rx_buf, 0,
rx_bytes);
exit_handle_dma_rx:
ret = geni_se_rx_dma_prep(msm_port->wrapper_dev, uport->membase,
msm_port->rx_buf, DMA_RX_BUF_SIZE, &msm_port->rx_dma);
if (ret)
IPC_LOG_MSG(msm_port->ipc_log_rx, "%s: %d\n", __func__, ret);
return ret;
}
static int msm_geni_serial_handle_dma_tx(struct uart_port *uport)
{
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
struct circ_buf *xmit = &uport->state->xmit;
xmit->tail = (xmit->tail + msm_port->xmit_size) & (UART_XMIT_SIZE - 1);
geni_se_tx_dma_unprep(msm_port->wrapper_dev, msm_port->tx_dma,
msm_port->xmit_size);
uport->icount.tx += msm_port->xmit_size;
msm_port->tx_dma = (dma_addr_t)NULL;
msm_port->xmit_size = 0;
if (!uart_circ_empty(xmit))
msm_geni_serial_prep_dma_tx(uport);
else {
/*
* This will balance out the power vote put in during start_tx
* allowing the device to suspend.
*/
if (!uart_console(uport)) {
IPC_LOG_MSG(msm_port->ipc_log_misc,
"%s.Power Off.\n", __func__);
msm_geni_serial_power_off(uport);
}
uart_write_wakeup(uport);
}
return 0;
}
static irqreturn_t msm_geni_serial_isr(int isr, void *dev)
{
unsigned int m_irq_status;
unsigned int s_irq_status;
unsigned int dma;
unsigned int dma_tx_status;
unsigned int dma_rx_status;
struct uart_port *uport = dev;
unsigned long flags;
unsigned int m_irq_en;
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
struct tty_port *tport = &uport->state->port;
bool drop_rx = false;
spin_lock_irqsave(&uport->lock, flags);
if (uart_console(uport) && uport->suspended)
goto exit_geni_serial_isr;
if (!uart_console(uport) && pm_runtime_status_suspended(uport->dev)) {
dev_err(uport->dev, "%s.Device is suspended.\n", __func__);
IPC_LOG_MSG(msm_port->ipc_log_misc,
"%s.Device is suspended.\n", __func__);
goto exit_geni_serial_isr;
}
m_irq_status = geni_read_reg_nolog(uport->membase,
SE_GENI_M_IRQ_STATUS);
s_irq_status = geni_read_reg_nolog(uport->membase,
SE_GENI_S_IRQ_STATUS);
m_irq_en = geni_read_reg_nolog(uport->membase, SE_GENI_M_IRQ_EN);
dma = geni_read_reg_nolog(uport->membase, SE_GENI_DMA_MODE_EN);
dma_tx_status = geni_read_reg_nolog(uport->membase, SE_DMA_TX_IRQ_STAT);
dma_rx_status = geni_read_reg_nolog(uport->membase, SE_DMA_RX_IRQ_STAT);
geni_write_reg_nolog(m_irq_status, uport->membase, SE_GENI_M_IRQ_CLEAR);
geni_write_reg_nolog(s_irq_status, uport->membase, SE_GENI_S_IRQ_CLEAR);
if ((m_irq_status & M_ILLEGAL_CMD_EN)) {
WARN_ON(1);
goto exit_geni_serial_isr;
}
if (s_irq_status & S_RX_FIFO_WR_ERR_EN) {
uport->icount.overrun++;
tty_insert_flip_char(tport, 0, TTY_OVERRUN);
IPC_LOG_MSG(msm_port->ipc_log_misc,
"%s.sirq 0x%x buf_overrun:%d\n",
__func__, s_irq_status, uport->icount.buf_overrun);
}
if (!dma) {
if ((m_irq_status & m_irq_en) &
(M_TX_FIFO_WATERMARK_EN | M_CMD_DONE_EN))
msm_geni_serial_handle_tx(uport);
if ((s_irq_status & S_GP_IRQ_0_EN) ||
(s_irq_status & S_GP_IRQ_1_EN)) {
if (s_irq_status & S_GP_IRQ_0_EN)
uport->icount.parity++;
IPC_LOG_MSG(msm_port->ipc_log_misc,
"%s.sirq 0x%x parity:%d\n",
__func__, s_irq_status, uport->icount.parity);
drop_rx = true;
} else if ((s_irq_status & S_GP_IRQ_2_EN) ||
(s_irq_status & S_GP_IRQ_3_EN)) {
uport->icount.brk++;
IPC_LOG_MSG(msm_port->ipc_log_misc,
"%s.sirq 0x%x break:%d\n",
__func__, s_irq_status, uport->icount.brk);
}
if ((s_irq_status & S_RX_FIFO_WATERMARK_EN) ||
(s_irq_status & S_RX_FIFO_LAST_EN))
msm_geni_serial_handle_rx(uport, drop_rx);
} else {
if (dma_tx_status) {
geni_write_reg_nolog(dma_tx_status, uport->membase,
SE_DMA_TX_IRQ_CLR);
if (dma_tx_status & TX_DMA_DONE)
msm_geni_serial_handle_dma_tx(uport);
}
if (dma_rx_status) {
geni_write_reg_nolog(dma_rx_status, uport->membase,
SE_DMA_RX_IRQ_CLR);
if (dma_rx_status & RX_RESET_DONE) {
IPC_LOG_MSG(msm_port->ipc_log_misc,
"%s.Reset done. 0x%x.\n",
__func__, dma_rx_status);
goto exit_geni_serial_isr;
}
if (dma_rx_status & UART_DMA_RX_ERRS) {
if (dma_rx_status & UART_DMA_RX_PARITY_ERR)
uport->icount.parity++;
IPC_LOG_MSG(msm_port->ipc_log_misc,
"%s.Rx Errors. 0x%x parity:%d\n",
__func__, dma_rx_status,
uport->icount.parity);
drop_rx = true;
} else if (dma_rx_status & UART_DMA_RX_BREAK) {
uport->icount.brk++;
IPC_LOG_MSG(msm_port->ipc_log_misc,
"%s.Rx Errors. 0x%x break:%d\n",
__func__, dma_rx_status,
uport->icount.brk);
}
if (dma_rx_status & RX_DMA_DONE)
msm_geni_serial_handle_dma_rx(uport, drop_rx);
}
}
exit_geni_serial_isr:
spin_unlock_irqrestore(&uport->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t msm_geni_wakeup_isr(int isr, void *dev)
{
struct uart_port *uport = dev;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
struct tty_struct *tty;
unsigned long flags;
spin_lock_irqsave(&uport->lock, flags);
IPC_LOG_MSG(port->ipc_log_rx, "%s: Edge-Count %d\n", __func__,
port->edge_count);
if (port->wakeup_byte && (port->edge_count == 2)) {
tty = uport->state->port.tty;
tty_insert_flip_char(tty->port, port->wakeup_byte, TTY_NORMAL);
IPC_LOG_MSG(port->ipc_log_rx, "%s: Inject 0x%x\n",
__func__, port->wakeup_byte);
port->edge_count = 0;
tty_flip_buffer_push(tty->port);
__pm_wakeup_event(&port->geni_wake, WAKEBYTE_TIMEOUT_MSEC);
} else if (port->edge_count < 2) {
port->edge_count++;
}
spin_unlock_irqrestore(&uport->lock, flags);
return IRQ_HANDLED;
}
static int get_tx_fifo_size(struct msm_geni_serial_port *port)
{
struct uart_port *uport;
if (!port)
return -ENODEV;
uport = &port->uport;
port->tx_fifo_depth = get_tx_fifo_depth(uport->membase);
if (!port->tx_fifo_depth) {
dev_err(uport->dev, "%s:Invalid TX FIFO depth read\n",
__func__);
return -ENXIO;
}
port->tx_fifo_width = get_tx_fifo_width(uport->membase);
if (!port->tx_fifo_width) {
dev_err(uport->dev, "%s:Invalid TX FIFO width read\n",
__func__);
return -ENXIO;
}
port->rx_fifo_depth = get_rx_fifo_depth(uport->membase);
if (!port->rx_fifo_depth) {
dev_err(uport->dev, "%s:Invalid RX FIFO depth read\n",
__func__);
return -ENXIO;
}
uport->fifosize =
((port->tx_fifo_depth * port->tx_fifo_width) >> 3);
return 0;
}
static void set_rfr_wm(struct msm_geni_serial_port *port)
{
/*
* Set RFR (Flow off) to FIFO_DEPTH - 2.
* RX WM level at 50% RX_FIFO_DEPTH.
* TX WM level at 10% TX_FIFO_DEPTH.
*/
port->rx_rfr = port->rx_fifo_depth - 2;
if (!uart_console(&port->uport))
port->rx_wm = port->rx_fifo_depth >> 1;
else
port->rx_wm = UART_CONSOLE_RX_WM;
port->tx_wm = 2;
}
static void msm_geni_serial_shutdown(struct uart_port *uport)
{
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
unsigned long flags;
/* Stop the console before stopping the current tx */
if (uart_console(uport)) {
console_stop(uport->cons);
} else {
msm_geni_serial_power_on(uport);
wait_for_transfers_inflight(uport);
}
disable_irq(uport->irq);
free_irq(uport->irq, uport);
spin_lock_irqsave(&uport->lock, flags);
msm_geni_serial_stop_tx(uport);
msm_geni_serial_stop_rx(uport);
spin_unlock_irqrestore(&uport->lock, flags);
if (!uart_console(uport)) {
if (msm_port->ioctl_count) {
int i;
for (i = 0; i < msm_port->ioctl_count; i++) {
IPC_LOG_MSG(msm_port->ipc_log_pwr,
"%s IOCTL vote present. Forcing off\n",
__func__);
msm_geni_serial_power_off(uport);
}
msm_port->ioctl_count = 0;
}
msm_geni_serial_power_off(uport);
if (msm_port->wakeup_irq > 0) {
irq_set_irq_wake(msm_port->wakeup_irq, 0);
disable_irq(msm_port->wakeup_irq);
free_irq(msm_port->wakeup_irq, uport);
}
}
IPC_LOG_MSG(msm_port->ipc_log_misc, "%s\n", __func__);
}
static int msm_geni_serial_port_setup(struct uart_port *uport)
{
int ret = 0;
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
unsigned long cfg0, cfg1;
unsigned int rxstale = DEFAULT_BITS_PER_CHAR * STALE_TIMEOUT;
set_rfr_wm(msm_port);
geni_write_reg_nolog(rxstale, uport->membase, SE_UART_RX_STALE_CNT);
if (!uart_console(uport)) {
/* For now only assume FIFO mode. */
msm_port->xfer_mode = SE_DMA;
se_get_packing_config(8, 4, false, &cfg0, &cfg1);
geni_write_reg_nolog(cfg0, uport->membase,
SE_GENI_TX_PACKING_CFG0);
geni_write_reg_nolog(cfg1, uport->membase,
SE_GENI_TX_PACKING_CFG1);
geni_write_reg_nolog(cfg0, uport->membase,
SE_GENI_RX_PACKING_CFG0);
geni_write_reg_nolog(cfg1, uport->membase,
SE_GENI_RX_PACKING_CFG1);
msm_port->handle_rx = handle_rx_hs;
msm_port->rx_fifo = devm_kzalloc(uport->dev,
sizeof(msm_port->rx_fifo_depth * sizeof(u32)),
GFP_KERNEL);
if (!msm_port->rx_fifo) {
ret = -ENOMEM;
goto exit_portsetup;
}
msm_port->rx_buf = devm_kzalloc(uport->dev, DMA_RX_BUF_SIZE,
GFP_KERNEL);
if (!msm_port->rx_buf) {
devm_kfree(uport->dev, msm_port->rx_fifo);
msm_port->rx_fifo = NULL;
ret = -ENOMEM;
goto exit_portsetup;
}
} else {
/*
* Make an unconditional cancel on the main sequencer to reset
* it else we could end up in data loss scenarios.
*/
msm_port->xfer_mode = FIFO_MODE;
msm_geni_serial_poll_cancel_tx(uport);
se_get_packing_config(8, 1, false, &cfg0, &cfg1);
geni_write_reg_nolog(cfg0, uport->membase,
SE_GENI_TX_PACKING_CFG0);
geni_write_reg_nolog(cfg1, uport->membase,
SE_GENI_TX_PACKING_CFG1);
se_get_packing_config(8, 4, false, &cfg0, &cfg1);
geni_write_reg_nolog(cfg0, uport->membase,
SE_GENI_RX_PACKING_CFG0);
geni_write_reg_nolog(cfg1, uport->membase,
SE_GENI_RX_PACKING_CFG1);
}
ret = geni_se_init(uport->membase, msm_port->rx_wm, msm_port->rx_rfr);
if (ret) {
dev_err(uport->dev, "%s: Fail\n", __func__);
goto exit_portsetup;
}
ret = geni_se_select_mode(uport->membase, msm_port->xfer_mode);
if (ret)
goto exit_portsetup;
msm_port->port_setup = true;
/*
* Ensure Port setup related IO completes before returning to
* framework.
*/
mb();
exit_portsetup:
return ret;
}
static int msm_geni_serial_startup(struct uart_port *uport)
{
int ret = 0;
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
scnprintf(msm_port->name, sizeof(msm_port->name), "msm_serial_geni%d",
uport->line);
if (likely(!uart_console(uport))) {
ret = msm_geni_serial_power_on(&msm_port->uport);
if (ret) {
dev_err(uport->dev, "%s:Failed to power on %d\n",
__func__, ret);
return ret;
}
}
if (unlikely(get_se_proto(uport->membase) != UART)) {
dev_err(uport->dev, "%s: Invalid FW %d loaded.\n",
__func__, get_se_proto(uport->membase));
ret = -ENXIO;
goto exit_startup;
}
IPC_LOG_MSG(msm_port->ipc_log_misc, "%s: FW Ver:0x%x%x\n",
__func__,
get_se_m_fw(uport->membase), get_se_s_fw(uport->membase));
get_tx_fifo_size(msm_port);
if (!msm_port->port_setup) {
if (msm_geni_serial_port_setup(uport))
goto exit_startup;
}
/*
* Ensure that all the port configuration writes complete
* before returning to the framework.
*/
mb();
ret = request_irq(uport->irq, msm_geni_serial_isr, IRQF_TRIGGER_HIGH,
msm_port->name, uport);
if (unlikely(ret)) {
dev_err(uport->dev, "%s: Failed to get IRQ ret %d\n",
__func__, ret);
goto exit_startup;
}
if (msm_port->wakeup_irq > 0) {
ret = request_irq(msm_port->wakeup_irq, msm_geni_wakeup_isr,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"hs_uart_wakeup", uport);
if (unlikely(ret)) {
dev_err(uport->dev, "%s:Failed to get WakeIRQ ret%d\n",
__func__, ret);
goto exit_startup;
}
disable_irq(msm_port->wakeup_irq);
ret = irq_set_irq_wake(msm_port->wakeup_irq, 1);
if (unlikely(ret)) {
dev_err(uport->dev, "%s:Failed to set IRQ wake:%d\n",
__func__, ret);
goto exit_startup;
}
}
IPC_LOG_MSG(msm_port->ipc_log_misc, "%s\n", __func__);
exit_startup:
if (likely(!uart_console(uport)))
msm_geni_serial_power_off(&msm_port->uport);
return ret;
}
static int get_clk_cfg(unsigned long clk_freq, unsigned long *ser_clk)
{
unsigned long root_freq[] = {7372800, 14745600, 19200000, 29491200,
32000000, 48000000, 64000000, 80000000, 96000000, 100000000,
102400000, 112000000, 120000000, 128000000};
int i;
int match = -1;
for (i = 0; i < ARRAY_SIZE(root_freq); i++) {
if (clk_freq > root_freq[i])
continue;
if (!(root_freq[i] % clk_freq)) {
match = i;
break;
}
}
if (match != -1)
*ser_clk = root_freq[match];
else
pr_err("clk_freq %ld\n", clk_freq);
return match;
}
static void geni_serial_write_term_regs(struct uart_port *uport, u32 loopback,
u32 tx_trans_cfg, u32 tx_parity_cfg, u32 rx_trans_cfg,
u32 rx_parity_cfg, u32 bits_per_char, u32 stop_bit_len,
u32 s_clk_cfg)
{
geni_write_reg_nolog(loopback, uport->membase, SE_UART_LOOPBACK_CFG);
geni_write_reg_nolog(tx_trans_cfg, uport->membase,
SE_UART_TX_TRANS_CFG);
geni_write_reg_nolog(tx_parity_cfg, uport->membase,
SE_UART_TX_PARITY_CFG);
geni_write_reg_nolog(rx_trans_cfg, uport->membase,
SE_UART_RX_TRANS_CFG);
geni_write_reg_nolog(rx_parity_cfg, uport->membase,
SE_UART_RX_PARITY_CFG);
geni_write_reg_nolog(bits_per_char, uport->membase,
SE_UART_TX_WORD_LEN);
geni_write_reg_nolog(bits_per_char, uport->membase,
SE_UART_RX_WORD_LEN);
geni_write_reg_nolog(stop_bit_len, uport->membase,
SE_UART_TX_STOP_BIT_LEN);
geni_write_reg_nolog(s_clk_cfg, uport->membase, GENI_SER_M_CLK_CFG);
geni_write_reg_nolog(s_clk_cfg, uport->membase, GENI_SER_S_CLK_CFG);
}
static int get_clk_div_rate(unsigned int baud, unsigned long *desired_clk_rate)
{
unsigned long ser_clk;
int dfs_index;
int clk_div = 0;
*desired_clk_rate = baud * UART_OVERSAMPLING;
dfs_index = get_clk_cfg(*desired_clk_rate, &ser_clk);
if (dfs_index < 0) {
pr_err("%s: Can't find matching DFS entry for baud %d\n",
__func__, baud);
clk_div = -EINVAL;
goto exit_get_clk_div_rate;
}
clk_div = ser_clk / *desired_clk_rate;
*desired_clk_rate = ser_clk;
exit_get_clk_div_rate:
return clk_div;
}
static void msm_geni_serial_set_termios(struct uart_port *uport,
struct ktermios *termios, struct ktermios *old)
{
unsigned int baud;
unsigned int bits_per_char = 0;
unsigned int tx_trans_cfg;
unsigned int tx_parity_cfg;
unsigned int rx_trans_cfg;
unsigned int rx_parity_cfg;
unsigned int stop_bit_len;
unsigned int clk_div;
unsigned long ser_clk_cfg = 0;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
unsigned long clk_rate;
unsigned long flags;
if (!uart_console(uport)) {
int ret = msm_geni_serial_power_on(uport);
if (ret) {
IPC_LOG_MSG(port->ipc_log_misc,
"%s: Failed to vote clock on:%d\n",
__func__, ret);
return;
}
}
/* Take a spinlock else stop_rx causes a race with an ISR due to Cancel
* and FSM_RESET. This also has a potential race with the dma_map/unmap
* operations of ISR.
*/
spin_lock_irqsave(&uport->lock, flags);
msm_geni_serial_stop_rx(uport);
spin_unlock_irqrestore(&uport->lock, flags);
/* baud rate */
baud = uart_get_baud_rate(uport, termios, old, 300, 4000000);
port->cur_baud = baud;
clk_div = get_clk_div_rate(baud, &clk_rate);
if (clk_div <= 0)
goto exit_set_termios;
uport->uartclk = clk_rate;
clk_set_rate(port->serial_rsc.se_clk, clk_rate);
ser_clk_cfg |= SER_CLK_EN;
ser_clk_cfg |= (clk_div << CLK_DIV_SHFT);
/* parity */
tx_trans_cfg = geni_read_reg_nolog(uport->membase,
SE_UART_TX_TRANS_CFG);
tx_parity_cfg = geni_read_reg_nolog(uport->membase,
SE_UART_TX_PARITY_CFG);
rx_trans_cfg = geni_read_reg_nolog(uport->membase,
SE_UART_RX_TRANS_CFG);
rx_parity_cfg = geni_read_reg_nolog(uport->membase,
SE_UART_RX_PARITY_CFG);
if (termios->c_cflag & PARENB) {
tx_trans_cfg |= UART_TX_PAR_EN;
rx_trans_cfg |= UART_RX_PAR_EN;
tx_parity_cfg |= PAR_CALC_EN;
rx_parity_cfg |= PAR_CALC_EN;
if (termios->c_cflag & PARODD) {
tx_parity_cfg |= PAR_ODD;
rx_parity_cfg |= PAR_ODD;
} else if (termios->c_cflag & CMSPAR) {
tx_parity_cfg |= PAR_SPACE;
rx_parity_cfg |= PAR_SPACE;
} else {
tx_parity_cfg |= PAR_EVEN;
rx_parity_cfg |= PAR_EVEN;
}
} else {
tx_trans_cfg &= ~UART_TX_PAR_EN;
rx_trans_cfg &= ~UART_RX_PAR_EN;
tx_parity_cfg &= ~PAR_CALC_EN;
rx_parity_cfg &= ~PAR_CALC_EN;
}
/* bits per char */
switch (termios->c_cflag & CSIZE) {
case CS5:
bits_per_char = 5;
break;
case CS6:
bits_per_char = 6;
break;
case CS7:
bits_per_char = 7;
break;
case CS8:
default:
bits_per_char = 8;
break;
}
/* stop bits */
if (termios->c_cflag & CSTOPB)
stop_bit_len = TX_STOP_BIT_LEN_2;
else
stop_bit_len = TX_STOP_BIT_LEN_1;
/* flow control, clear the CTS_MASK bit if using flow control. */
if (termios->c_cflag & CRTSCTS)
tx_trans_cfg &= ~UART_CTS_MASK;
else
tx_trans_cfg |= UART_CTS_MASK;
/* status bits to ignore */
if (likely(baud))
uart_update_timeout(uport, termios->c_cflag, baud);
geni_serial_write_term_regs(uport, port->loopback, tx_trans_cfg,
tx_parity_cfg, rx_trans_cfg, rx_parity_cfg, bits_per_char,
stop_bit_len, ser_clk_cfg);
IPC_LOG_MSG(port->ipc_log_misc, "%s: baud %d\n", __func__, baud);
IPC_LOG_MSG(port->ipc_log_misc, "Tx: trans_cfg%d parity %d\n",
tx_trans_cfg, tx_parity_cfg);
IPC_LOG_MSG(port->ipc_log_misc, "Rx: trans_cfg%d parity %d",
rx_trans_cfg, rx_parity_cfg);
IPC_LOG_MSG(port->ipc_log_misc, "BitsChar%d stop bit%d\n",
bits_per_char, stop_bit_len);
exit_set_termios:
msm_geni_serial_start_rx(uport);
if (!uart_console(uport))
msm_geni_serial_power_off(uport);
return;
}
static unsigned int msm_geni_serial_tx_empty(struct uart_port *uport)
{
unsigned int tx_fifo_status;
unsigned int is_tx_empty = 1;
struct msm_geni_serial_port *port = GET_DEV_PORT(uport);
if (!uart_console(uport) && device_pending_suspend(uport))
return 1;
if (port->xfer_mode == SE_DMA)
tx_fifo_status = port->tx_dma ? 1 : 0;
else
tx_fifo_status = geni_read_reg_nolog(uport->membase,
SE_GENI_TX_FIFO_STATUS);
if (tx_fifo_status)
is_tx_empty = 0;
return is_tx_empty;
}
static ssize_t msm_geni_serial_xfer_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_geni_serial_port *port = platform_get_drvdata(pdev);
ssize_t ret = 0;
if (port->xfer_mode == FIFO_MODE)
ret = snprintf(buf, sizeof("FIFO\n"), "FIFO\n");
else if (port->xfer_mode == SE_DMA)
ret = snprintf(buf, sizeof("SE_DMA\n"), "SE_DMA\n");
return ret;
}
static ssize_t msm_geni_serial_xfer_mode_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t size)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_geni_serial_port *port = platform_get_drvdata(pdev);
struct uart_port *uport = &port->uport;
int xfer_mode = port->xfer_mode;
unsigned long flags;
if (uart_console(uport))
return -EOPNOTSUPP;
if (strnstr(buf, "FIFO", strlen("FIFO"))) {
xfer_mode = FIFO_MODE;
} else if (strnstr(buf, "SE_DMA", strlen("SE_DMA"))) {
xfer_mode = SE_DMA;
} else {
dev_err(dev, "%s: Invalid input %s\n", __func__, buf);
return -EINVAL;
}
if (xfer_mode == port->xfer_mode)
return size;
msm_geni_serial_power_on(uport);
spin_lock_irqsave(&uport->lock, flags);
msm_geni_serial_stop_tx(uport);
msm_geni_serial_stop_rx(uport);
port->xfer_mode = xfer_mode;
geni_se_select_mode(uport->membase, port->xfer_mode);
spin_unlock_irqrestore(&uport->lock, flags);
msm_geni_serial_start_rx(uport);
msm_geni_serial_power_off(uport);
return size;
}
static DEVICE_ATTR(xfer_mode, 0644, msm_geni_serial_xfer_mode_show,
msm_geni_serial_xfer_mode_store);
#if defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(CONFIG_CONSOLE_POLL)
static int __init msm_geni_console_setup(struct console *co, char *options)
{
struct uart_port *uport;
struct msm_geni_serial_port *dev_port;
int baud = 115200;
int bits = 8;
int parity = 'n';
int flow = 'n';
int ret = 0;
if (unlikely(co->index >= GENI_UART_NR_PORTS || co->index < 0))
return -ENXIO;
dev_port = get_port_from_line(co->index, true);
if (IS_ERR_OR_NULL(dev_port)) {
ret = PTR_ERR(dev_port);
pr_err("Invalid line %d(%d)\n", co->index, ret);
return ret;
}
uport = &dev_port->uport;
if (unlikely(!uport->membase))
return -ENXIO;
if (se_geni_resources_on(&dev_port->serial_rsc))
WARN_ON(1);
if (unlikely(get_se_proto(uport->membase) != UART)) {
se_geni_resources_off(&dev_port->serial_rsc);
return -ENXIO;
}
if (!dev_port->port_setup) {
msm_geni_serial_stop_rx(uport);
msm_geni_serial_port_setup(uport);
}
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
return uart_set_options(uport, co, baud, parity, bits, flow);
}
static void
msm_geni_serial_early_console_write(struct console *con, const char *s,
unsigned int n)
{
struct earlycon_device *dev = con->data;
__msm_geni_serial_console_write(&dev->port, s, n);
}
static int __init
msm_geni_serial_earlycon_setup(struct earlycon_device *dev,
const char *opt)
{
struct uart_port *uport = &dev->port;
int ret = 0;
u32 tx_trans_cfg = 0;
u32 tx_parity_cfg = 0;
u32 rx_trans_cfg = 0;
u32 rx_parity_cfg = 0;
u32 stop_bit = 0;
u32 rx_stale = 0;
u32 bits_per_char = 0;
u32 s_clk_cfg = 0;
u32 baud = 115200;
u32 clk_div;
unsigned long clk_rate;
unsigned long cfg0, cfg1;
if (!uport->membase) {
ret = -ENOMEM;
goto exit_geni_serial_earlyconsetup;
}
if (get_se_proto(uport->membase) != UART) {
ret = -ENXIO;
goto exit_geni_serial_earlyconsetup;
}
/*
* Ignore Flow control.
* Disable Tx Parity.
* Don't check Parity during Rx.
* Disable Rx Parity.
* n = 8.
* Stop bit = 0.
* Stale timeout in bit-time (3 chars worth).
*/
tx_trans_cfg |= UART_CTS_MASK;
tx_parity_cfg = 0;
rx_trans_cfg = 0;
rx_parity_cfg = 0;
bits_per_char = 0x8;
stop_bit = 0;
rx_stale = 0x18;
clk_div = get_clk_div_rate(baud, &clk_rate);
if (clk_div <= 0) {
ret = -EINVAL;
goto exit_geni_serial_earlyconsetup;
}
s_clk_cfg |= SER_CLK_EN;
s_clk_cfg |= (clk_div << CLK_DIV_SHFT);
/*
* Make an unconditional cancel on the main sequencer to reset
* it else we could end up in data loss scenarios.
*/
msm_geni_serial_poll_cancel_tx(uport);
msm_geni_serial_abort_rx(uport);
se_get_packing_config(8, 1, false, &cfg0, &cfg1);
geni_se_init(uport->membase, (DEF_FIFO_DEPTH_WORDS >> 1),
(DEF_FIFO_DEPTH_WORDS - 2));
geni_se_select_mode(uport->membase, FIFO_MODE);
geni_write_reg_nolog(cfg0, uport->membase, SE_GENI_TX_PACKING_CFG0);
geni_write_reg_nolog(cfg1, uport->membase, SE_GENI_TX_PACKING_CFG1);
geni_write_reg_nolog(tx_trans_cfg, uport->membase,
SE_UART_TX_TRANS_CFG);
geni_write_reg_nolog(tx_parity_cfg, uport->membase,
SE_UART_TX_PARITY_CFG);
geni_write_reg_nolog(rx_trans_cfg, uport->membase,
SE_UART_RX_TRANS_CFG);
geni_write_reg_nolog(rx_parity_cfg, uport->membase,
SE_UART_RX_PARITY_CFG);
geni_write_reg_nolog(bits_per_char, uport->membase,
SE_UART_TX_WORD_LEN);
geni_write_reg_nolog(bits_per_char, uport->membase,
SE_UART_RX_WORD_LEN);
geni_write_reg_nolog(stop_bit, uport->membase, SE_UART_TX_STOP_BIT_LEN);
geni_write_reg_nolog(s_clk_cfg, uport->membase, GENI_SER_M_CLK_CFG);
geni_write_reg_nolog(s_clk_cfg, uport->membase, GENI_SER_S_CLK_CFG);
dev->con->write = msm_geni_serial_early_console_write;
dev->con->setup = NULL;
/*
* Ensure that the early console setup completes before
* returning.
*/
mb();
exit_geni_serial_earlyconsetup:
return ret;
}
OF_EARLYCON_DECLARE(msm_geni_serial, "qcom,msm-geni-console",
msm_geni_serial_earlycon_setup);
static int console_register(struct uart_driver *drv)
{
return uart_register_driver(drv);
}
static void console_unregister(struct uart_driver *drv)
{
uart_unregister_driver(drv);
}
static struct console cons_ops = {
.name = "ttyMSM",
.write = msm_geni_serial_console_write,
.device = uart_console_device,
.setup = msm_geni_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &msm_geni_console_driver,
};
static struct uart_driver msm_geni_console_driver = {
.owner = THIS_MODULE,
.driver_name = "msm_geni_console",
.dev_name = "ttyMSM",
.nr = GENI_UART_NR_PORTS,
.cons = &cons_ops,
};
#else
static int console_register(struct uart_driver *drv)
{
return 0;
}
static void console_unregister(struct uart_driver *drv)
{
}
#endif /* defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(CONFIG_CONSOLE_POLL) */
static void msm_geni_serial_debug_init(struct uart_port *uport, bool console)
{
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
msm_port->dbg = debugfs_create_dir(dev_name(uport->dev), NULL);
if (IS_ERR_OR_NULL(msm_port->dbg))
dev_err(uport->dev, "Failed to create dbg dir\n");
if (!console) {
char name[30];
memset(name, 0, sizeof(name));
if (!msm_port->ipc_log_rx) {
scnprintf(name, sizeof(name), "%s%s",
dev_name(uport->dev), "_rx");
msm_port->ipc_log_rx = ipc_log_context_create(
IPC_LOG_TX_RX_PAGES, name, 0);
if (!msm_port->ipc_log_rx)
dev_info(uport->dev, "Err in Rx IPC Log\n");
}
memset(name, 0, sizeof(name));
if (!msm_port->ipc_log_tx) {
scnprintf(name, sizeof(name), "%s%s",
dev_name(uport->dev), "_tx");
msm_port->ipc_log_tx = ipc_log_context_create(
IPC_LOG_TX_RX_PAGES, name, 0);
if (!msm_port->ipc_log_tx)
dev_info(uport->dev, "Err in Tx IPC Log\n");
}
memset(name, 0, sizeof(name));
if (!msm_port->ipc_log_pwr) {
scnprintf(name, sizeof(name), "%s%s",
dev_name(uport->dev), "_pwr");
msm_port->ipc_log_pwr = ipc_log_context_create(
IPC_LOG_PWR_PAGES, name, 0);
if (!msm_port->ipc_log_pwr)
dev_info(uport->dev, "Err in Pwr IPC Log\n");
}
memset(name, 0, sizeof(name));
if (!msm_port->ipc_log_misc) {
scnprintf(name, sizeof(name), "%s%s",
dev_name(uport->dev), "_misc");
msm_port->ipc_log_misc = ipc_log_context_create(
IPC_LOG_MISC_PAGES, name, 0);
if (!msm_port->ipc_log_misc)
dev_info(uport->dev, "Err in Misc IPC Log\n");
}
}
}
static void msm_geni_serial_cons_pm(struct uart_port *uport,
unsigned int new_state, unsigned int old_state)
{
struct msm_geni_serial_port *msm_port = GET_DEV_PORT(uport);
if (unlikely(!uart_console(uport)))
return;
if (new_state == UART_PM_STATE_ON && old_state == UART_PM_STATE_OFF)
se_geni_resources_on(&msm_port->serial_rsc);
else if (new_state == UART_PM_STATE_OFF &&
old_state == UART_PM_STATE_ON)
se_geni_resources_off(&msm_port->serial_rsc);
}
static const struct uart_ops msm_geni_console_pops = {
.tx_empty = msm_geni_serial_tx_empty,
.stop_tx = msm_geni_serial_stop_tx,
.start_tx = msm_geni_serial_start_tx,
.stop_rx = msm_geni_serial_stop_rx,
.set_termios = msm_geni_serial_set_termios,
.startup = msm_geni_serial_startup,
.config_port = msm_geni_serial_config_port,
.shutdown = msm_geni_serial_shutdown,
.type = msm_geni_serial_get_type,
.set_mctrl = msm_geni_cons_set_mctrl,
.get_mctrl = msm_geni_cons_get_mctrl,
#ifdef CONFIG_CONSOLE_POLL
.poll_get_char = msm_geni_serial_get_char,
.poll_put_char = msm_geni_serial_poll_put_char,
#endif
.pm = msm_geni_serial_cons_pm,
};
static const struct uart_ops msm_geni_serial_pops = {
.tx_empty = msm_geni_serial_tx_empty,
.stop_tx = msm_geni_serial_stop_tx,
.start_tx = msm_geni_serial_start_tx,
.stop_rx = msm_geni_serial_stop_rx,
.set_termios = msm_geni_serial_set_termios,
.startup = msm_geni_serial_startup,
.config_port = msm_geni_serial_config_port,
.shutdown = msm_geni_serial_shutdown,
.type = msm_geni_serial_get_type,
.set_mctrl = msm_geni_serial_set_mctrl,
.get_mctrl = msm_geni_serial_get_mctrl,
.break_ctl = msm_geni_serial_break_ctl,
.flush_buffer = NULL,
.ioctl = msm_geni_serial_ioctl,
};
static const struct of_device_id msm_geni_device_tbl[] = {
#if defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(CONFIG_CONSOLE_POLL)
{ .compatible = "qcom,msm-geni-console",
.data = (void *)&msm_geni_console_driver},
#endif
{ .compatible = "qcom,msm-geni-serial-hs",
.data = (void *)&msm_geni_serial_hs_driver},
{},
};
static int msm_geni_serial_probe(struct platform_device *pdev)
{
int ret = 0;
int line;
struct msm_geni_serial_port *dev_port;
struct uart_port *uport;
struct resource *res;
struct uart_driver *drv;
const struct of_device_id *id;
bool is_console = false;
struct platform_device *wrapper_pdev;
struct device_node *wrapper_ph_node;
u32 wake_char = 0;
id = of_match_device(msm_geni_device_tbl, &pdev->dev);
if (id) {
dev_dbg(&pdev->dev, "%s: %s\n", __func__, id->compatible);
drv = (struct uart_driver *)id->data;
} else {
dev_err(&pdev->dev, "%s: No matching device found", __func__);
return -ENODEV;
}
if (pdev->dev.of_node) {
if (drv->cons)
line = of_alias_get_id(pdev->dev.of_node, "serial");
else
line = of_alias_get_id(pdev->dev.of_node, "hsuart");
} else {
line = pdev->id;
}
if (line < 0)
line = atomic_inc_return(&uart_line_id) - 1;
if ((line < 0) || (line >= GENI_UART_NR_PORTS))
return -ENXIO;
is_console = (drv->cons ? true : false);
dev_port = get_port_from_line(line, is_console);
if (IS_ERR_OR_NULL(dev_port)) {
ret = PTR_ERR(dev_port);
dev_err(&pdev->dev, "Invalid line %d(%d)\n",
line, ret);
goto exit_geni_serial_probe;
}
uport = &dev_port->uport;
/* Don't allow 2 drivers to access the same port */
if (uport->private_data) {
ret = -ENODEV;
goto exit_geni_serial_probe;
}
uport->dev = &pdev->dev;
wrapper_ph_node = of_parse_phandle(pdev->dev.of_node,
"qcom,wrapper-core", 0);
if (IS_ERR_OR_NULL(wrapper_ph_node)) {
ret = PTR_ERR(wrapper_ph_node);
goto exit_geni_serial_probe;
}
wrapper_pdev = of_find_device_by_node(wrapper_ph_node);
of_node_put(wrapper_ph_node);
if (IS_ERR_OR_NULL(wrapper_pdev)) {
ret = PTR_ERR(wrapper_pdev);
goto exit_geni_serial_probe;
}
dev_port->wrapper_dev = &wrapper_pdev->dev;
dev_port->serial_rsc.wrapper_dev = &wrapper_pdev->dev;
if (is_console)
ret = geni_se_resources_init(&dev_port->serial_rsc,
UART_CONSOLE_CORE2X_VOTE,
(DEFAULT_SE_CLK * DEFAULT_BUS_WIDTH));
else
ret = geni_se_resources_init(&dev_port->serial_rsc,
UART_CORE2X_VOTE,
(DEFAULT_SE_CLK * DEFAULT_BUS_WIDTH));
if (ret)
goto exit_geni_serial_probe;
dev_port->serial_rsc.ctrl_dev = &pdev->dev;
if (of_property_read_u32(pdev->dev.of_node, "qcom,wakeup-byte",
&wake_char)) {
dev_dbg(&pdev->dev, "No Wakeup byte specified\n");
} else {
dev_port->wakeup_byte = (u8)wake_char;
dev_info(&pdev->dev, "Wakeup byte 0x%x\n",
dev_port->wakeup_byte);
}
dev_port->serial_rsc.se_clk = devm_clk_get(&pdev->dev, "se-clk");
if (IS_ERR(dev_port->serial_rsc.se_clk)) {
ret = PTR_ERR(dev_port->serial_rsc.se_clk);
dev_err(&pdev->dev, "Err getting SE Core clk %d\n", ret);
goto exit_geni_serial_probe;
}
dev_port->serial_rsc.m_ahb_clk = devm_clk_get(&pdev->dev, "m-ahb");
if (IS_ERR(dev_port->serial_rsc.m_ahb_clk)) {
ret = PTR_ERR(dev_port->serial_rsc.m_ahb_clk);
dev_err(&pdev->dev, "Err getting M AHB clk %d\n", ret);
goto exit_geni_serial_probe;
}
dev_port->serial_rsc.s_ahb_clk = devm_clk_get(&pdev->dev, "s-ahb");
if (IS_ERR(dev_port->serial_rsc.s_ahb_clk)) {
ret = PTR_ERR(dev_port->serial_rsc.s_ahb_clk);
dev_err(&pdev->dev, "Err getting S AHB clk %d\n", ret);
goto exit_geni_serial_probe;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "se_phys");
if (!res) {
ret = -ENXIO;
dev_err(&pdev->dev, "Err getting IO region\n");
goto exit_geni_serial_probe;
}
uport->mapbase = res->start;
uport->membase = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!uport->membase) {
ret = -ENOMEM;
dev_err(&pdev->dev, "Err IO mapping serial iomem");
goto exit_geni_serial_probe;
}
/* Optional to use the Rx pin as wakeup irq */
dev_port->wakeup_irq = platform_get_irq(pdev, 1);
if ((dev_port->wakeup_irq < 0 && !is_console))
dev_info(&pdev->dev, "No wakeup IRQ configured\n");
dev_port->serial_rsc.geni_pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR_OR_NULL(dev_port->serial_rsc.geni_pinctrl)) {
dev_err(&pdev->dev, "No pinctrl config specified!\n");
ret = PTR_ERR(dev_port->serial_rsc.geni_pinctrl);
goto exit_geni_serial_probe;
}
dev_port->serial_rsc.geni_gpio_active =
pinctrl_lookup_state(dev_port->serial_rsc.geni_pinctrl,
PINCTRL_DEFAULT);
if (IS_ERR_OR_NULL(dev_port->serial_rsc.geni_gpio_active)) {
dev_err(&pdev->dev, "No default config specified!\n");
ret = PTR_ERR(dev_port->serial_rsc.geni_gpio_active);
goto exit_geni_serial_probe;
}
/*
* For clients who setup an Inband wakeup, leave the GPIO pins
* always connected to the core, else move the pins to their
* defined "sleep" state.
*/
if (dev_port->wakeup_irq > 0) {
dev_port->serial_rsc.geni_gpio_sleep =
dev_port->serial_rsc.geni_gpio_active;
} else {
dev_port->serial_rsc.geni_gpio_sleep =
pinctrl_lookup_state(dev_port->serial_rsc.geni_pinctrl,
PINCTRL_SLEEP);
if (IS_ERR_OR_NULL(dev_port->serial_rsc.geni_gpio_sleep)) {
dev_err(&pdev->dev, "No sleep config specified!\n");
ret = PTR_ERR(dev_port->serial_rsc.geni_gpio_sleep);
goto exit_geni_serial_probe;
}
}
wakeup_source_init(&dev_port->geni_wake, dev_name(&pdev->dev));
dev_port->tx_fifo_depth = DEF_FIFO_DEPTH_WORDS;
dev_port->rx_fifo_depth = DEF_FIFO_DEPTH_WORDS;
dev_port->tx_fifo_width = DEF_FIFO_WIDTH_BITS;
uport->fifosize =
((dev_port->tx_fifo_depth * dev_port->tx_fifo_width) >> 3);
uport->irq = platform_get_irq(pdev, 0);
if (uport->irq < 0) {
ret = uport->irq;
dev_err(&pdev->dev, "Failed to get IRQ %d\n", ret);
goto exit_geni_serial_probe;
}
uport->private_data = (void *)drv;
platform_set_drvdata(pdev, dev_port);
if (is_console) {
dev_port->handle_rx = handle_rx_console;
dev_port->rx_fifo = devm_kzalloc(uport->dev, sizeof(u32),
GFP_KERNEL);
} else {
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 150);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
}
dev_info(&pdev->dev, "Serial port%d added.FifoSize %d is_console%d\n",
line, uport->fifosize, is_console);
device_create_file(uport->dev, &dev_attr_loopback);
device_create_file(uport->dev, &dev_attr_xfer_mode);
msm_geni_serial_debug_init(uport, is_console);
dev_port->port_setup = false;
return uart_add_one_port(drv, uport);
exit_geni_serial_probe:
return ret;
}
static int msm_geni_serial_remove(struct platform_device *pdev)
{
struct msm_geni_serial_port *port = platform_get_drvdata(pdev);
struct uart_driver *drv =
(struct uart_driver *)port->uport.private_data;
wakeup_source_trash(&port->geni_wake);
uart_remove_one_port(drv, &port->uport);
return 0;
}
#ifdef CONFIG_PM
static int msm_geni_serial_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_geni_serial_port *port = platform_get_drvdata(pdev);
int ret = 0;
u32 geni_status = geni_read_reg_nolog(port->uport.membase,
SE_GENI_STATUS);
wait_for_transfers_inflight(&port->uport);
/*
* Disable Interrupt
* Manual RFR On.
* Stop Rx.
* Resources off
*/
disable_irq(port->uport.irq);
stop_rx_sequencer(&port->uport);
geni_status = geni_read_reg_nolog(port->uport.membase, SE_GENI_STATUS);
if ((geni_status & M_GENI_CMD_ACTIVE))
stop_tx_sequencer(&port->uport);
ret = se_geni_resources_off(&port->serial_rsc);
if (ret) {
dev_err(dev, "%s: Error ret %d\n", __func__, ret);
goto exit_runtime_suspend;
}
if (port->wakeup_irq > 0) {
port->edge_count = 0;
enable_irq(port->wakeup_irq);
}
IPC_LOG_MSG(port->ipc_log_pwr, "%s:\n", __func__);
__pm_relax(&port->geni_wake);
exit_runtime_suspend:
return ret;
}
static int msm_geni_serial_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_geni_serial_port *port = platform_get_drvdata(pdev);
int ret = 0;
/*
* Do an unconditional relax followed by a stay awake in case the
* wake source is activated by the wakeup isr.
*/
__pm_relax(&port->geni_wake);
__pm_stay_awake(&port->geni_wake);
if (port->wakeup_irq > 0)
disable_irq(port->wakeup_irq);
/*
* Resources On.
* Start Rx.
* Auto RFR.
* Enable IRQ.
*/
ret = se_geni_resources_on(&port->serial_rsc);
if (ret) {
dev_err(dev, "%s: Error ret %d\n", __func__, ret);
__pm_relax(&port->geni_wake);
goto exit_runtime_resume;
}
start_rx_sequencer(&port->uport);
/* Ensure that the Rx is running before enabling interrupts */
mb();
if (pm_runtime_enabled(dev))
enable_irq(port->uport.irq);
IPC_LOG_MSG(port->ipc_log_pwr, "%s:\n", __func__);
exit_runtime_resume:
return ret;
}
static int msm_geni_serial_sys_suspend_noirq(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_geni_serial_port *port = platform_get_drvdata(pdev);
struct uart_port *uport = &port->uport;
if (uart_console(uport)) {
uart_suspend_port((struct uart_driver *)uport->private_data,
uport);
} else {
struct uart_state *state = uport->state;
struct tty_port *tty_port = &state->port;
mutex_lock(&tty_port->mutex);
if (!pm_runtime_status_suspended(dev)) {
dev_err(dev, "%s:Active userspace vote; ioctl_cnt %d\n",
__func__, port->ioctl_count);
IPC_LOG_MSG(port->ipc_log_pwr,
"%s:Active userspace vote; ioctl_cnt %d\n",
__func__, port->ioctl_count);
mutex_unlock(&tty_port->mutex);
return -EBUSY;
}
IPC_LOG_MSG(port->ipc_log_pwr, "%s\n", __func__);
mutex_unlock(&tty_port->mutex);
}
return 0;
}
static int msm_geni_serial_sys_resume_noirq(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_geni_serial_port *port = platform_get_drvdata(pdev);
struct uart_port *uport = &port->uport;
if (uart_console(uport) &&
console_suspend_enabled && uport->suspended) {
uart_resume_port((struct uart_driver *)uport->private_data,
uport);
disable_irq(uport->irq);
}
return 0;
}
#else
static int msm_geni_serial_runtime_suspend(struct device *dev)
{
return 0;
}
static int msm_geni_serial_runtime_resume(struct device *dev)
{
return 0;
}
static int msm_geni_serial_sys_suspend_noirq(struct device *dev)
{
return 0;
}
static int msm_geni_serial_sys_resume_noirq(struct device *dev)
{
return 0;
}
#endif
static const struct dev_pm_ops msm_geni_serial_pm_ops = {
.runtime_suspend = msm_geni_serial_runtime_suspend,
.runtime_resume = msm_geni_serial_runtime_resume,
.suspend_noirq = msm_geni_serial_sys_suspend_noirq,
.resume_noirq = msm_geni_serial_sys_resume_noirq,
};
static struct platform_driver msm_geni_serial_platform_driver = {
.remove = msm_geni_serial_remove,
.probe = msm_geni_serial_probe,
.driver = {
.name = "msm_geni_serial",
.of_match_table = msm_geni_device_tbl,
.pm = &msm_geni_serial_pm_ops,
},
};
static struct uart_driver msm_geni_serial_hs_driver = {
.owner = THIS_MODULE,
.driver_name = "msm_geni_serial_hs",
.dev_name = "ttyHS",
.nr = GENI_UART_NR_PORTS,
};
static int __init msm_geni_serial_init(void)
{
int ret = 0;
int i;
for (i = 0; i < GENI_UART_NR_PORTS; i++) {
msm_geni_serial_ports[i].uport.iotype = UPIO_MEM;
msm_geni_serial_ports[i].uport.ops = &msm_geni_serial_pops;
msm_geni_serial_ports[i].uport.flags = UPF_BOOT_AUTOCONF;
msm_geni_serial_ports[i].uport.line = i;
}
for (i = 0; i < GENI_UART_CONS_PORTS; i++) {
msm_geni_console_port.uport.iotype = UPIO_MEM;
msm_geni_console_port.uport.ops = &msm_geni_console_pops;
msm_geni_console_port.uport.flags = UPF_BOOT_AUTOCONF;
msm_geni_console_port.uport.line = i;
}
ret = console_register(&msm_geni_console_driver);
if (ret)
return ret;
ret = uart_register_driver(&msm_geni_serial_hs_driver);
if (ret) {
uart_unregister_driver(&msm_geni_console_driver);
return ret;
}
ret = platform_driver_register(&msm_geni_serial_platform_driver);
if (ret) {
console_unregister(&msm_geni_console_driver);
uart_unregister_driver(&msm_geni_serial_hs_driver);
return ret;
}
pr_info("%s: Driver initialized", __func__);
return ret;
}
module_init(msm_geni_serial_init);
static void __exit msm_geni_serial_exit(void)
{
platform_driver_unregister(&msm_geni_serial_platform_driver);
uart_unregister_driver(&msm_geni_serial_hs_driver);
console_unregister(&msm_geni_console_driver);
}
module_exit(msm_geni_serial_exit);
MODULE_DESCRIPTION("Serial driver for GENI based QTI serial cores");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("tty:msm_geni_geni_serial");