blob: 6e0b439fcdc8a3ebd8e1f9a019b960d3c3552798 [file] [log] [blame]
/* Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef MSM_GSI_H
#define MSM_GSI_H
#include <linux/types.h>
enum gsi_ver {
GSI_VER_ERR = 0,
GSI_VER_1_0 = 1,
GSI_VER_1_2 = 2,
GSI_VER_1_3 = 3,
GSI_VER_2_0 = 4,
GSI_VER_MAX,
};
enum gsi_status {
GSI_STATUS_SUCCESS = 0,
GSI_STATUS_ERROR = 1,
GSI_STATUS_RING_INSUFFICIENT_SPACE = 2,
GSI_STATUS_RING_EMPTY = 3,
GSI_STATUS_RES_ALLOC_FAILURE = 4,
GSI_STATUS_BAD_STATE = 5,
GSI_STATUS_INVALID_PARAMS = 6,
GSI_STATUS_UNSUPPORTED_OP = 7,
GSI_STATUS_NODEV = 8,
GSI_STATUS_POLL_EMPTY = 9,
GSI_STATUS_EVT_RING_INCOMPATIBLE = 10,
GSI_STATUS_TIMED_OUT = 11,
GSI_STATUS_AGAIN = 12,
};
enum gsi_per_evt {
GSI_PER_EVT_GLOB_ERROR,
GSI_PER_EVT_GLOB_GP1,
GSI_PER_EVT_GLOB_GP2,
GSI_PER_EVT_GLOB_GP3,
GSI_PER_EVT_GENERAL_BREAK_POINT,
GSI_PER_EVT_GENERAL_BUS_ERROR,
GSI_PER_EVT_GENERAL_CMD_FIFO_OVERFLOW,
GSI_PER_EVT_GENERAL_MCS_STACK_OVERFLOW,
};
/**
* gsi_per_notify - Peripheral callback info
*
* @user_data: cookie supplied in gsi_register_device
* @evt_id: type of notification
* @err_desc: error related information
*
*/
struct gsi_per_notify {
void *user_data;
enum gsi_per_evt evt_id;
union {
uint16_t err_desc;
} data;
};
enum gsi_intr_type {
GSI_INTR_MSI = 0x0,
GSI_INTR_IRQ = 0x1
};
/**
* gsi_per_props - Peripheral related properties
*
* @gsi: GSI core version
* @ee: EE where this driver and peripheral driver runs
* @intr: control interrupt type
* @intvec: write data for MSI write
* @msi_addr: MSI address
* @irq: IRQ number
* @phys_addr: physical address of GSI block
* @size: register size of GSI block
* @mhi_er_id_limits_valid: valid flag for mhi_er_id_limits
* @mhi_er_id_limits: MHI event ring start and end ids
* @notify_cb: general notification callback
* @req_clk_cb: callback to request peripheral clock
* granted should be set to true if request is completed
* synchronously, false otherwise (peripheral needs
* to call gsi_complete_clk_grant later when request is
* completed)
* if this callback is not provided, then GSI will assume
* peripheral is clocked at all times
* @rel_clk_cb: callback to release peripheral clock
* @user_data: cookie used for notifications
*
* All the callbacks are in interrupt context
*
*/
struct gsi_per_props {
enum gsi_ver ver;
unsigned int ee;
enum gsi_intr_type intr;
uint32_t intvec;
uint64_t msi_addr;
unsigned int irq;
phys_addr_t phys_addr;
unsigned long size;
bool mhi_er_id_limits_valid;
uint32_t mhi_er_id_limits[2];
void (*notify_cb)(struct gsi_per_notify *notify);
void (*req_clk_cb)(void *user_data, bool *granted);
int (*rel_clk_cb)(void *user_data);
void *user_data;
};
enum gsi_evt_err {
GSI_EVT_OUT_OF_BUFFERS_ERR = 0x0,
GSI_EVT_OUT_OF_RESOURCES_ERR = 0x1,
GSI_EVT_UNSUPPORTED_INTER_EE_OP_ERR = 0x2,
GSI_EVT_EVT_RING_EMPTY_ERR = 0x3,
};
/**
* gsi_evt_err_notify - event ring error callback info
*
* @user_data: cookie supplied in gsi_alloc_evt_ring
* @evt_id: type of error
* @err_desc: more info about the error
*
*/
struct gsi_evt_err_notify {
void *user_data;
enum gsi_evt_err evt_id;
uint16_t err_desc;
};
enum gsi_evt_chtype {
GSI_EVT_CHTYPE_MHI_EV = 0x0,
GSI_EVT_CHTYPE_XHCI_EV = 0x1,
GSI_EVT_CHTYPE_GPI_EV = 0x2,
GSI_EVT_CHTYPE_XDCI_EV = 0x3
};
enum gsi_evt_ring_elem_size {
GSI_EVT_RING_RE_SIZE_4B = 4,
GSI_EVT_RING_RE_SIZE_16B = 16,
};
/**
* gsi_evt_ring_props - Event ring related properties
*
* @intf: interface type (of the associated channel)
* @intr: interrupt type
* @re_size: size of event ring element
* @ring_len: length of ring in bytes (must be integral multiple of
* re_size)
* @ring_base_addr: physical base address of ring. Address must be aligned to
* ring_len rounded to power of two
* @ring_base_vaddr: virtual base address of ring (set to NULL when not
* applicable)
* @int_modt: cycles base interrupt moderation (32KHz clock)
* @int_modc: interrupt moderation packet counter
* @intvec: write data for MSI write
* @msi_addr: MSI address
* @rp_update_addr: physical address to which event read pointer should be
* written on every event generation. must be set to 0 when
* no update is desdired
* @exclusive: if true, only one GSI channel can be associated with this
* event ring. if false, the event ring can be shared among
* multiple GSI channels but in that case no polling
* (GSI_CHAN_MODE_POLL) is supported on any of those channels
* @err_cb: error notification callback
* @user_data: cookie used for error notifications
* @evchid_valid: is evchid valid?
* @evchid: the event ID that is being specifically requested (this is
* relevant for MHI where doorbell routing requires ERs to be
* physically contiguous)
*/
struct gsi_evt_ring_props {
enum gsi_evt_chtype intf;
enum gsi_intr_type intr;
enum gsi_evt_ring_elem_size re_size;
uint16_t ring_len;
uint64_t ring_base_addr;
void *ring_base_vaddr;
uint16_t int_modt;
uint8_t int_modc;
uint32_t intvec;
uint64_t msi_addr;
uint64_t rp_update_addr;
bool exclusive;
void (*err_cb)(struct gsi_evt_err_notify *notify);
void *user_data;
bool evchid_valid;
uint8_t evchid;
};
enum gsi_chan_mode {
GSI_CHAN_MODE_CALLBACK = 0x0,
GSI_CHAN_MODE_POLL = 0x1,
};
enum gsi_chan_prot {
GSI_CHAN_PROT_MHI = 0x0,
GSI_CHAN_PROT_XHCI = 0x1,
GSI_CHAN_PROT_GPI = 0x2,
GSI_CHAN_PROT_XDCI = 0x3
};
enum gsi_chan_dir {
GSI_CHAN_DIR_FROM_GSI = 0x0,
GSI_CHAN_DIR_TO_GSI = 0x1
};
enum gsi_max_prefetch {
GSI_ONE_PREFETCH_SEG = 0x0,
GSI_TWO_PREFETCH_SEG = 0x1
};
enum gsi_chan_evt {
GSI_CHAN_EVT_INVALID = 0x0,
GSI_CHAN_EVT_SUCCESS = 0x1,
GSI_CHAN_EVT_EOT = 0x2,
GSI_CHAN_EVT_OVERFLOW = 0x3,
GSI_CHAN_EVT_EOB = 0x4,
GSI_CHAN_EVT_OOB = 0x5,
GSI_CHAN_EVT_DB_MODE = 0x6,
GSI_CHAN_EVT_UNDEFINED = 0x10,
GSI_CHAN_EVT_RE_ERROR = 0x11,
};
/**
* gsi_chan_xfer_notify - Channel callback info
*
* @chan_user_data: cookie supplied in gsi_alloc_channel
* @xfer_user_data: cookie of the gsi_xfer_elem that caused the
* event to be generated
* @evt_id: type of event triggered by the associated TRE
* (corresponding to xfer_user_data)
* @bytes_xfered: number of bytes transferred by the associated TRE
* (corresponding to xfer_user_data)
*
*/
struct gsi_chan_xfer_notify {
void *chan_user_data;
void *xfer_user_data;
enum gsi_chan_evt evt_id;
uint16_t bytes_xfered;
};
enum gsi_chan_err {
GSI_CHAN_INVALID_TRE_ERR = 0x0,
GSI_CHAN_NON_ALLOCATED_EVT_ACCESS_ERR = 0x1,
GSI_CHAN_OUT_OF_BUFFERS_ERR = 0x2,
GSI_CHAN_OUT_OF_RESOURCES_ERR = 0x3,
GSI_CHAN_UNSUPPORTED_INTER_EE_OP_ERR = 0x4,
GSI_CHAN_HWO_1_ERR = 0x5
};
/**
* gsi_chan_err_notify - Channel general callback info
*
* @chan_user_data: cookie supplied in gsi_alloc_channel
* @evt_id: type of error
* @err_desc: more info about the error
*
*/
struct gsi_chan_err_notify {
void *chan_user_data;
enum gsi_chan_err evt_id;
uint16_t err_desc;
};
enum gsi_chan_ring_elem_size {
GSI_CHAN_RE_SIZE_4B = 4,
GSI_CHAN_RE_SIZE_16B = 16,
GSI_CHAN_RE_SIZE_32B = 32,
};
enum gsi_chan_use_db_eng {
GSI_CHAN_DIRECT_MODE = 0x0,
GSI_CHAN_DB_MODE = 0x1,
};
/**
* gsi_chan_props - Channel related properties
*
* @prot: interface type
* @dir: channel direction
* @ch_id: virtual channel ID
* @evt_ring_hdl: handle of associated event ring. set to ~0 if no
* event ring associated
* @re_size: size of channel ring element
* @ring_len: length of ring in bytes (must be integral multiple of
* re_size)
* @max_re_expected: maximal number of ring elements expected to be queued.
* used for data path statistics gathering. if 0 provided
* ring_len / re_size will be used.
* @ring_base_addr: physical base address of ring. Address must be aligned to
* ring_len rounded to power of two
* @ring_base_vaddr: virtual base address of ring (set to NULL when not
* applicable)
* @use_db_eng: 0 => direct mode (doorbells are written directly to RE
* engine)
* 1 => DB mode (doorbells are written to DB engine)
* @max_prefetch: limit number of pre-fetch segments for channel
* @low_weight: low channel weight (priority of channel for RE engine
* round robin algorithm); must be >= 1
* @xfer_cb: transfer notification callback, this callback happens
* on event boundaries
*
* e.g. 1
*
* out TD with 3 REs
*
* RE1: EOT=0, EOB=0, CHAIN=1;
* RE2: EOT=0, EOB=0, CHAIN=1;
* RE3: EOT=1, EOB=0, CHAIN=0;
*
* the callback will be triggered for RE3 using the
* xfer_user_data of that RE
*
* e.g. 2
*
* in REs
*
* RE1: EOT=1, EOB=0, CHAIN=0;
* RE2: EOT=1, EOB=0, CHAIN=0;
* RE3: EOT=1, EOB=0, CHAIN=0;
*
* received packet consumes all of RE1, RE2 and part of RE3
* for EOT condition. there will be three callbacks in below
* order
*
* callback for RE1 using GSI_CHAN_EVT_OVERFLOW
* callback for RE2 using GSI_CHAN_EVT_OVERFLOW
* callback for RE3 using GSI_CHAN_EVT_EOT
*
* @err_cb: error notification callback
* @chan_user_data: cookie used for notifications
*
* All the callbacks are in interrupt context
*
*/
struct gsi_chan_props {
enum gsi_chan_prot prot;
enum gsi_chan_dir dir;
uint8_t ch_id;
unsigned long evt_ring_hdl;
enum gsi_chan_ring_elem_size re_size;
uint16_t ring_len;
uint16_t max_re_expected;
uint64_t ring_base_addr;
void *ring_base_vaddr;
enum gsi_chan_use_db_eng use_db_eng;
enum gsi_max_prefetch max_prefetch;
uint8_t low_weight;
void (*xfer_cb)(struct gsi_chan_xfer_notify *notify);
void (*err_cb)(struct gsi_chan_err_notify *notify);
void *chan_user_data;
};
enum gsi_xfer_flag {
GSI_XFER_FLAG_CHAIN = 0x1,
GSI_XFER_FLAG_EOB = 0x100,
GSI_XFER_FLAG_EOT = 0x200,
GSI_XFER_FLAG_BEI = 0x400
};
enum gsi_xfer_elem_type {
GSI_XFER_ELEM_DATA,
GSI_XFER_ELEM_IMME_CMD,
GSI_XFER_ELEM_NOP,
};
/**
* gsi_xfer_elem - Metadata about a single transfer
*
* @addr: physical address of buffer
* @len: size of buffer for GSI_XFER_ELEM_DATA:
* for outbound transfers this is the number of bytes to
* transfer.
* for inbound transfers, this is the maximum number of
* bytes the host expects from device in this transfer
*
* immediate command opcode for GSI_XFER_ELEM_IMME_CMD
* @flags: transfer flags, OR of all the applicable flags
*
* GSI_XFER_FLAG_BEI: Block event interrupt
* 1: Event generated by this ring element must not assert
* an interrupt to the host
* 0: Event generated by this ring element must assert an
* interrupt to the host
*
* GSI_XFER_FLAG_EOT: Interrupt on end of transfer
* 1: If an EOT condition is encountered when processing
* this ring element, an event is generated by the device
* with its completion code set to EOT.
* 0: If an EOT condition is encountered for this ring
* element, a completion event is not be generated by the
* device, unless IEOB is 1
*
* GSI_XFER_FLAG_EOB: Interrupt on end of block
* 1: Device notifies host after processing this ring element
* by sending a completion event
* 0: Completion event is not required after processing this
* ring element
*
* GSI_XFER_FLAG_CHAIN: Chain bit that identifies the ring
* elements in a TD
*
* @type: transfer type
*
* GSI_XFER_ELEM_DATA: for all data transfers
* GSI_XFER_ELEM_IMME_CMD: for IPA immediate commands
* GSI_XFER_ELEM_NOP: for event generation only
*
* @xfer_user_data: cookie used in xfer_cb
*
*/
struct gsi_xfer_elem {
uint64_t addr;
uint16_t len;
uint16_t flags;
enum gsi_xfer_elem_type type;
void *xfer_user_data;
};
/**
* gsi_gpi_channel_scratch - GPI protocol SW config area of
* channel scratch
*
* @max_outstanding_tre: Used for the prefetch management sequence by the
* sequencer. Defines the maximum number of allowed
* outstanding TREs in IPA/GSI (in Bytes). RE engine
* prefetch will be limited by this configuration. It
* is suggested to configure this value to IPA_IF
* channel TLV queue size times element size. To disable
* the feature in doorbell mode (DB Mode=1). Maximum
* outstanding TREs should be set to 64KB
* (or any value larger or equal to ring length . RLEN)
* @outstanding_threshold: Used for the prefetch management sequence by the
* sequencer. Defines the threshold (in Bytes) as to when
* to update the channel doorbell. Should be smaller than
* Maximum outstanding TREs. value. It is suggested to
* configure this value to 2 * element size.
*/
struct __packed gsi_gpi_channel_scratch {
uint64_t resvd1;
uint32_t resvd2:16;
uint32_t max_outstanding_tre:16;
uint32_t resvd3:16;
uint32_t outstanding_threshold:16;
};
/**
* gsi_mhi_channel_scratch - MHI protocol SW config area of
* channel scratch
*
* @mhi_host_wp_addr: Valid only when UL/DL Sync En is asserted. Defines
* address in host from which channel write pointer
* should be read in polling mode
* @assert_bit40: 1: bit #41 in address should be asserted upon
* IPA_IF.ProcessDescriptor routine (for MHI over PCIe
* transfers)
* 0: bit #41 in address should be deasserted upon
* IPA_IF.ProcessDescriptor routine (for non-MHI over
* PCIe transfers)
* @polling_configuration: Uplink channels: Defines timer to poll on MHI
* context. Range: 1 to 31 milliseconds.
* Downlink channel: Defines transfer ring buffer
* availability threshold to poll on MHI context in
* multiple of 8. Range: 0 to 31, meaning 0 to 258 ring
* elements. E.g., value of 2 indicates 16 ring elements.
* Valid only when Burst Mode Enabled is set to 1
* @burst_mode_enabled: 0: Burst mode is disabled for this channel
* 1: Burst mode is enabled for this channel
* @polling_mode: 0: the channel is not in polling mode, meaning the
* host should ring DBs.
* 1: the channel is in polling mode, meaning the host
* @oob_mod_threshold: Defines OOB moderation threshold. Units are in 8
* ring elements.
* should not ring DBs until notified of DB mode/OOB mode
* @max_outstanding_tre: Used for the prefetch management sequence by the
* sequencer. Defines the maximum number of allowed
* outstanding TREs in IPA/GSI (in Bytes). RE engine
* prefetch will be limited by this configuration. It
* is suggested to configure this value to IPA_IF
* channel TLV queue size times element size.
* To disable the feature in doorbell mode (DB Mode=1).
* Maximum outstanding TREs should be set to 64KB
* (or any value larger or equal to ring length . RLEN)
* @outstanding_threshold: Used for the prefetch management sequence by the
* sequencer. Defines the threshold (in Bytes) as to when
* to update the channel doorbell. Should be smaller than
* Maximum outstanding TREs. value. It is suggested to
* configure this value to min(TLV_FIFO_SIZE/2,8) *
* element size.
*/
struct __packed gsi_mhi_channel_scratch {
uint64_t mhi_host_wp_addr;
uint32_t rsvd1:1;
uint32_t assert_bit40:1;
uint32_t polling_configuration:5;
uint32_t burst_mode_enabled:1;
uint32_t polling_mode:1;
uint32_t oob_mod_threshold:5;
uint32_t resvd2:2;
uint32_t max_outstanding_tre:16;
uint32_t resvd3:16;
uint32_t outstanding_threshold:16;
};
/**
* gsi_xdci_channel_scratch - xDCI protocol SW config area of
* channel scratch
*
* @const_buffer_size: TRB buffer size in KB (similar to IPA aggregationi
* configuration). Must be aligned to Max USB Packet Size
* @xferrscidx: Transfer Resource Index (XferRscIdx). The hardware-assigned
* transfer resource index for the transfer, which was
* returned in response to the Start Transfer command.
* This field is used for "Update Transfer" command
* @last_trb_addr: Address (LSB - based on alignment restrictions) of
* last TRB in queue. Used to identify rollover case
* @depcmd_low_addr: Used to generate "Update Transfer" command
* @max_outstanding_tre: Used for the prefetch management sequence by the
* sequencer. Defines the maximum number of allowed
* outstanding TREs in IPA/GSI (in Bytes). RE engine
* prefetch will be limited by this configuration. It
* is suggested to configure this value to IPA_IF
* channel TLV queue size times element size.
* To disable the feature in doorbell mode (DB Mode=1)
* Maximum outstanding TREs should be set to 64KB
* (or any value larger or equal to ring length . RLEN)
* @depcmd_hi_addr: Used to generate "Update Transfer" command
* @outstanding_threshold: Used for the prefetch management sequence by the
* sequencer. Defines the threshold (in Bytes) as to when
* to update the channel doorbell. Should be smaller than
* Maximum outstanding TREs. value. It is suggested to
* configure this value to 2 * element size. for MBIM the
* suggested configuration is the element size.
*/
struct __packed gsi_xdci_channel_scratch {
uint32_t last_trb_addr:16;
uint32_t resvd1:4;
uint32_t xferrscidx:7;
uint32_t const_buffer_size:5;
uint32_t depcmd_low_addr;
uint32_t depcmd_hi_addr:8;
uint32_t resvd2:8;
uint32_t max_outstanding_tre:16;
uint32_t resvd3:16;
uint32_t outstanding_threshold:16;
};
/**
* gsi_channel_scratch - channel scratch SW config area
*
*/
union __packed gsi_channel_scratch {
struct __packed gsi_gpi_channel_scratch gpi;
struct __packed gsi_mhi_channel_scratch mhi;
struct __packed gsi_xdci_channel_scratch xdci;
struct __packed {
uint32_t word1;
uint32_t word2;
uint32_t word3;
uint32_t word4;
} data;
};
/**
* gsi_mhi_evt_scratch - MHI protocol SW config area of
* event scratch
*/
struct __packed gsi_mhi_evt_scratch {
uint32_t resvd1;
uint32_t resvd2;
};
/**
* gsi_xdci_evt_scratch - xDCI protocol SW config area of
* event scratch
*
*/
struct __packed gsi_xdci_evt_scratch {
uint32_t gevntcount_low_addr;
uint32_t gevntcount_hi_addr:8;
uint32_t resvd1:24;
};
/**
* gsi_evt_scratch - event scratch SW config area
*
*/
union __packed gsi_evt_scratch {
struct __packed gsi_mhi_evt_scratch mhi;
struct __packed gsi_xdci_evt_scratch xdci;
struct __packed {
uint32_t word1;
uint32_t word2;
} data;
};
/**
* gsi_device_scratch - EE scratch config parameters
*
* @mhi_base_chan_idx_valid: is mhi_base_chan_idx valid?
* @mhi_base_chan_idx: base index of IPA MHI channel indexes.
* IPA MHI channel index = GSI channel ID +
* MHI base channel index
* @max_usb_pkt_size_valid: is max_usb_pkt_size valid?
* @max_usb_pkt_size: max USB packet size in bytes (valid values are
* 512 and 1024)
*/
struct gsi_device_scratch {
bool mhi_base_chan_idx_valid;
uint8_t mhi_base_chan_idx;
bool max_usb_pkt_size_valid;
uint16_t max_usb_pkt_size;
};
/**
* gsi_chan_info - information about channel occupancy
*
* @wp: channel write pointer (physical address)
* @rp: channel read pointer (physical address)
* @evt_valid: is evt* info valid?
* @evt_wp: event ring write pointer (physical address)
* @evt_rp: event ring read pointer (physical address)
*/
struct gsi_chan_info {
uint64_t wp;
uint64_t rp;
bool evt_valid;
uint64_t evt_wp;
uint64_t evt_rp;
};
#ifdef CONFIG_GSI
/**
* gsi_register_device - Peripheral should call this function to
* register itself with GSI before invoking any other APIs
*
* @props: Peripheral properties
* @dev_hdl: Handle populated by GSI, opaque to client
*
* @Return -GSI_STATUS_AGAIN if request should be re-tried later
* other error codes for failure
*/
int gsi_register_device(struct gsi_per_props *props, unsigned long *dev_hdl);
/**
* gsi_complete_clk_grant - Peripheral should call this function to
* grant the clock resource requested by GSI previously that could not
* be granted synchronously. GSI will release the clock resource using
* the rel_clk_cb when appropriate
*
* @dev_hdl: Client handle previously obtained from
* gsi_register_device
*
* @Return gsi_status
*/
int gsi_complete_clk_grant(unsigned long dev_hdl);
/**
* gsi_write_device_scratch - Peripheral should call this function to
* write to the EE scratch area
*
* @dev_hdl: Client handle previously obtained from
* gsi_register_device
* @val: Value to write
*
* @Return gsi_status
*/
int gsi_write_device_scratch(unsigned long dev_hdl,
struct gsi_device_scratch *val);
/**
* gsi_deregister_device - Peripheral should call this function to
* de-register itself with GSI
*
* @dev_hdl: Client handle previously obtained from
* gsi_register_device
* @force: When set to true, cleanup is performed even if there
* are in use resources like channels, event rings, etc.
* this would be used after GSI reset to recover from some
* fatal error
* When set to false, there must not exist any allocated
* channels and event rings.
*
* @Return gsi_status
*/
int gsi_deregister_device(unsigned long dev_hdl, bool force);
/**
* gsi_alloc_evt_ring - Peripheral should call this function to
* allocate an event ring
*
* @props: Event ring properties
* @dev_hdl: Client handle previously obtained from
* gsi_register_device
* @evt_ring_hdl: Handle populated by GSI, opaque to client
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_alloc_evt_ring(struct gsi_evt_ring_props *props, unsigned long dev_hdl,
unsigned long *evt_ring_hdl);
/**
* gsi_write_evt_ring_scratch - Peripheral should call this function to
* write to the scratch area of the event ring context
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
* @val: Value to write
*
* @Return gsi_status
*/
int gsi_write_evt_ring_scratch(unsigned long evt_ring_hdl,
union __packed gsi_evt_scratch val);
/**
* gsi_dealloc_evt_ring - Peripheral should call this function to
* de-allocate an event ring. There should not exist any active
* channels using this event ring
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_dealloc_evt_ring(unsigned long evt_ring_hdl);
/**
* gsi_query_evt_ring_db_addr - Peripheral should call this function to
* query the physical addresses of the event ring doorbell registers
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
* @db_addr_wp_lsb: Physical address of doorbell register where the 32
* LSBs of the doorbell value should be written
* @db_addr_wp_msb: Physical address of doorbell register where the 32
* MSBs of the doorbell value should be written
*
* @Return gsi_status
*/
int gsi_query_evt_ring_db_addr(unsigned long evt_ring_hdl,
uint32_t *db_addr_wp_lsb, uint32_t *db_addr_wp_msb);
/**
* gsi_ring_evt_ring_db - Peripheral should call this function for
* ringing the event ring doorbell with given value
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
* @value: The value to be used for ringing the doorbell
*
* @Return gsi_status
*/
int gsi_ring_evt_ring_db(unsigned long evt_ring_hdl, uint64_t value);
/**
* gsi_reset_evt_ring - Peripheral should call this function to
* reset an event ring to recover from error state
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_reset_evt_ring(unsigned long evt_ring_hdl);
/**
* gsi_get_evt_ring_cfg - This function returns the current config
* of the specified event ring
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
* @props: where to copy properties to
* @scr: where to copy scratch info to
*
* @Return gsi_status
*/
int gsi_get_evt_ring_cfg(unsigned long evt_ring_hdl,
struct gsi_evt_ring_props *props, union gsi_evt_scratch *scr);
/**
* gsi_set_evt_ring_cfg - This function applies the supplied config
* to the specified event ring.
*
* exclusive property of the event ring cannot be changed after
* gsi_alloc_evt_ring
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
* @props: the properties to apply
* @scr: the scratch info to apply
*
* @Return gsi_status
*/
int gsi_set_evt_ring_cfg(unsigned long evt_ring_hdl,
struct gsi_evt_ring_props *props, union gsi_evt_scratch *scr);
/**
* gsi_alloc_channel - Peripheral should call this function to
* allocate a channel
*
* @props: Channel properties
* @dev_hdl: Client handle previously obtained from
* gsi_register_device
* @chan_hdl: Handle populated by GSI, opaque to client
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_alloc_channel(struct gsi_chan_props *props, unsigned long dev_hdl,
unsigned long *chan_hdl);
/**
* gsi_write_channel_scratch - Peripheral should call this function to
* write to the scratch area of the channel context
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @val: Value to write
*
* @Return gsi_status
*/
int gsi_write_channel_scratch(unsigned long chan_hdl,
union __packed gsi_channel_scratch val);
/**
* gsi_start_channel - Peripheral should call this function to
* start a channel i.e put into running state
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_start_channel(unsigned long chan_hdl);
/**
* gsi_stop_channel - Peripheral should call this function to
* stop a channel. Stop will happen on a packet boundary
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
*
* This function can sleep
*
* @Return -GSI_STATUS_AGAIN if client should call stop/stop_db again
* other error codes for failure
*/
int gsi_stop_channel(unsigned long chan_hdl);
/**
* gsi_reset_channel - Peripheral should call this function to
* reset a channel to recover from error state
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_reset_channel(unsigned long chan_hdl);
/**
* gsi_dealloc_channel - Peripheral should call this function to
* de-allocate a channel
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_dealloc_channel(unsigned long chan_hdl);
/**
* gsi_stop_db_channel - Peripheral should call this function to
* stop a channel when all transfer elements till the doorbell
* have been processed
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
*
* This function can sleep
*
* @Return -GSI_STATUS_AGAIN if client should call stop/stop_db again
* other error codes for failure
*/
int gsi_stop_db_channel(unsigned long chan_hdl);
/**
* gsi_query_channel_db_addr - Peripheral should call this function to
* query the physical addresses of the channel doorbell registers
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @db_addr_wp_lsb: Physical address of doorbell register where the 32
* LSBs of the doorbell value should be written
* @db_addr_wp_msb: Physical address of doorbell register where the 32
* MSBs of the doorbell value should be written
*
* @Return gsi_status
*/
int gsi_query_channel_db_addr(unsigned long chan_hdl,
uint32_t *db_addr_wp_lsb, uint32_t *db_addr_wp_msb);
/**
* gsi_query_channel_info - Peripheral can call this function to query the
* channel and associated event ring (if any) status.
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @info: Where to read the values into
*
* @Return gsi_status
*/
int gsi_query_channel_info(unsigned long chan_hdl,
struct gsi_chan_info *info);
/**
* gsi_is_channel_empty - Peripheral can call this function to query if
* the channel is empty. This is only applicable to GPI. "Empty" means
* GSI has consumed all descriptors for a TO_GSI channel and SW has
* processed all completed descriptors for a FROM_GSI channel.
*
* @chan_hdl: Client handle previously obtained from gsi_alloc_channel
* @is_empty: set by GSI based on channel emptiness
*
* @Return gsi_status
*/
int gsi_is_channel_empty(unsigned long chan_hdl, bool *is_empty);
/**
* gsi_get_channel_cfg - This function returns the current config
* of the specified channel
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @props: where to copy properties to
* @scr: where to copy scratch info to
*
* @Return gsi_status
*/
int gsi_get_channel_cfg(unsigned long chan_hdl, struct gsi_chan_props *props,
union gsi_channel_scratch *scr);
/**
* gsi_set_channel_cfg - This function applies the supplied config
* to the specified channel
*
* ch_id and evt_ring_hdl of the channel cannot be changed after
* gsi_alloc_channel
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @props: the properties to apply
* @scr: the scratch info to apply
*
* @Return gsi_status
*/
int gsi_set_channel_cfg(unsigned long chan_hdl, struct gsi_chan_props *props,
union gsi_channel_scratch *scr);
/**
* gsi_poll_channel - Peripheral should call this function to query for
* completed transfer descriptors.
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @notify: Information about the completed transfer if any
*
* @Return gsi_status (GSI_STATUS_POLL_EMPTY is returned if no transfers
* completed)
*/
int gsi_poll_channel(unsigned long chan_hdl,
struct gsi_chan_xfer_notify *notify);
/**
* gsi_config_channel_mode - Peripheral should call this function
* to configure the channel mode.
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @mode: Mode to move the channel into
*
* @Return gsi_status
*/
int gsi_config_channel_mode(unsigned long chan_hdl, enum gsi_chan_mode mode);
/**
* gsi_queue_xfer - Peripheral should call this function
* to queue transfers on the given channel
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @num_xfers: Number of transfer in the array @ xfer
* @xfer: Array of num_xfers transfer descriptors
* @ring_db: If true, tell HW about these queued xfers
* If false, do not notify HW at this time
*
* @Return gsi_status
*/
int gsi_queue_xfer(unsigned long chan_hdl, uint16_t num_xfers,
struct gsi_xfer_elem *xfer, bool ring_db);
/**
* gsi_start_xfer - Peripheral should call this function to
* inform HW about queued xfers
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
*
* @Return gsi_status
*/
int gsi_start_xfer(unsigned long chan_hdl);
/**
* gsi_configure_regs - Peripheral should call this function
* to configure the GSI registers before/after the FW is
* loaded but before it is enabled.
*
* @gsi_base_addr: Base address of GSI register space
* @gsi_size: Mapping size of the GSI register space
* @per_base_addr: Base address of the peripheral using GSI
*
* @Return gsi_status
*/
int gsi_configure_regs(phys_addr_t gsi_base_addr, u32 gsi_size,
phys_addr_t per_base_addr);
/**
* gsi_enable_fw - Peripheral should call this function
* to enable the GSI FW after the FW has been loaded to the SRAM.
*
* @gsi_base_addr: Base address of GSI register space
* @gsi_size: Mapping size of the GSI register space
* @ver: GSI core version
* @Return gsi_status
*/
int gsi_enable_fw(phys_addr_t gsi_base_addr, u32 gsi_size, enum gsi_ver ver);
/**
* gsi_get_inst_ram_offset_and_size - Peripheral should call this function
* to get instruction RAM base address offset and size. Peripheral typically
* uses this info to load GSI FW into the IRAM.
*
* @base_offset:[OUT] - IRAM base offset address
* @size: [OUT] - IRAM size
* @Return none
*/
void gsi_get_inst_ram_offset_and_size(unsigned long *base_offset,
unsigned long *size);
/**
* gsi_halt_channel_ee - Peripheral should call this function
* to stop other EE's channel. This is usually used in SSR clean
*
* @chan_idx: Virtual channel index
* @ee: EE
* @code: [out] response code for operation
* @Return gsi_status
*/
int gsi_halt_channel_ee(unsigned int chan_idx, unsigned int ee, int *code);
/*
* Here is a typical sequence of calls
*
* gsi_register_device
*
* gsi_write_device_scratch (if the protocol needs this)
*
* gsi_alloc_evt_ring (for as many event rings as needed)
* gsi_write_evt_ring_scratch
*
* gsi_alloc_channel (for as many channels as needed; channels can have
* no event ring, an exclusive event ring or a shared event ring)
* gsi_write_channel_scratch
* gsi_start_channel
* gsi_queue_xfer/gsi_start_xfer
* gsi_config_channel_mode/gsi_poll_channel (if clients wants to poll on
* xfer completions)
* gsi_stop_db_channel/gsi_stop_channel
*
* gsi_dealloc_channel
*
* gsi_dealloc_evt_ring
*
* gsi_deregister_device
*
*/
#else
static inline int gsi_register_device(struct gsi_per_props *props,
unsigned long *dev_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_complete_clk_grant(unsigned long dev_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_write_device_scratch(unsigned long dev_hdl,
struct gsi_device_scratch *val)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_deregister_device(unsigned long dev_hdl, bool force)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_alloc_evt_ring(struct gsi_evt_ring_props *props,
unsigned long dev_hdl,
unsigned long *evt_ring_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_write_evt_ring_scratch(unsigned long evt_ring_hdl,
union __packed gsi_evt_scratch val)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_dealloc_evt_ring(unsigned long evt_ring_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_query_evt_ring_db_addr(unsigned long evt_ring_hdl,
uint32_t *db_addr_wp_lsb, uint32_t *db_addr_wp_msb)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_ring_evt_ring_db(unsigned long evt_ring_hdl,
uint64_t value)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_reset_evt_ring(unsigned long evt_ring_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_alloc_channel(struct gsi_chan_props *props,
unsigned long dev_hdl,
unsigned long *chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_write_channel_scratch(unsigned long chan_hdl,
union __packed gsi_channel_scratch val)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_start_channel(unsigned long chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_stop_channel(unsigned long chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_reset_channel(unsigned long chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_dealloc_channel(unsigned long chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_stop_db_channel(unsigned long chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_query_channel_db_addr(unsigned long chan_hdl,
uint32_t *db_addr_wp_lsb, uint32_t *db_addr_wp_msb)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_query_channel_info(unsigned long chan_hdl,
struct gsi_chan_info *info)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_is_channel_empty(unsigned long chan_hdl, bool *is_empty)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_poll_channel(unsigned long chan_hdl,
struct gsi_chan_xfer_notify *notify)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_config_channel_mode(unsigned long chan_hdl,
enum gsi_chan_mode mode)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_queue_xfer(unsigned long chan_hdl, uint16_t num_xfers,
struct gsi_xfer_elem *xfer, bool ring_db)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_start_xfer(unsigned long chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_get_channel_cfg(unsigned long chan_hdl,
struct gsi_chan_props *props,
union gsi_channel_scratch *scr)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_set_channel_cfg(unsigned long chan_hdl,
struct gsi_chan_props *props,
union gsi_channel_scratch *scr)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_get_evt_ring_cfg(unsigned long evt_ring_hdl,
struct gsi_evt_ring_props *props, union gsi_evt_scratch *scr)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_set_evt_ring_cfg(unsigned long evt_ring_hdl,
struct gsi_evt_ring_props *props, union gsi_evt_scratch *scr)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_configure_regs(phys_addr_t gsi_base_addr, u32 gsi_size,
phys_addr_t per_base_addr)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_enable_fw(phys_addr_t gsi_base_addr, u32 gsi_size)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline void gsi_get_inst_ram_offset_and_size(unsigned long *base_offset,
unsigned long *size)
{
}
static inline int gsi_halt_channel_ee(unsigned int chan_idx, unsigned int ee,
int *code)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
#endif
#endif