| /* |
| * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software Foundation, |
| * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| #include <linux/completion.h> |
| #include <linux/crc-itu-t.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/errno.h> |
| #include <linux/kref.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| |
| #include "fw-transaction.h" |
| #include "fw-topology.h" |
| #include "fw-device.h" |
| |
| int fw_compute_block_crc(u32 *block) |
| { |
| __be32 be32_block[256]; |
| int i, length; |
| |
| length = (*block >> 16) & 0xff; |
| for (i = 0; i < length; i++) |
| be32_block[i] = cpu_to_be32(block[i + 1]); |
| *block |= crc_itu_t(0, (u8 *) be32_block, length * 4); |
| |
| return length; |
| } |
| |
| static DEFINE_MUTEX(card_mutex); |
| static LIST_HEAD(card_list); |
| |
| static LIST_HEAD(descriptor_list); |
| static int descriptor_count; |
| |
| #define BIB_CRC(v) ((v) << 0) |
| #define BIB_CRC_LENGTH(v) ((v) << 16) |
| #define BIB_INFO_LENGTH(v) ((v) << 24) |
| |
| #define BIB_LINK_SPEED(v) ((v) << 0) |
| #define BIB_GENERATION(v) ((v) << 4) |
| #define BIB_MAX_ROM(v) ((v) << 8) |
| #define BIB_MAX_RECEIVE(v) ((v) << 12) |
| #define BIB_CYC_CLK_ACC(v) ((v) << 16) |
| #define BIB_PMC ((1) << 27) |
| #define BIB_BMC ((1) << 28) |
| #define BIB_ISC ((1) << 29) |
| #define BIB_CMC ((1) << 30) |
| #define BIB_IMC ((1) << 31) |
| |
| static u32 * |
| generate_config_rom(struct fw_card *card, size_t *config_rom_length) |
| { |
| struct fw_descriptor *desc; |
| static u32 config_rom[256]; |
| int i, j, length; |
| |
| /* |
| * Initialize contents of config rom buffer. On the OHCI |
| * controller, block reads to the config rom accesses the host |
| * memory, but quadlet read access the hardware bus info block |
| * registers. That's just crack, but it means we should make |
| * sure the contents of bus info block in host memory matches |
| * the version stored in the OHCI registers. |
| */ |
| |
| memset(config_rom, 0, sizeof(config_rom)); |
| config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0); |
| config_rom[1] = 0x31333934; |
| |
| config_rom[2] = |
| BIB_LINK_SPEED(card->link_speed) | |
| BIB_GENERATION(card->config_rom_generation++ % 14 + 2) | |
| BIB_MAX_ROM(2) | |
| BIB_MAX_RECEIVE(card->max_receive) | |
| BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC; |
| config_rom[3] = card->guid >> 32; |
| config_rom[4] = card->guid; |
| |
| /* Generate root directory. */ |
| i = 5; |
| config_rom[i++] = 0; |
| config_rom[i++] = 0x0c0083c0; /* node capabilities */ |
| j = i + descriptor_count; |
| |
| /* Generate root directory entries for descriptors. */ |
| list_for_each_entry (desc, &descriptor_list, link) { |
| if (desc->immediate > 0) |
| config_rom[i++] = desc->immediate; |
| config_rom[i] = desc->key | (j - i); |
| i++; |
| j += desc->length; |
| } |
| |
| /* Update root directory length. */ |
| config_rom[5] = (i - 5 - 1) << 16; |
| |
| /* End of root directory, now copy in descriptors. */ |
| list_for_each_entry (desc, &descriptor_list, link) { |
| memcpy(&config_rom[i], desc->data, desc->length * 4); |
| i += desc->length; |
| } |
| |
| /* Calculate CRCs for all blocks in the config rom. This |
| * assumes that CRC length and info length are identical for |
| * the bus info block, which is always the case for this |
| * implementation. */ |
| for (i = 0; i < j; i += length + 1) |
| length = fw_compute_block_crc(config_rom + i); |
| |
| *config_rom_length = j; |
| |
| return config_rom; |
| } |
| |
| static void |
| update_config_roms(void) |
| { |
| struct fw_card *card; |
| u32 *config_rom; |
| size_t length; |
| |
| list_for_each_entry (card, &card_list, link) { |
| config_rom = generate_config_rom(card, &length); |
| card->driver->set_config_rom(card, config_rom, length); |
| } |
| } |
| |
| int |
| fw_core_add_descriptor(struct fw_descriptor *desc) |
| { |
| size_t i; |
| |
| /* |
| * Check descriptor is valid; the length of all blocks in the |
| * descriptor has to add up to exactly the length of the |
| * block. |
| */ |
| i = 0; |
| while (i < desc->length) |
| i += (desc->data[i] >> 16) + 1; |
| |
| if (i != desc->length) |
| return -EINVAL; |
| |
| mutex_lock(&card_mutex); |
| |
| list_add_tail(&desc->link, &descriptor_list); |
| descriptor_count++; |
| if (desc->immediate > 0) |
| descriptor_count++; |
| update_config_roms(); |
| |
| mutex_unlock(&card_mutex); |
| |
| return 0; |
| } |
| |
| void |
| fw_core_remove_descriptor(struct fw_descriptor *desc) |
| { |
| mutex_lock(&card_mutex); |
| |
| list_del(&desc->link); |
| descriptor_count--; |
| if (desc->immediate > 0) |
| descriptor_count--; |
| update_config_roms(); |
| |
| mutex_unlock(&card_mutex); |
| } |
| |
| static const char gap_count_table[] = { |
| 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40 |
| }; |
| |
| void |
| fw_schedule_bm_work(struct fw_card *card, unsigned long delay) |
| { |
| int scheduled; |
| |
| fw_card_get(card); |
| scheduled = schedule_delayed_work(&card->work, delay); |
| if (!scheduled) |
| fw_card_put(card); |
| } |
| |
| static void |
| fw_card_bm_work(struct work_struct *work) |
| { |
| struct fw_card *card = container_of(work, struct fw_card, work.work); |
| struct fw_device *root_device; |
| struct fw_node *root_node, *local_node; |
| unsigned long flags; |
| int root_id, new_root_id, irm_id, gap_count, generation, grace, rcode; |
| bool do_reset = false; |
| bool root_device_is_running; |
| bool root_device_is_cmc; |
| __be32 lock_data[2]; |
| |
| spin_lock_irqsave(&card->lock, flags); |
| local_node = card->local_node; |
| root_node = card->root_node; |
| |
| if (local_node == NULL) { |
| spin_unlock_irqrestore(&card->lock, flags); |
| goto out_put_card; |
| } |
| fw_node_get(local_node); |
| fw_node_get(root_node); |
| |
| generation = card->generation; |
| root_device = root_node->data; |
| root_device_is_running = root_device && |
| atomic_read(&root_device->state) == FW_DEVICE_RUNNING; |
| root_device_is_cmc = root_device && root_device->cmc; |
| root_id = root_node->node_id; |
| grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 10)); |
| |
| if (is_next_generation(generation, card->bm_generation) || |
| (card->bm_generation != generation && grace)) { |
| /* |
| * This first step is to figure out who is IRM and |
| * then try to become bus manager. If the IRM is not |
| * well defined (e.g. does not have an active link |
| * layer or does not responds to our lock request, we |
| * will have to do a little vigilante bus management. |
| * In that case, we do a goto into the gap count logic |
| * so that when we do the reset, we still optimize the |
| * gap count. That could well save a reset in the |
| * next generation. |
| */ |
| |
| irm_id = card->irm_node->node_id; |
| if (!card->irm_node->link_on) { |
| new_root_id = local_node->node_id; |
| fw_notify("IRM has link off, making local node (%02x) root.\n", |
| new_root_id); |
| goto pick_me; |
| } |
| |
| lock_data[0] = cpu_to_be32(0x3f); |
| lock_data[1] = cpu_to_be32(local_node->node_id); |
| |
| spin_unlock_irqrestore(&card->lock, flags); |
| |
| rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, |
| irm_id, generation, SCODE_100, |
| CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, |
| lock_data, sizeof(lock_data)); |
| |
| if (rcode == RCODE_GENERATION) |
| /* Another bus reset, BM work has been rescheduled. */ |
| goto out; |
| |
| if (rcode == RCODE_COMPLETE && |
| lock_data[0] != cpu_to_be32(0x3f)) |
| /* Somebody else is BM, let them do the work. */ |
| goto out; |
| |
| spin_lock_irqsave(&card->lock, flags); |
| |
| if (rcode != RCODE_COMPLETE) { |
| /* |
| * The lock request failed, maybe the IRM |
| * isn't really IRM capable after all. Let's |
| * do a bus reset and pick the local node as |
| * root, and thus, IRM. |
| */ |
| new_root_id = local_node->node_id; |
| fw_notify("BM lock failed, making local node (%02x) root.\n", |
| new_root_id); |
| goto pick_me; |
| } |
| } else if (card->bm_generation != generation) { |
| /* |
| * OK, we weren't BM in the last generation, and it's |
| * less than 100ms since last bus reset. Reschedule |
| * this task 100ms from now. |
| */ |
| spin_unlock_irqrestore(&card->lock, flags); |
| fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 10)); |
| goto out; |
| } |
| |
| /* |
| * We're bus manager for this generation, so next step is to |
| * make sure we have an active cycle master and do gap count |
| * optimization. |
| */ |
| card->bm_generation = generation; |
| |
| if (root_device == NULL) { |
| /* |
| * Either link_on is false, or we failed to read the |
| * config rom. In either case, pick another root. |
| */ |
| new_root_id = local_node->node_id; |
| } else if (!root_device_is_running) { |
| /* |
| * If we haven't probed this device yet, bail out now |
| * and let's try again once that's done. |
| */ |
| spin_unlock_irqrestore(&card->lock, flags); |
| goto out; |
| } else if (root_device_is_cmc) { |
| /* |
| * FIXME: I suppose we should set the cmstr bit in the |
| * STATE_CLEAR register of this node, as described in |
| * 1394-1995, 8.4.2.6. Also, send out a force root |
| * packet for this node. |
| */ |
| new_root_id = root_id; |
| } else { |
| /* |
| * Current root has an active link layer and we |
| * successfully read the config rom, but it's not |
| * cycle master capable. |
| */ |
| new_root_id = local_node->node_id; |
| } |
| |
| pick_me: |
| /* |
| * Pick a gap count from 1394a table E-1. The table doesn't cover |
| * the typically much larger 1394b beta repeater delays though. |
| */ |
| if (!card->beta_repeaters_present && |
| root_node->max_hops < ARRAY_SIZE(gap_count_table)) |
| gap_count = gap_count_table[root_node->max_hops]; |
| else |
| gap_count = 63; |
| |
| /* |
| * Finally, figure out if we should do a reset or not. If we have |
| * done less than 5 resets with the same physical topology and we |
| * have either a new root or a new gap count setting, let's do it. |
| */ |
| |
| if (card->bm_retries++ < 5 && |
| (card->gap_count != gap_count || new_root_id != root_id)) |
| do_reset = true; |
| |
| spin_unlock_irqrestore(&card->lock, flags); |
| |
| if (do_reset) { |
| fw_notify("phy config: card %d, new root=%x, gap_count=%d\n", |
| card->index, new_root_id, gap_count); |
| fw_send_phy_config(card, new_root_id, generation, gap_count); |
| fw_core_initiate_bus_reset(card, 1); |
| } |
| out: |
| fw_node_put(root_node); |
| fw_node_put(local_node); |
| out_put_card: |
| fw_card_put(card); |
| } |
| |
| static void |
| flush_timer_callback(unsigned long data) |
| { |
| struct fw_card *card = (struct fw_card *)data; |
| |
| fw_flush_transactions(card); |
| } |
| |
| void |
| fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver, |
| struct device *device) |
| { |
| static atomic_t index = ATOMIC_INIT(-1); |
| |
| card->index = atomic_inc_return(&index); |
| card->driver = driver; |
| card->device = device; |
| card->current_tlabel = 0; |
| card->tlabel_mask = 0; |
| card->color = 0; |
| card->broadcast_channel = BROADCAST_CHANNEL_INITIAL; |
| |
| kref_init(&card->kref); |
| init_completion(&card->done); |
| INIT_LIST_HEAD(&card->transaction_list); |
| spin_lock_init(&card->lock); |
| setup_timer(&card->flush_timer, |
| flush_timer_callback, (unsigned long)card); |
| |
| card->local_node = NULL; |
| |
| INIT_DELAYED_WORK(&card->work, fw_card_bm_work); |
| } |
| EXPORT_SYMBOL(fw_card_initialize); |
| |
| int |
| fw_card_add(struct fw_card *card, |
| u32 max_receive, u32 link_speed, u64 guid) |
| { |
| u32 *config_rom; |
| size_t length; |
| |
| card->max_receive = max_receive; |
| card->link_speed = link_speed; |
| card->guid = guid; |
| |
| mutex_lock(&card_mutex); |
| config_rom = generate_config_rom(card, &length); |
| list_add_tail(&card->link, &card_list); |
| mutex_unlock(&card_mutex); |
| |
| return card->driver->enable(card, config_rom, length); |
| } |
| EXPORT_SYMBOL(fw_card_add); |
| |
| |
| /* |
| * The next few functions implements a dummy driver that use once a |
| * card driver shuts down an fw_card. This allows the driver to |
| * cleanly unload, as all IO to the card will be handled by the dummy |
| * driver instead of calling into the (possibly) unloaded module. The |
| * dummy driver just fails all IO. |
| */ |
| |
| static int |
| dummy_enable(struct fw_card *card, u32 *config_rom, size_t length) |
| { |
| BUG(); |
| return -1; |
| } |
| |
| static int |
| dummy_update_phy_reg(struct fw_card *card, int address, |
| int clear_bits, int set_bits) |
| { |
| return -ENODEV; |
| } |
| |
| static int |
| dummy_set_config_rom(struct fw_card *card, |
| u32 *config_rom, size_t length) |
| { |
| /* |
| * We take the card out of card_list before setting the dummy |
| * driver, so this should never get called. |
| */ |
| BUG(); |
| return -1; |
| } |
| |
| static void |
| dummy_send_request(struct fw_card *card, struct fw_packet *packet) |
| { |
| packet->callback(packet, card, -ENODEV); |
| } |
| |
| static void |
| dummy_send_response(struct fw_card *card, struct fw_packet *packet) |
| { |
| packet->callback(packet, card, -ENODEV); |
| } |
| |
| static int |
| dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet) |
| { |
| return -ENOENT; |
| } |
| |
| static int |
| dummy_enable_phys_dma(struct fw_card *card, |
| int node_id, int generation) |
| { |
| return -ENODEV; |
| } |
| |
| static struct fw_card_driver dummy_driver = { |
| .enable = dummy_enable, |
| .update_phy_reg = dummy_update_phy_reg, |
| .set_config_rom = dummy_set_config_rom, |
| .send_request = dummy_send_request, |
| .cancel_packet = dummy_cancel_packet, |
| .send_response = dummy_send_response, |
| .enable_phys_dma = dummy_enable_phys_dma, |
| }; |
| |
| void |
| fw_card_release(struct kref *kref) |
| { |
| struct fw_card *card = container_of(kref, struct fw_card, kref); |
| |
| complete(&card->done); |
| } |
| |
| void |
| fw_core_remove_card(struct fw_card *card) |
| { |
| card->driver->update_phy_reg(card, 4, |
| PHY_LINK_ACTIVE | PHY_CONTENDER, 0); |
| fw_core_initiate_bus_reset(card, 1); |
| |
| mutex_lock(&card_mutex); |
| list_del_init(&card->link); |
| mutex_unlock(&card_mutex); |
| |
| /* Set up the dummy driver. */ |
| card->driver = &dummy_driver; |
| |
| fw_destroy_nodes(card); |
| |
| /* Wait for all users, especially device workqueue jobs, to finish. */ |
| fw_card_put(card); |
| wait_for_completion(&card->done); |
| |
| WARN_ON(!list_empty(&card->transaction_list)); |
| del_timer_sync(&card->flush_timer); |
| } |
| EXPORT_SYMBOL(fw_core_remove_card); |
| |
| int |
| fw_core_initiate_bus_reset(struct fw_card *card, int short_reset) |
| { |
| int reg = short_reset ? 5 : 1; |
| int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET; |
| |
| return card->driver->update_phy_reg(card, reg, 0, bit); |
| } |
| EXPORT_SYMBOL(fw_core_initiate_bus_reset); |