blob: acbc4c34f72ab0f9abaa07ed80fad07d85de9658 [file] [log] [blame]
/*
* skystar2.c - driver for the Technisat SkyStar2 PCI DVB card
* based on the FlexCopII by B2C2,Inc.
*
* Copyright (C) 2003 Vadim Catana, skystar@moldova.cc
*
* FIX: DISEQC Tone Burst in flexcop_diseqc_ioctl()
* FIX: FULL soft DiSEqC for skystar2 (FlexCopII rev 130) VP310 equipped
* Vincenzo Di Massa, hawk.it at tiscalinet.it
*
* Converted to Linux coding style
* Misc reorganization, polishing, restyling
* Roberto Ragusa, skystar2-c5b8 at robertoragusa dot it
*
* Added hardware filtering support,
* Niklas Peinecke, peinecke at gdv.uni-hannover.de
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/version.h>
#include <asm/io.h>
#include "dvb_frontend.h"
#include <linux/dvb/frontend.h>
#include <linux/dvb/dmx.h>
#include "dvb_demux.h"
#include "dmxdev.h"
#include "dvb_filter.h"
#include "dvbdev.h"
#include "demux.h"
#include "dvb_net.h"
#include "stv0299.h"
#include "mt352.h"
#include "mt312.h"
#include "nxt2002.h"
static int debug;
static int enable_hw_filters = 2;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Set debugging level (0 = default, 1 = most messages, 2 = all messages).");
module_param(enable_hw_filters, int, 0444);
MODULE_PARM_DESC(enable_hw_filters, "enable hardware filters: supported values: 0 (none), 1, 2");
#define dprintk(x...) do { if (debug>=1) printk(x); } while (0)
#define ddprintk(x...) do { if (debug>=2) printk(x); } while (0)
#define SIZE_OF_BUF_DMA1 0x3ac00
#define SIZE_OF_BUF_DMA2 0x758
#define MAX_N_HW_FILTERS (6+32)
#define N_PID_SLOTS 256
struct dmaq {
u32 bus_addr;
u32 head;
u32 tail;
u32 buffer_size;
u8 *buffer;
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,9)
#define __iomem
#endif
struct adapter {
struct pci_dev *pdev;
u8 card_revision;
u32 b2c2_revision;
u32 pid_filter_max;
u32 mac_filter_max;
u32 irq;
void __iomem *io_mem;
unsigned long io_port;
u8 mac_addr[8];
u32 dw_sram_type;
struct dvb_adapter dvb_adapter;
struct dvb_demux demux;
struct dmxdev dmxdev;
struct dmx_frontend hw_frontend;
struct dmx_frontend mem_frontend;
struct i2c_adapter i2c_adap;
struct dvb_net dvbnet;
struct semaphore i2c_sem;
struct dmaq dmaq1;
struct dmaq dmaq2;
u32 dma_ctrl;
u32 dma_status;
int capturing;
spinlock_t lock;
int useable_hw_filters;
u16 hw_pids[MAX_N_HW_FILTERS];
u16 pid_list[N_PID_SLOTS];
int pid_rc[N_PID_SLOTS]; // ref counters for the pids
int pid_count;
int whole_bandwidth_count;
u32 mac_filter;
struct dvb_frontend* fe;
int (*fe_sleep)(struct dvb_frontend* fe);
};
#define write_reg_dw(adapter,reg,value) writel(value, adapter->io_mem + reg)
#define read_reg_dw(adapter,reg) readl(adapter->io_mem + reg)
static void write_reg_bitfield(struct adapter *adapter, u32 reg, u32 zeromask, u32 orvalue)
{
u32 tmp;
tmp = read_reg_dw(adapter, reg);
tmp = (tmp & ~zeromask) | orvalue;
write_reg_dw(adapter, reg, tmp);
}
/* i2c functions */
static int i2c_main_write_for_flex2(struct adapter *adapter, u32 command, u8 *buf, int retries)
{
int i;
u32 value;
write_reg_dw(adapter, 0x100, 0);
write_reg_dw(adapter, 0x100, command);
for (i = 0; i < retries; i++) {
value = read_reg_dw(adapter, 0x100);
if ((value & 0x40000000) == 0) {
if ((value & 0x81000000) == 0x80000000) {
if (buf != 0)
*buf = (value >> 0x10) & 0xff;
return 1;
}
} else {
write_reg_dw(adapter, 0x100, 0);
write_reg_dw(adapter, 0x100, command);
}
}
return 0;
}
/* device = 0x10000000 for tuner, 0x20000000 for eeprom */
static void i2c_main_setup(u32 device, u32 chip_addr, u8 op, u8 addr, u32 value, u32 len, u32 *command)
{
*command = device | ((len - 1) << 26) | (value << 16) | (addr << 8) | chip_addr;
if (op != 0)
*command = *command | 0x03000000;
else
*command = *command | 0x01000000;
}
static int flex_i2c_read4(struct adapter *adapter, u32 device, u32 chip_addr, u16 addr, u8 *buf, u8 len)
{
u32 command;
u32 value;
int result, i;
i2c_main_setup(device, chip_addr, 1, addr, 0, len, &command);
result = i2c_main_write_for_flex2(adapter, command, buf, 100000);
if ((result & 0xff) != 0) {
if (len > 1) {
value = read_reg_dw(adapter, 0x104);
for (i = 1; i < len; i++) {
buf[i] = value & 0xff;
value = value >> 8;
}
}
}
return result;
}
static int flex_i2c_write4(struct adapter *adapter, u32 device, u32 chip_addr, u32 addr, u8 *buf, u8 len)
{
u32 command;
u32 value;
int i;
if (len > 1) {
value = 0;
for (i = len; i > 1; i--) {
value = value << 8;
value = value | buf[i - 1];
}
write_reg_dw(adapter, 0x104, value);
}
i2c_main_setup(device, chip_addr, 0, addr, buf[0], len, &command);
return i2c_main_write_for_flex2(adapter, command, NULL, 100000);
}
static void fixchipaddr(u32 device, u32 bus, u32 addr, u32 *ret)
{
if (device == 0x20000000)
*ret = bus | ((addr >> 8) & 3);
else
*ret = bus;
}
static u32 flex_i2c_read(struct adapter *adapter, u32 device, u32 bus, u32 addr, u8 *buf, u32 len)
{
u32 chipaddr;
u32 bytes_to_transfer;
u8 *start;
ddprintk("%s:\n", __FUNCTION__);
start = buf;
while (len != 0) {
bytes_to_transfer = len;
if (bytes_to_transfer > 4)
bytes_to_transfer = 4;
fixchipaddr(device, bus, addr, &chipaddr);
if (flex_i2c_read4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0)
return buf - start;
buf = buf + bytes_to_transfer;
addr = addr + bytes_to_transfer;
len = len - bytes_to_transfer;
};
return buf - start;
}
static u32 flex_i2c_write(struct adapter *adapter, u32 device, u32 bus, u32 addr, u8 *buf, u32 len)
{
u32 chipaddr;
u32 bytes_to_transfer;
u8 *start;
ddprintk("%s:\n", __FUNCTION__);
start = buf;
while (len != 0) {
bytes_to_transfer = len;
if (bytes_to_transfer > 4)
bytes_to_transfer = 4;
fixchipaddr(device, bus, addr, &chipaddr);
if (flex_i2c_write4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0)
return buf - start;
buf = buf + bytes_to_transfer;
addr = addr + bytes_to_transfer;
len = len - bytes_to_transfer;
}
return buf - start;
}
static int master_xfer(struct i2c_adapter* adapter, struct i2c_msg *msgs, int num)
{
struct adapter *tmp = i2c_get_adapdata(adapter);
int i, ret = 0;
if (down_interruptible(&tmp->i2c_sem))
return -ERESTARTSYS;
ddprintk("%s: %d messages to transfer\n", __FUNCTION__, num);
for (i = 0; i < num; i++) {
ddprintk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i,
msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len);
}
// read command
if ((num == 2) && (msgs[0].flags == 0) && (msgs[1].flags == I2C_M_RD) && (msgs[0].buf != NULL) && (msgs[1].buf != NULL)) {
ret = flex_i2c_read(tmp, 0x10000000, msgs[0].addr, msgs[0].buf[0], msgs[1].buf, msgs[1].len);
up(&tmp->i2c_sem);
if (ret != msgs[1].len) {
dprintk("%s: read error !\n", __FUNCTION__);
for (i = 0; i < 2; i++) {
dprintk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i,
msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len);
}
return -EREMOTEIO;
}
return num;
}
// write command
for (i = 0; i < num; i++) {
if ((msgs[i].flags != 0) || (msgs[i].buf == NULL) || (msgs[i].len < 2))
return -EINVAL;
ret = flex_i2c_write(tmp, 0x10000000, msgs[i].addr, msgs[i].buf[0], &msgs[i].buf[1], msgs[i].len - 1);
up(&tmp->i2c_sem);
if (ret != msgs[0].len - 1) {
dprintk("%s: write error %i !\n", __FUNCTION__, ret);
dprintk("message %d: flags=0x%x, addr=0x%x, buf[0]=0x%x, len=%d \n", i,
msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len);
return -EREMOTEIO;
}
return num;
}
printk("%s: unknown command format !\n", __FUNCTION__);
return -EINVAL;
}
/* SRAM (Skystar2 rev2.3 has one "ISSI IS61LV256" chip on board,
but it seems that FlexCopII can work with more than one chip) */
static void sram_set_net_dest(struct adapter *adapter, u8 dest)
{
u32 tmp;
udelay(1000);
tmp = (read_reg_dw(adapter, 0x714) & 0xfffffffc) | (dest & 3);
udelay(1000);
write_reg_dw(adapter, 0x714, tmp);
write_reg_dw(adapter, 0x714, tmp);
udelay(1000);
/* return value is never used? */
/* return tmp; */
}
static void sram_set_cai_dest(struct adapter *adapter, u8 dest)
{
u32 tmp;
udelay(1000);
tmp = (read_reg_dw(adapter, 0x714) & 0xfffffff3) | ((dest & 3) << 2);
udelay(1000);
udelay(1000);
write_reg_dw(adapter, 0x714, tmp);
write_reg_dw(adapter, 0x714, tmp);
udelay(1000);
/* return value is never used? */
/* return tmp; */
}
static void sram_set_cao_dest(struct adapter *adapter, u8 dest)
{
u32 tmp;
udelay(1000);
tmp = (read_reg_dw(adapter, 0x714) & 0xffffffcf) | ((dest & 3) << 4);
udelay(1000);
udelay(1000);
write_reg_dw(adapter, 0x714, tmp);
write_reg_dw(adapter, 0x714, tmp);
udelay(1000);
/* return value is never used? */
/* return tmp; */
}
static void sram_set_media_dest(struct adapter *adapter, u8 dest)
{
u32 tmp;
udelay(1000);
tmp = (read_reg_dw(adapter, 0x714) & 0xffffff3f) | ((dest & 3) << 6);
udelay(1000);
udelay(1000);
write_reg_dw(adapter, 0x714, tmp);
write_reg_dw(adapter, 0x714, tmp);
udelay(1000);
/* return value is never used? */
/* return tmp; */
}
/* SRAM memory is accessed through a buffer register in the FlexCop
chip (0x700). This register has the following structure:
bits 0-14 : address
bit 15 : read/write flag
bits 16-23 : 8-bit word to write
bits 24-27 : = 4
bits 28-29 : memory bank selector
bit 31 : busy flag
*/
static void flex_sram_write(struct adapter *adapter, u32 bank, u32 addr, u8 *buf, u32 len)
{
int i, retries;
u32 command;
for (i = 0; i < len; i++) {
command = bank | addr | 0x04000000 | (*buf << 0x10);
retries = 2;
while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) {
mdelay(1);
retries--;
};
if (retries == 0)
printk("%s: SRAM timeout\n", __FUNCTION__);
write_reg_dw(adapter, 0x700, command);
buf++;
addr++;
}
}
static void flex_sram_read(struct adapter *adapter, u32 bank, u32 addr, u8 *buf, u32 len)
{
int i, retries;
u32 command, value;
for (i = 0; i < len; i++) {
command = bank | addr | 0x04008000;
retries = 10000;
while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) {
mdelay(1);
retries--;
};
if (retries == 0)
printk("%s: SRAM timeout\n", __FUNCTION__);
write_reg_dw(adapter, 0x700, command);
retries = 10000;
while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) {
mdelay(1);
retries--;
};
if (retries == 0)
printk("%s: SRAM timeout\n", __FUNCTION__);
value = read_reg_dw(adapter, 0x700) >> 0x10;
*buf = (value & 0xff);
addr++;
buf++;
}
}
static void sram_write_chunk(struct adapter *adapter, u32 addr, u8 *buf, u16 len)
{
u32 bank;
bank = 0;
if (adapter->dw_sram_type == 0x20000) {
bank = (addr & 0x18000) << 0x0d;
}
if (adapter->dw_sram_type == 0x00000) {
if ((addr >> 0x0f) == 0)
bank = 0x20000000;
else
bank = 0x10000000;
}
flex_sram_write(adapter, bank, addr & 0x7fff, buf, len);
}
static void sram_read_chunk(struct adapter *adapter, u32 addr, u8 *buf, u16 len)
{
u32 bank;
bank = 0;
if (adapter->dw_sram_type == 0x20000) {
bank = (addr & 0x18000) << 0x0d;
}
if (adapter->dw_sram_type == 0x00000) {
if ((addr >> 0x0f) == 0)
bank = 0x20000000;
else
bank = 0x10000000;
}
flex_sram_read(adapter, bank, addr & 0x7fff, buf, len);
}
static void sram_read(struct adapter *adapter, u32 addr, u8 *buf, u32 len)
{
u32 length;
while (len != 0) {
length = len;
// check if the address range belongs to the same
// 32K memory chip. If not, the data is read from
// one chip at a time.
if ((addr >> 0x0f) != ((addr + len - 1) >> 0x0f)) {
length = (((addr >> 0x0f) + 1) << 0x0f) - addr;
}
sram_read_chunk(adapter, addr, buf, length);
addr = addr + length;
buf = buf + length;
len = len - length;
}
}
static void sram_write(struct adapter *adapter, u32 addr, u8 *buf, u32 len)
{
u32 length;
while (len != 0) {
length = len;
// check if the address range belongs to the same
// 32K memory chip. If not, the data is written to
// one chip at a time.
if ((addr >> 0x0f) != ((addr + len - 1) >> 0x0f)) {
length = (((addr >> 0x0f) + 1) << 0x0f) - addr;
}
sram_write_chunk(adapter, addr, buf, length);
addr = addr + length;
buf = buf + length;
len = len - length;
}
}
static void sram_set_size(struct adapter *adapter, u32 mask)
{
write_reg_dw(adapter, 0x71c, (mask | (~0x30000 & read_reg_dw(adapter, 0x71c))));
}
static void sram_init(struct adapter *adapter)
{
u32 tmp;
tmp = read_reg_dw(adapter, 0x71c);
write_reg_dw(adapter, 0x71c, 1);
if (read_reg_dw(adapter, 0x71c) != 0) {
write_reg_dw(adapter, 0x71c, tmp);
adapter->dw_sram_type = tmp & 0x30000;
ddprintk("%s: dw_sram_type = %x\n", __FUNCTION__, adapter->dw_sram_type);
} else {
adapter->dw_sram_type = 0x10000;
ddprintk("%s: dw_sram_type = %x\n", __FUNCTION__, adapter->dw_sram_type);
}
/* return value is never used? */
/* return adapter->dw_sram_type; */
}
static int sram_test_location(struct adapter *adapter, u32 mask, u32 addr)
{
u8 tmp1, tmp2;
dprintk("%s: mask = %x, addr = %x\n", __FUNCTION__, mask, addr);
sram_set_size(adapter, mask);
sram_init(adapter);
tmp2 = 0xa5;
tmp1 = 0x4f;
sram_write(adapter, addr, &tmp2, 1);
sram_write(adapter, addr + 4, &tmp1, 1);
tmp2 = 0;
mdelay(20);
sram_read(adapter, addr, &tmp2, 1);
sram_read(adapter, addr, &tmp2, 1);
dprintk("%s: wrote 0xa5, read 0x%2x\n", __FUNCTION__, tmp2);
if (tmp2 != 0xa5)
return 0;
tmp2 = 0x5a;
tmp1 = 0xf4;
sram_write(adapter, addr, &tmp2, 1);
sram_write(adapter, addr + 4, &tmp1, 1);
tmp2 = 0;
mdelay(20);
sram_read(adapter, addr, &tmp2, 1);
sram_read(adapter, addr, &tmp2, 1);
dprintk("%s: wrote 0x5a, read 0x%2x\n", __FUNCTION__, tmp2);
if (tmp2 != 0x5a)
return 0;
return 1;
}
static u32 sram_length(struct adapter *adapter)
{
if (adapter->dw_sram_type == 0x10000)
return 32768; // 32K
if (adapter->dw_sram_type == 0x00000)
return 65536; // 64K
if (adapter->dw_sram_type == 0x20000)
return 131072; // 128K
return 32768; // 32K
}
/* FlexcopII can work with 32K, 64K or 128K of external SRAM memory.
- for 128K there are 4x32K chips at bank 0,1,2,3.
- for 64K there are 2x32K chips at bank 1,2.
- for 32K there is one 32K chip at bank 0.
FlexCop works only with one bank at a time. The bank is selected
by bits 28-29 of the 0x700 register.
bank 0 covers addresses 0x00000-0x07fff
bank 1 covers addresses 0x08000-0x0ffff
bank 2 covers addresses 0x10000-0x17fff
bank 3 covers addresses 0x18000-0x1ffff
*/
static int sram_detect_for_flex2(struct adapter *adapter)
{
u32 tmp, tmp2, tmp3;
dprintk("%s:\n", __FUNCTION__);
tmp = read_reg_dw(adapter, 0x208);
write_reg_dw(adapter, 0x208, 0);
tmp2 = read_reg_dw(adapter, 0x71c);
dprintk("%s: tmp2 = %x\n", __FUNCTION__, tmp2);
write_reg_dw(adapter, 0x71c, 1);
tmp3 = read_reg_dw(adapter, 0x71c);
dprintk("%s: tmp3 = %x\n", __FUNCTION__, tmp3);
write_reg_dw(adapter, 0x71c, tmp2);
// check for internal SRAM ???
tmp3--;
if (tmp3 != 0) {
sram_set_size(adapter, 0x10000);
sram_init(adapter);
write_reg_dw(adapter, 0x208, tmp);
dprintk("%s: sram size = 32K\n", __FUNCTION__);
return 32;
}
if (sram_test_location(adapter, 0x20000, 0x18000) != 0) {
sram_set_size(adapter, 0x20000);
sram_init(adapter);
write_reg_dw(adapter, 0x208, tmp);
dprintk("%s: sram size = 128K\n", __FUNCTION__);
return 128;
}
if (sram_test_location(adapter, 0x00000, 0x10000) != 0) {
sram_set_size(adapter, 0x00000);
sram_init(adapter);
write_reg_dw(adapter, 0x208, tmp);
dprintk("%s: sram size = 64K\n", __FUNCTION__);
return 64;
}
if (sram_test_location(adapter, 0x10000, 0x00000) != 0) {
sram_set_size(adapter, 0x10000);
sram_init(adapter);
write_reg_dw(adapter, 0x208, tmp);
dprintk("%s: sram size = 32K\n", __FUNCTION__);
return 32;
}
sram_set_size(adapter, 0x10000);
sram_init(adapter);
write_reg_dw(adapter, 0x208, tmp);
dprintk("%s: SRAM detection failed. Set to 32K \n", __FUNCTION__);
return 0;
}
static void sll_detect_sram_size(struct adapter *adapter)
{
sram_detect_for_flex2(adapter);
}
/* EEPROM (Skystar2 has one "24LC08B" chip on board) */
/*
static int eeprom_write(struct adapter *adapter, u16 addr, u8 *buf, u16 len)
{
return flex_i2c_write(adapter, 0x20000000, 0x50, addr, buf, len);
}
*/
static int eeprom_read(struct adapter *adapter, u16 addr, u8 *buf, u16 len)
{
return flex_i2c_read(adapter, 0x20000000, 0x50, addr, buf, len);
}
static u8 calc_lrc(u8 *buf, int len)
{
int i;
u8 sum;
sum = 0;
for (i = 0; i < len; i++)
sum = sum ^ buf[i];
return sum;
}
static int eeprom_lrc_read(struct adapter *adapter, u32 addr, u32 len, u8 *buf, int retries)
{
int i;
for (i = 0; i < retries; i++) {
if (eeprom_read(adapter, addr, buf, len) == len) {
if (calc_lrc(buf, len - 1) == buf[len - 1])
return 1;
}
}
return 0;
}
/*
static int eeprom_lrc_write(struct adapter *adapter, u32 addr, u32 len, u8 *wbuf, u8 *rbuf, int retries)
{
int i;
for (i = 0; i < retries; i++) {
if (eeprom_write(adapter, addr, wbuf, len) == len) {
if (eeprom_lrc_read(adapter, addr, len, rbuf, retries) == 1)
return 1;
}
}
return 0;
}
*/
/* These functions could be used to unlock SkyStar2 cards. */
/*
static int eeprom_writeKey(struct adapter *adapter, u8 *key, u32 len)
{
u8 rbuf[20];
u8 wbuf[20];
if (len != 16)
return 0;
memcpy(wbuf, key, len);
wbuf[16] = 0;
wbuf[17] = 0;
wbuf[18] = 0;
wbuf[19] = calc_lrc(wbuf, 19);
return eeprom_lrc_write(adapter, 0x3e4, 20, wbuf, rbuf, 4);
}
static int eeprom_readKey(struct adapter *adapter, u8 *key, u32 len)
{
u8 buf[20];
if (len != 16)
return 0;
if (eeprom_lrc_read(adapter, 0x3e4, 20, buf, 4) == 0)
return 0;
memcpy(key, buf, len);
return 1;
}
*/
static int eeprom_get_mac_addr(struct adapter *adapter, char type, u8 *mac)
{
u8 tmp[8];
if (eeprom_lrc_read(adapter, 0x3f8, 8, tmp, 4) != 0) {
if (type != 0) {
mac[0] = tmp[0];
mac[1] = tmp[1];
mac[2] = tmp[2];
mac[3] = 0xfe;
mac[4] = 0xff;
mac[5] = tmp[3];
mac[6] = tmp[4];
mac[7] = tmp[5];
} else {
mac[0] = tmp[0];
mac[1] = tmp[1];
mac[2] = tmp[2];
mac[3] = tmp[3];
mac[4] = tmp[4];
mac[5] = tmp[5];
}
return 1;
} else {
if (type == 0) {
memset(mac, 0, 6);
} else {
memset(mac, 0, 8);
}
return 0;
}
}
/*
static char eeprom_set_mac_addr(struct adapter *adapter, char type, u8 *mac)
{
u8 tmp[8];
if (type != 0) {
tmp[0] = mac[0];
tmp[1] = mac[1];
tmp[2] = mac[2];
tmp[3] = mac[5];
tmp[4] = mac[6];
tmp[5] = mac[7];
} else {
tmp[0] = mac[0];
tmp[1] = mac[1];
tmp[2] = mac[2];
tmp[3] = mac[3];
tmp[4] = mac[4];
tmp[5] = mac[5];
}
tmp[6] = 0;
tmp[7] = calc_lrc(tmp, 7);
if (eeprom_write(adapter, 0x3f8, tmp, 8) == 8)
return 1;
return 0;
}
*/
/* PID filter */
/* every flexcop has 6 "lower" hw PID filters */
/* these are enabled by setting bits 0-5 of 0x208 */
/* for the 32 additional filters we have to select one */
/* of them through 0x310 and modify through 0x314 */
/* op: 0=disable, 1=enable */
static void filter_enable_hw_filter(struct adapter *adapter, int id, u8 op)
{
dprintk("%s: id=%d op=%d\n", __FUNCTION__, id, op);
if (id <= 5) {
u32 mask = (0x00000001 << id);
write_reg_bitfield(adapter, 0x208, mask, op ? mask : 0);
} else {
/* select */
write_reg_bitfield(adapter, 0x310, 0x1f, (id - 6) & 0x1f);
/* modify */
write_reg_bitfield(adapter, 0x314, 0x00006000, op ? 0x00004000 : 0);
}
}
/* this sets the PID that should pass the specified filter */
static void pid_set_hw_pid(struct adapter *adapter, int id, u16 pid)
{
dprintk("%s: id=%d pid=%d\n", __FUNCTION__, id, pid);
if (id <= 5) {
u32 adr = 0x300 + ((id & 6) << 1);
int shift = (id & 1) ? 16 : 0;
dprintk("%s: id=%d addr=%x %c pid=%d\n", __FUNCTION__, id, adr, (id & 1) ? 'h' : 'l', pid);
write_reg_bitfield(adapter, adr, (0x7fff) << shift, (pid & 0x1fff) << shift);
} else {
/* select */
write_reg_bitfield(adapter, 0x310, 0x1f, (id - 6) & 0x1f);
/* modify */
write_reg_bitfield(adapter, 0x314, 0x1fff, pid & 0x1fff);
}
}
/*
static void filter_enable_null_filter(struct adapter *adapter, u32 op)
{
dprintk("%s: op=%x\n", __FUNCTION__, op);
write_reg_bitfield(adapter, 0x208, 0x00000040, op?0x00000040:0);
}
*/
static void filter_enable_mask_filter(struct adapter *adapter, u32 op)
{
dprintk("%s: op=%x\n", __FUNCTION__, op);
write_reg_bitfield(adapter, 0x208, 0x00000080, op ? 0x00000080 : 0);
}
static void ctrl_enable_mac(struct adapter *adapter, u32 op)
{
write_reg_bitfield(adapter, 0x208, 0x00004000, op ? 0x00004000 : 0);
}
static int ca_set_mac_dst_addr_filter(struct adapter *adapter, u8 *mac)
{
u32 tmp1, tmp2;
tmp1 = (mac[3] << 0x18) | (mac[2] << 0x10) | (mac[1] << 0x08) | mac[0];
tmp2 = (mac[5] << 0x08) | mac[4];
write_reg_dw(adapter, 0x418, tmp1);
write_reg_dw(adapter, 0x41c, tmp2);
return 0;
}
/*
static void set_ignore_mac_filter(struct adapter *adapter, u8 op)
{
if (op != 0) {
write_reg_bitfield(adapter, 0x208, 0x00004000, 0);
adapter->mac_filter = 1;
} else {
if (adapter->mac_filter != 0) {
adapter->mac_filter = 0;
write_reg_bitfield(adapter, 0x208, 0x00004000, 0x00004000);
}
}
}
*/
/*
static void check_null_filter_enable(struct adapter *adapter)
{
filter_enable_null_filter(adapter, 1);
filter_enable_mask_filter(adapter, 1);
}
*/
static void pid_set_group_pid(struct adapter *adapter, u16 pid)
{
u32 value;
dprintk("%s: pid=%x\n", __FUNCTION__, pid);
value = (pid & 0x3fff) | (read_reg_dw(adapter, 0x30c) & 0xffff0000);
write_reg_dw(adapter, 0x30c, value);
}
static void pid_set_group_mask(struct adapter *adapter, u16 pid)
{
u32 value;
dprintk("%s: pid=%x\n", __FUNCTION__, pid);
value = ((pid & 0x3fff) << 0x10) | (read_reg_dw(adapter, 0x30c) & 0xffff);
write_reg_dw(adapter, 0x30c, value);
}
/*
static int pid_get_group_pid(struct adapter *adapter)
{
return read_reg_dw(adapter, 0x30c) & 0x00001fff;
}
static int pid_get_group_mask(struct adapter *adapter)
{
return (read_reg_dw(adapter, 0x30c) >> 0x10)& 0x00001fff;
}
*/
/*
static void reset_hardware_pid_filter(struct adapter *adapter)
{
pid_set_stream1_pid(adapter, 0x1fff);
pid_set_stream2_pid(adapter, 0x1fff);
filter_enable_stream2_filter(adapter, 0);
pid_set_pcr_pid(adapter, 0x1fff);
filter_enable_pcr_filter(adapter, 0);
pid_set_pmt_pid(adapter, 0x1fff);
filter_enable_pmt_filter(adapter, 0);
pid_set_ecm_pid(adapter, 0x1fff);
filter_enable_ecm_filter(adapter, 0);
pid_set_emm_pid(adapter, 0x1fff);
filter_enable_emm_filter(adapter, 0);
}
*/
static void init_pids(struct adapter *adapter)
{
int i;
adapter->pid_count = 0;
adapter->whole_bandwidth_count = 0;
for (i = 0; i < adapter->useable_hw_filters; i++) {
dprintk("%s: setting filter %d to 0x1fff\n", __FUNCTION__, i);
adapter->hw_pids[i] = 0x1fff;
pid_set_hw_pid(adapter, i, 0x1fff);
}
pid_set_group_pid(adapter, 0);
pid_set_group_mask(adapter, 0x1fe0);
}
static void open_whole_bandwidth(struct adapter *adapter)
{
dprintk("%s:\n", __FUNCTION__);
pid_set_group_pid(adapter, 0);
pid_set_group_mask(adapter, 0);
/*
filter_enable_mask_filter(adapter, 1);
*/
}
static void close_whole_bandwidth(struct adapter *adapter)
{
dprintk("%s:\n", __FUNCTION__);
pid_set_group_pid(adapter, 0);
pid_set_group_mask(adapter, 0x1fe0);
/*
filter_enable_mask_filter(adapter, 1);
*/
}
static void whole_bandwidth_inc(struct adapter *adapter)
{
if (adapter->whole_bandwidth_count++ == 0)
open_whole_bandwidth(adapter);
}
static void whole_bandwidth_dec(struct adapter *adapter)
{
if (--adapter->whole_bandwidth_count <= 0)
close_whole_bandwidth(adapter);
}
/* The specified PID has to be let through the
hw filters.
We try to allocate an hardware filter and open whole
bandwidth when allocation is impossible.
All pids<=0x1f pass through the group filter.
Returns 1 on success, -1 on error */
static int add_hw_pid(struct adapter *adapter, u16 pid)
{
int i;
dprintk("%s: pid=%d\n", __FUNCTION__, pid);
if (pid <= 0x1f)
return 1;
/* we can't use a filter for 0x2000, so no search */
if (pid != 0x2000) {
/* find an unused hardware filter */
for (i = 0; i < adapter->useable_hw_filters; i++) {
dprintk("%s: pid=%d searching slot=%d\n", __FUNCTION__, pid, i);
if (adapter->hw_pids[i] == 0x1fff) {
dprintk("%s: pid=%d slot=%d\n", __FUNCTION__, pid, i);
adapter->hw_pids[i] = pid;
pid_set_hw_pid(adapter, i, pid);
filter_enable_hw_filter(adapter, i, 1);
return 1;
}
}
}
/* if we have not used a filter, this pid depends on whole bandwidth */
dprintk("%s: pid=%d whole_bandwidth\n", __FUNCTION__, pid);
whole_bandwidth_inc(adapter);
return 1;
}
/* returns -1 if the pid was not present in the filters */
static int remove_hw_pid(struct adapter *adapter, u16 pid)
{
int i;
dprintk("%s: pid=%d\n", __FUNCTION__, pid);
if (pid <= 0x1f)
return 1;
/* we can't use a filter for 0x2000, so no search */
if (pid != 0x2000) {
for (i = 0; i < adapter->useable_hw_filters; i++) {
dprintk("%s: pid=%d searching slot=%d\n", __FUNCTION__, pid, i);
if (adapter->hw_pids[i] == pid) { // find the pid slot
dprintk("%s: pid=%d slot=%d\n", __FUNCTION__, pid, i);
adapter->hw_pids[i] = 0x1fff;
pid_set_hw_pid(adapter, i, 0x1fff);
filter_enable_hw_filter(adapter, i, 0);
return 1;
}
}
}
/* if we have not used a filter, this pid depended on whole bandwith */
dprintk("%s: pid=%d whole_bandwidth\n", __FUNCTION__, pid);
whole_bandwidth_dec(adapter);
return 1;
}
/* Adds a PID to the filters.
Adding a pid more than once is possible, we keep reference counts.
Whole stream available through pid==0x2000.
Returns 1 on success, -1 on error */
static int add_pid(struct adapter *adapter, u16 pid)
{
int i;
dprintk("%s: pid=%d\n", __FUNCTION__, pid);
if (pid > 0x1ffe && pid != 0x2000)
return -1;
// check if the pid is already present
for (i = 0; i < adapter->pid_count; i++)
if (adapter->pid_list[i] == pid) {
adapter->pid_rc[i]++; // increment ref counter
return 1;
}
if (adapter->pid_count == N_PID_SLOTS)
return -1; // no more pids can be added
adapter->pid_list[adapter->pid_count] = pid; // register pid
adapter->pid_rc[adapter->pid_count] = 1;
adapter->pid_count++;
// hardware setting
add_hw_pid(adapter, pid);
return 1;
}
/* Removes a PID from the filters. */
static int remove_pid(struct adapter *adapter, u16 pid)
{
int i;
dprintk("%s: pid=%d\n", __FUNCTION__, pid);
if (pid > 0x1ffe && pid != 0x2000)
return -1;
// check if the pid is present (it must be!)
for (i = 0; i < adapter->pid_count; i++) {
if (adapter->pid_list[i] == pid) {
adapter->pid_rc[i]--;
if (adapter->pid_rc[i] <= 0) {
// remove from the list
adapter->pid_count--;
adapter->pid_list[i]=adapter->pid_list[adapter->pid_count];
adapter->pid_rc[i] = adapter->pid_rc[adapter->pid_count];
// hardware setting
remove_hw_pid(adapter, pid);
}
return 1;
}
}
return -1;
}
/* dma & irq */
static void ctrl_enable_smc(struct adapter *adapter, u32 op)
{
write_reg_bitfield(adapter, 0x208, 0x00000800, op ? 0x00000800 : 0);
}
static void dma_enable_disable_irq(struct adapter *adapter, u32 flag1, u32 flag2, u32 flag3)
{
adapter->dma_ctrl = adapter->dma_ctrl & 0x000f0000;
if (flag1 == 0) {
if (flag2 == 0)
adapter->dma_ctrl = adapter->dma_ctrl & ~0x00010000;
else
adapter->dma_ctrl = adapter->dma_ctrl | 0x00010000;
if (flag3 == 0)
adapter->dma_ctrl = adapter->dma_ctrl & ~0x00020000;
else
adapter->dma_ctrl = adapter->dma_ctrl | 0x00020000;
} else {
if (flag2 == 0)
adapter->dma_ctrl = adapter->dma_ctrl & ~0x00040000;
else
adapter->dma_ctrl = adapter->dma_ctrl | 0x00040000;
if (flag3 == 0)
adapter->dma_ctrl = adapter->dma_ctrl & ~0x00080000;
else
adapter->dma_ctrl = adapter->dma_ctrl | 0x00080000;
}
}
static void irq_dma_enable_disable_irq(struct adapter *adapter, u32 op)
{
u32 value;
value = read_reg_dw(adapter, 0x208) & 0xfff0ffff;
if (op != 0)
value = value | (adapter->dma_ctrl & 0x000f0000);
write_reg_dw(adapter, 0x208, value);
}
/* FlexCopII has 2 dma channels. DMA1 is used to transfer TS data to
system memory.
The DMA1 buffer is divided in 2 subbuffers of equal size.
FlexCopII will transfer TS data to one subbuffer, signal an interrupt
when the subbuffer is full and continue fillig the second subbuffer.
For DMA1:
subbuffer size in 32-bit words is stored in the first 24 bits of
register 0x004. The last 8 bits of register 0x004 contain the number
of subbuffers.
the first 30 bits of register 0x000 contain the address of the first
subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1,
when dma1 is enabled.
the first 30 bits of register 0x00c contain the address of the second
subbuffer. the last 2 bits contain 1.
register 0x008 will contain the address of the subbuffer that was filled
with TS data, when FlexCopII will generate an interrupt.
For DMA2:
subbuffer size in 32-bit words is stored in the first 24 bits of
register 0x014. The last 8 bits of register 0x014 contain the number
of subbuffers.
the first 30 bits of register 0x010 contain the address of the first
subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1,
when dma1 is enabled.
the first 30 bits of register 0x01c contain the address of the second
subbuffer. the last 2 bits contain 1.
register 0x018 contains the address of the subbuffer that was filled
with TS data, when FlexCopII generates an interrupt.
*/
static int dma_init_dma(struct adapter *adapter, u32 dma_channel)
{
u32 subbuffers, subbufsize, subbuf0, subbuf1;
if (dma_channel == 0) {
dprintk("%s: Initializing DMA1 channel\n", __FUNCTION__);
subbuffers = 2;
subbufsize = (((adapter->dmaq1.buffer_size / 2) / 4) << 8) | subbuffers;
subbuf0 = adapter->dmaq1.bus_addr & 0xfffffffc;
subbuf1 = ((adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) & 0xfffffffc) | 1;
dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0);
udelay(1000);
write_reg_dw(adapter, 0x000, subbuf0);
dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4);
udelay(1000);
write_reg_dw(adapter, 0x004, subbufsize);
dprintk("%s: second subbuffer address = 0x%x\n", __FUNCTION__, subbuf1);
udelay(1000);
write_reg_dw(adapter, 0x00c, subbuf1);
dprintk("%s: counter = 0x%x\n", __FUNCTION__, adapter->dmaq1.bus_addr & 0xfffffffc);
write_reg_dw(adapter, 0x008, adapter->dmaq1.bus_addr & 0xfffffffc);
udelay(1000);
dma_enable_disable_irq(adapter, 0, 1, subbuffers ? 1 : 0);
irq_dma_enable_disable_irq(adapter, 1);
sram_set_media_dest(adapter, 1);
sram_set_net_dest(adapter, 1);
sram_set_cai_dest(adapter, 2);
sram_set_cao_dest(adapter, 2);
}
if (dma_channel == 1) {
dprintk("%s: Initializing DMA2 channel\n", __FUNCTION__);
subbuffers = 2;
subbufsize = (((adapter->dmaq2.buffer_size / 2) / 4) << 8) | subbuffers;
subbuf0 = adapter->dmaq2.bus_addr & 0xfffffffc;
subbuf1 = ((adapter->dmaq2.bus_addr + adapter->dmaq2.buffer_size / 2) & 0xfffffffc) | 1;
dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0);
udelay(1000);
write_reg_dw(adapter, 0x010, subbuf0);
dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4);
udelay(1000);
write_reg_dw(adapter, 0x014, subbufsize);
dprintk("%s: second buffer address = 0x%x\n", __FUNCTION__, subbuf1);
udelay(1000);
write_reg_dw(adapter, 0x01c, subbuf1);
sram_set_cai_dest(adapter, 2);
}
return 0;
}
static void ctrl_enable_receive_data(struct adapter *adapter, u32 op)
{
if (op == 0) {
write_reg_bitfield(adapter, 0x208, 0x00008000, 0);
adapter->dma_status = adapter->dma_status & ~0x00000004;
} else {
write_reg_bitfield(adapter, 0x208, 0x00008000, 0x00008000);
adapter->dma_status = adapter->dma_status | 0x00000004;
}
}
/* bit 0 of dma_mask is set to 1 if dma1 channel has to be enabled/disabled
bit 1 of dma_mask is set to 1 if dma2 channel has to be enabled/disabled
*/
static void dma_start_stop(struct adapter *adapter, u32 dma_mask, int start_stop)
{
u32 dma_enable, dma1_enable, dma2_enable;
dprintk("%s: dma_mask=%x\n", __FUNCTION__, dma_mask);
if (start_stop == 1) {
dprintk("%s: starting dma\n", __FUNCTION__);
dma1_enable = 0;
dma2_enable = 0;
if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) == 0) && (adapter->dmaq1.bus_addr != 0)) {
adapter->dma_status = adapter->dma_status | 1;
dma1_enable = 1;
}
if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) == 0) && (adapter->dmaq2.bus_addr != 0)) {
adapter->dma_status = adapter->dma_status | 2;
dma2_enable = 1;
}
// enable dma1 and dma2
if ((dma1_enable == 1) && (dma2_enable == 1)) {
write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr | 1);
write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1);
write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr | 1);
ctrl_enable_receive_data(adapter, 1);
return;
}
// enable dma1
if ((dma1_enable == 1) && (dma2_enable == 0)) {
write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr | 1);
write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1);
ctrl_enable_receive_data(adapter, 1);
return;
}
// enable dma2
if ((dma1_enable == 0) && (dma2_enable == 1)) {
write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr | 1);
ctrl_enable_receive_data(adapter, 1);
return;
}
// start dma
if ((dma1_enable == 0) && (dma2_enable == 0)) {
ctrl_enable_receive_data(adapter, 1);
return;
}
} else {
dprintk("%s: stopping dma\n", __FUNCTION__);
dma_enable = adapter->dma_status & 0x00000003;
if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0)) {
dma_enable = dma_enable & 0xfffffffe;
}
if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0)) {
dma_enable = dma_enable & 0xfffffffd;
}
//stop dma
if ((dma_enable == 0) && ((adapter->dma_status & 4) != 0)) {
ctrl_enable_receive_data(adapter, 0);
udelay(3000);
}
//disable dma1
if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0) && (adapter->dmaq1.bus_addr != 0)) {
write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr);
write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1);
adapter->dma_status = adapter->dma_status & ~0x00000001;
}
//disable dma2
if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0) && (adapter->dmaq2.bus_addr != 0)) {
write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr);
adapter->dma_status = adapter->dma_status & ~0x00000002;
}
}
}
static void open_stream(struct adapter *adapter, u16 pid)
{
u32 dma_mask;
++adapter->capturing;
filter_enable_mask_filter(adapter, 1);
add_pid(adapter, pid);
dprintk("%s: adapter->dma_status=%x\n", __FUNCTION__, adapter->dma_status);
if ((adapter->dma_status & 7) != 7) {
dma_mask = 0;
if (((adapter->dma_status & 0x10000000) != 0) && ((adapter->dma_status & 1) == 0)) {
dma_mask = dma_mask | 1;
adapter->dmaq1.head = 0;
adapter->dmaq1.tail = 0;
memset(adapter->dmaq1.buffer, 0, adapter->dmaq1.buffer_size);
}
if (((adapter->dma_status & 0x20000000) != 0) && ((adapter->dma_status & 2) == 0)) {
dma_mask = dma_mask | 2;
adapter->dmaq2.head = 0;
adapter->dmaq2.tail = 0;
}
if (dma_mask != 0) {
irq_dma_enable_disable_irq(adapter, 1);
dma_start_stop(adapter, dma_mask, 1);
}
}
}
static void close_stream(struct adapter *adapter, u16 pid)
{
if (adapter->capturing > 0)
--adapter->capturing;
dprintk("%s: dma_status=%x\n", __FUNCTION__, adapter->dma_status);
if (adapter->capturing == 0) {
u32 dma_mask = 0;
if ((adapter->dma_status & 1) != 0)
dma_mask = dma_mask | 0x00000001;
if ((adapter->dma_status & 2) != 0)
dma_mask = dma_mask | 0x00000002;
if (dma_mask != 0) {
dma_start_stop(adapter, dma_mask, 0);
}
}
remove_pid(adapter, pid);
}
static void interrupt_service_dma1(struct adapter *adapter)
{
struct dvb_demux *dvbdmx = &adapter->demux;
int n_cur_dma_counter;
u32 n_num_bytes_parsed;
u32 n_num_new_bytes_transferred;
u32 dw_default_packet_size = 188;
u8 gb_tmp_buffer[188];
u8 *pb_dma_buf_cur_pos;
n_cur_dma_counter = readl(adapter->io_mem + 0x008) - adapter->dmaq1.bus_addr;
n_cur_dma_counter = (n_cur_dma_counter / dw_default_packet_size) * dw_default_packet_size;
if ((n_cur_dma_counter < 0) || (n_cur_dma_counter > adapter->dmaq1.buffer_size)) {
dprintk("%s: dma counter outside dma buffer\n", __FUNCTION__);
return;
}
adapter->dmaq1.head = n_cur_dma_counter;
if (adapter->dmaq1.tail <= n_cur_dma_counter) {
n_num_new_bytes_transferred = n_cur_dma_counter - adapter->dmaq1.tail;
} else {
n_num_new_bytes_transferred = (adapter->dmaq1.buffer_size - adapter->dmaq1.tail) + n_cur_dma_counter;
}
ddprintk("%s: n_cur_dma_counter = %d\n", __FUNCTION__, n_cur_dma_counter);
ddprintk("%s: dmaq1.tail = %d\n", __FUNCTION__, adapter->dmaq1.tail);
ddprintk("%s: bytes_transferred = %d\n", __FUNCTION__, n_num_new_bytes_transferred);
if (n_num_new_bytes_transferred < dw_default_packet_size)
return;
n_num_bytes_parsed = 0;
while (n_num_bytes_parsed < n_num_new_bytes_transferred) {
pb_dma_buf_cur_pos = adapter->dmaq1.buffer + adapter->dmaq1.tail;
if (adapter->dmaq1.buffer + adapter->dmaq1.buffer_size < adapter->dmaq1.buffer + adapter->dmaq1.tail + 188) {
memcpy(gb_tmp_buffer, adapter->dmaq1.buffer + adapter->dmaq1.tail,
adapter->dmaq1.buffer_size - adapter->dmaq1.tail);
memcpy(gb_tmp_buffer + (adapter->dmaq1.buffer_size - adapter->dmaq1.tail), adapter->dmaq1.buffer,
(188 - (adapter->dmaq1.buffer_size - adapter->dmaq1.tail)));
pb_dma_buf_cur_pos = gb_tmp_buffer;
}
if (adapter->capturing != 0) {
dvb_dmx_swfilter_packets(dvbdmx, pb_dma_buf_cur_pos, dw_default_packet_size / 188);
}
n_num_bytes_parsed = n_num_bytes_parsed + dw_default_packet_size;
adapter->dmaq1.tail = adapter->dmaq1.tail + dw_default_packet_size;
if (adapter->dmaq1.tail >= adapter->dmaq1.buffer_size)
adapter->dmaq1.tail = adapter->dmaq1.tail - adapter->dmaq1.buffer_size;
};
}
static void interrupt_service_dma2(struct adapter *adapter)
{
printk("%s:\n", __FUNCTION__);
}
static irqreturn_t isr(int irq, void *dev_id, struct pt_regs *regs)
{
struct adapter *tmp = dev_id;
u32 value;
ddprintk("%s:\n", __FUNCTION__);
spin_lock_irq(&tmp->lock);
if (0 == ((value = read_reg_dw(tmp, 0x20c)) & 0x0f)) {
spin_unlock_irq(&tmp->lock);
return IRQ_NONE;
}
while (value != 0) {
if ((value & 0x03) != 0)
interrupt_service_dma1(tmp);
if ((value & 0x0c) != 0)
interrupt_service_dma2(tmp);
value = read_reg_dw(tmp, 0x20c) & 0x0f;
}
spin_unlock_irq(&tmp->lock);
return IRQ_HANDLED;
}
static int init_dma_queue_one(struct adapter *adapter, struct dmaq *dmaq,
int size, int dmaq_offset)
{
struct pci_dev *pdev = adapter->pdev;
dma_addr_t dma_addr;
dmaq->head = 0;
dmaq->tail = 0;
dmaq->buffer = pci_alloc_consistent(pdev, size + 0x80, &dma_addr);
if (!dmaq->buffer)
return -ENOMEM;
dmaq->bus_addr = dma_addr;
dmaq->buffer_size = size;
dma_init_dma(adapter, dmaq_offset);
ddprintk("%s: allocated dma buffer at 0x%p, length=%d\n",
__FUNCTION__, dmaq->buffer, size);
return 0;
}
static int init_dma_queue(struct adapter *adapter)
{
struct {
struct dmaq *dmaq;
u32 dma_status;
int size;
} dmaq_desc[] = {
{ &adapter->dmaq1, 0x10000000, SIZE_OF_BUF_DMA1 },
{ &adapter->dmaq2, 0x20000000, SIZE_OF_BUF_DMA2 }
}, *p = dmaq_desc;
int i;
for (i = 0; i < 2; i++, p++) {
if (init_dma_queue_one(adapter, p->dmaq, p->size, i) < 0)
adapter->dma_status &= ~p->dma_status;
else
adapter->dma_status |= p->dma_status;
}
return (adapter->dma_status & 0x30000000) ? 0 : -ENOMEM;
}
static void free_dma_queue_one(struct adapter *adapter, struct dmaq *dmaq)
{
if (dmaq->buffer) {
pci_free_consistent(adapter->pdev, dmaq->buffer_size + 0x80,
dmaq->buffer, dmaq->bus_addr);
memset(dmaq, 0, sizeof(*dmaq));
}
}
static void free_dma_queue(struct adapter *adapter)
{
struct dmaq *dmaq[] = {
&adapter->dmaq1,
&adapter->dmaq2,
NULL
}, **p;
for (p = dmaq; *p; p++)
free_dma_queue_one(adapter, *p);
}
static void release_adapter(struct adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
iounmap(adapter->io_mem);
pci_disable_device(pdev);
pci_release_region(pdev, 0);
pci_release_region(pdev, 1);
}
static void free_adapter_object(struct adapter *adapter)
{
dprintk("%s:\n", __FUNCTION__);
close_stream(adapter, 0);
free_irq(adapter->irq, adapter);
free_dma_queue(adapter);
release_adapter(adapter);
kfree(adapter);
}
static struct pci_driver skystar2_pci_driver;
static int claim_adapter(struct adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
u16 var;
int ret;
ret = pci_request_region(pdev, 1, skystar2_pci_driver.name);
if (ret < 0)
goto out;
ret = pci_request_region(pdev, 0, skystar2_pci_driver.name);
if (ret < 0)
goto err_pci_release_1;
pci_read_config_byte(pdev, PCI_CLASS_REVISION, &adapter->card_revision);
dprintk("%s: card revision %x \n", __FUNCTION__, adapter->card_revision);
ret = pci_enable_device(pdev);
if (ret < 0)
goto err_pci_release_0;
pci_read_config_word(pdev, 4, &var);
if ((var & 4) == 0)
pci_set_master(pdev);
adapter->io_port = pdev->resource[1].start;
adapter->io_mem = ioremap(pdev->resource[0].start, 0x800);
if (!adapter->io_mem) {
dprintk("%s: can not map io memory\n", __FUNCTION__);
ret = -EIO;
goto err_pci_disable;
}
dprintk("%s: io memory maped at %p\n", __FUNCTION__, adapter->io_mem);
ret = 1;
out:
return ret;
err_pci_disable:
pci_disable_device(pdev);
err_pci_release_0:
pci_release_region(pdev, 0);
err_pci_release_1:
pci_release_region(pdev, 1);
goto out;
}
/*
static int sll_reset_flexcop(struct adapter *adapter)
{
write_reg_dw(adapter, 0x208, 0);
write_reg_dw(adapter, 0x210, 0xb2ff);
return 0;
}
*/
static void decide_how_many_hw_filters(struct adapter *adapter)
{
int hw_filters;
int mod_option_hw_filters;
// FlexCop IIb & III have 6+32 hw filters
// FlexCop II has 6 hw filters, every other should have at least 6
switch (adapter->b2c2_revision) {
case 0x82: /* II */
hw_filters = 6;
break;
case 0xc3: /* IIB */
hw_filters = 6 + 32;
break;
case 0xc0: /* III */
hw_filters = 6 + 32;
break;
default:
hw_filters = 6;
break;
}
printk("%s: the chip has %i hardware filters", __FILE__, hw_filters);
mod_option_hw_filters = 0;
if (enable_hw_filters >= 1)
mod_option_hw_filters += 6;
if (enable_hw_filters >= 2)
mod_option_hw_filters += 32;
if (mod_option_hw_filters >= hw_filters) {
adapter->useable_hw_filters = hw_filters;
} else {
adapter->useable_hw_filters = mod_option_hw_filters;
printk(", but only %d will be used because of module option", mod_option_hw_filters);
}
printk("\n");
dprintk("%s: useable_hardware_filters set to %i\n", __FILE__, adapter->useable_hw_filters);
}
static int driver_initialize(struct pci_dev *pdev)
{
struct adapter *adapter;
u32 tmp;
int ret = -ENOMEM;
adapter = kmalloc(sizeof(struct adapter), GFP_KERNEL);
if (!adapter) {
dprintk("%s: out of memory!\n", __FUNCTION__);
goto out;
}
memset(adapter, 0, sizeof(struct adapter));
pci_set_drvdata(pdev,adapter);
adapter->pdev = pdev;
adapter->irq = pdev->irq;
ret = claim_adapter(adapter);
if (ret < 0)
goto err_kfree;
irq_dma_enable_disable_irq(adapter, 0);
ret = request_irq(pdev->irq, isr, 0x4000000, "Skystar2", adapter);
if (ret < 0) {
dprintk("%s: unable to allocate irq=%d !\n", __FUNCTION__, pdev->irq);
goto err_release_adapter;
}
read_reg_dw(adapter, 0x208);
write_reg_dw(adapter, 0x208, 0);
write_reg_dw(adapter, 0x210, 0xb2ff);
write_reg_dw(adapter, 0x208, 0x40);
ret = init_dma_queue(adapter);
if (ret < 0)
goto err_free_irq;
adapter->b2c2_revision = (read_reg_dw(adapter, 0x204) >> 0x18);
switch (adapter->b2c2_revision) {
case 0x82:
printk("%s: FlexCopII(rev.130) chip found\n", __FILE__);
break;
case 0xc3:
printk("%s: FlexCopIIB(rev.195) chip found\n", __FILE__);
break;
case 0xc0:
printk("%s: FlexCopIII(rev.192) chip found\n", __FILE__);
break;
default:
printk("%s: The revision of the FlexCop chip on your card is %d\n", __FILE__, adapter->b2c2_revision);
printk("%s: This driver works only with FlexCopII(rev.130), FlexCopIIB(rev.195) and FlexCopIII(rev.192).\n", __FILE__);
ret = -ENODEV;
goto err_free_dma_queue;
}
decide_how_many_hw_filters(adapter);
init_pids(adapter);
tmp = read_reg_dw(adapter, 0x204);
write_reg_dw(adapter, 0x204, 0);
mdelay(20);
write_reg_dw(adapter, 0x204, tmp);
mdelay(10);
tmp = read_reg_dw(adapter, 0x308);
write_reg_dw(adapter, 0x308, 0x4000 | tmp);
adapter->dw_sram_type = 0x10000;
sll_detect_sram_size(adapter);
dprintk("%s sram length = %d, sram type= %x\n", __FUNCTION__, sram_length(adapter), adapter->dw_sram_type);
sram_set_media_dest(adapter, 1);
sram_set_net_dest(adapter, 1);
ctrl_enable_smc(adapter, 0);
sram_set_cai_dest(adapter, 2);
sram_set_cao_dest(adapter, 2);
dma_enable_disable_irq(adapter, 1, 0, 0);
if (eeprom_get_mac_addr(adapter, 0, adapter->mac_addr) != 0) {
printk("%s MAC address = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x \n", __FUNCTION__, adapter->mac_addr[0],
adapter->mac_addr[1], adapter->mac_addr[2], adapter->mac_addr[3], adapter->mac_addr[4], adapter->mac_addr[5],
adapter->mac_addr[6], adapter->mac_addr[7]
);
ca_set_mac_dst_addr_filter(adapter, adapter->mac_addr);
ctrl_enable_mac(adapter, 1);
}
spin_lock_init(&adapter->lock);
out:
return ret;
err_free_dma_queue:
free_dma_queue(adapter);
err_free_irq:
free_irq(pdev->irq, adapter);
err_release_adapter:
release_adapter(adapter);
err_kfree:
pci_set_drvdata(pdev, NULL);
kfree(adapter);
goto out;
}
static void driver_halt(struct pci_dev *pdev)
{
struct adapter *adapter = pci_get_drvdata(pdev);
irq_dma_enable_disable_irq(adapter, 0);
ctrl_enable_receive_data(adapter, 0);
free_adapter_object(adapter);
pci_set_drvdata(pdev, NULL);
}
static int dvb_start_feed(struct dvb_demux_feed *dvbdmxfeed)
{
struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
struct adapter *adapter = (struct adapter *) dvbdmx->priv;
dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type);
open_stream(adapter, dvbdmxfeed->pid);
return 0;
}
static int dvb_stop_feed(struct dvb_demux_feed *dvbdmxfeed)
{
struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
struct adapter *adapter = (struct adapter *) dvbdmx->priv;
dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type);
close_stream(adapter, dvbdmxfeed->pid);
return 0;
}
/* lnb control */
static void set_tuner_tone(struct adapter *adapter, u8 tone)
{
u16 wz_half_period_for_45_mhz[] = { 0x01ff, 0x0154, 0x00ff, 0x00cc };
u16 ax;
dprintk("%s: %u\n", __FUNCTION__, tone);
switch (tone) {
case 1:
ax = wz_half_period_for_45_mhz[0];
break;
case 2:
ax = wz_half_period_for_45_mhz[1];
break;
case 3:
ax = wz_half_period_for_45_mhz[2];
break;
case 4:
ax = wz_half_period_for_45_mhz[3];
break;
default:
ax = 0;
}
if (ax != 0) {
write_reg_dw(adapter, 0x200, ((ax << 0x0f) + (ax & 0x7fff)) | 0x40000000);
} else {
write_reg_dw(adapter, 0x200, 0x40ff8000);
}
}
static void set_tuner_polarity(struct adapter *adapter, u8 polarity)
{
u32 var;
dprintk("%s : polarity = %u \n", __FUNCTION__, polarity);
var = read_reg_dw(adapter, 0x204);
if (polarity == 0) {
dprintk("%s: LNB power off\n", __FUNCTION__);
var = var | 1;
};
if (polarity == 1) {
var = var & ~1;
var = var & ~4;
};
if (polarity == 2) {
var = var & ~1;
var = var | 4;
}
write_reg_dw(adapter, 0x204, var);
}
static void diseqc_send_bit(struct adapter *adapter, int data)
{
set_tuner_tone(adapter, 1);
udelay(data ? 500 : 1000);
set_tuner_tone(adapter, 0);
udelay(data ? 1000 : 500);
}
static void diseqc_send_byte(struct adapter *adapter, int data)
{
int i, par = 1, d;
for (i = 7; i >= 0; i--) {
d = (data >> i) & 1;
par ^= d;
diseqc_send_bit(adapter, d);
}
diseqc_send_bit(adapter, par);
}
static int send_diseqc_msg(struct adapter *adapter, int len, u8 *msg, unsigned long burst)
{
int i;
set_tuner_tone(adapter, 0);
mdelay(16);
for (i = 0; i < len; i++)
diseqc_send_byte(adapter, msg[i]);
mdelay(16);
if (burst != -1) {
if (burst)
diseqc_send_byte(adapter, 0xff);
else {
set_tuner_tone(adapter, 1);
udelay(12500);
set_tuner_tone(adapter, 0);
}
msleep(20);
}
return 0;
}
static int flexcop_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
{
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
switch(tone) {
case SEC_TONE_ON:
set_tuner_tone(adapter, 1);
break;
case SEC_TONE_OFF:
set_tuner_tone(adapter, 0);
break;
default:
return -EINVAL;
};
return 0;
}
static int flexcop_diseqc_send_master_cmd(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd* cmd)
{
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
send_diseqc_msg(adapter, cmd->msg_len, cmd->msg, 0);
return 0;
}
static int flexcop_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd)
{
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
send_diseqc_msg(adapter, 0, NULL, minicmd);
return 0;
}
static int flexcop_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
{
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
dprintk("%s: FE_SET_VOLTAGE\n", __FUNCTION__);
switch (voltage) {
case SEC_VOLTAGE_13:
dprintk("%s: SEC_VOLTAGE_13, %x\n", __FUNCTION__, SEC_VOLTAGE_13);
set_tuner_polarity(adapter, 1);
return 0;
case SEC_VOLTAGE_18:
dprintk("%s: SEC_VOLTAGE_18, %x\n", __FUNCTION__, SEC_VOLTAGE_18);
set_tuner_polarity(adapter, 2);
return 0;
default:
return -EINVAL;
}
}
static int flexcop_sleep(struct dvb_frontend* fe)
{
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
dprintk("%s: FE_SLEEP\n", __FUNCTION__);
set_tuner_polarity(adapter, 0);
if (adapter->fe_sleep) return adapter->fe_sleep(fe);
return 0;
}
static u32 flexcop_i2c_func(struct i2c_adapter *adapter)
{
printk("flexcop_i2c_func\n");
return I2C_FUNC_I2C;
}
static struct i2c_algorithm flexcop_algo = {
.name = "flexcop i2c algorithm",
.id = I2C_ALGO_BIT,
.master_xfer = master_xfer,
.functionality = flexcop_i2c_func,
};
static int samsung_tbmu24112_set_symbol_rate(struct dvb_frontend* fe, u32 srate, u32 ratio)
{
u8 aclk = 0;
u8 bclk = 0;
if (srate < 1500000) { aclk = 0xb7; bclk = 0x47; }
else if (srate < 3000000) { aclk = 0xb7; bclk = 0x4b; }
else if (srate < 7000000) { aclk = 0xb7; bclk = 0x4f; }
else if (srate < 14000000) { aclk = 0xb7; bclk = 0x53; }
else if (srate < 30000000) { aclk = 0xb6; bclk = 0x53; }
else if (srate < 45000000) { aclk = 0xb4; bclk = 0x51; }
stv0299_writereg (fe, 0x13, aclk);
stv0299_writereg (fe, 0x14, bclk);
stv0299_writereg (fe, 0x1f, (ratio >> 16) & 0xff);
stv0299_writereg (fe, 0x20, (ratio >> 8) & 0xff);
stv0299_writereg (fe, 0x21, (ratio ) & 0xf0);
return 0;
}
static int samsung_tbmu24112_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params)
{
u8 buf[4];
u32 div;
struct i2c_msg msg = { .addr = 0x61, .flags = 0, .buf = buf, .len = sizeof(buf) };
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
div = params->frequency / 125;
buf[0] = (div >> 8) & 0x7f;
buf[1] = div & 0xff;
buf[2] = 0x84; // 0xC4
buf[3] = 0x08;
if (params->frequency < 1500000) buf[3] |= 0x10;
if (i2c_transfer (&adapter->i2c_adap, &msg, 1) != 1) return -EIO;
return 0;
}
static u8 samsung_tbmu24112_inittab[] = {
0x01, 0x15,
0x02, 0x30,
0x03, 0x00,
0x04, 0x7D,
0x05, 0x35,
0x06, 0x02,
0x07, 0x00,
0x08, 0xC3,
0x0C, 0x00,
0x0D, 0x81,
0x0E, 0x23,
0x0F, 0x12,
0x10, 0x7E,
0x11, 0x84,
0x12, 0xB9,
0x13, 0x88,
0x14, 0x89,
0x15, 0xC9,
0x16, 0x00,
0x17, 0x5C,
0x18, 0x00,
0x19, 0x00,
0x1A, 0x00,
0x1C, 0x00,
0x1D, 0x00,
0x1E, 0x00,
0x1F, 0x3A,
0x20, 0x2E,
0x21, 0x80,
0x22, 0xFF,
0x23, 0xC1,
0x28, 0x00,
0x29, 0x1E,
0x2A, 0x14,
0x2B, 0x0F,
0x2C, 0x09,
0x2D, 0x05,
0x31, 0x1F,
0x32, 0x19,
0x33, 0xFE,
0x34, 0x93,
0xff, 0xff,
};
static struct stv0299_config samsung_tbmu24112_config = {
.demod_address = 0x68,
.inittab = samsung_tbmu24112_inittab,
.mclk = 88000000UL,
.invert = 0,
.enhanced_tuning = 0,
.skip_reinit = 0,
.lock_output = STV0229_LOCKOUTPUT_LK,
.volt13_op0_op1 = STV0299_VOLT13_OP1,
.min_delay_ms = 100,
.set_symbol_rate = samsung_tbmu24112_set_symbol_rate,
.pll_set = samsung_tbmu24112_pll_set,
};
static int nxt2002_request_firmware(struct dvb_frontend* fe, const struct firmware **fw, char* name)
{
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
return request_firmware(fw, name, &adapter->pdev->dev);
}
static struct nxt2002_config samsung_tbmv_config = {
.demod_address = 0x0A,
.request_firmware = nxt2002_request_firmware,
};
static int samsung_tdtc9251dh0_demod_init(struct dvb_frontend* fe)
{
static u8 mt352_clock_config [] = { 0x89, 0x18, 0x2d };
static u8 mt352_reset [] = { 0x50, 0x80 };
static u8 mt352_adc_ctl_1_cfg [] = { 0x8E, 0x40 };
static u8 mt352_agc_cfg [] = { 0x67, 0x28, 0xa1 };
static u8 mt352_capt_range_cfg[] = { 0x75, 0x32 };
mt352_write(fe, mt352_clock_config, sizeof(mt352_clock_config));
udelay(2000);
mt352_write(fe, mt352_reset, sizeof(mt352_reset));
mt352_write(fe, mt352_adc_ctl_1_cfg, sizeof(mt352_adc_ctl_1_cfg));
mt352_write(fe, mt352_agc_cfg, sizeof(mt352_agc_cfg));
mt352_write(fe, mt352_capt_range_cfg, sizeof(mt352_capt_range_cfg));
return 0;
}
static int samsung_tdtc9251dh0_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params, u8* pllbuf)
{
u32 div;
unsigned char bs = 0;
#define IF_FREQUENCYx6 217 /* 6 * 36.16666666667MHz */
div = (((params->frequency + 83333) * 3) / 500000) + IF_FREQUENCYx6;
if (params->frequency >= 48000000 && params->frequency <= 154000000) bs = 0x09;
if (params->frequency >= 161000000 && params->frequency <= 439000000) bs = 0x0a;
if (params->frequency >= 447000000 && params->frequency <= 863000000) bs = 0x08;
pllbuf[0] = 0xc2; // Note: non-linux standard PLL i2c address
pllbuf[1] = div >> 8;
pllbuf[2] = div & 0xff;
pllbuf[3] = 0xcc;
pllbuf[4] = bs;
return 0;
}
static struct mt352_config samsung_tdtc9251dh0_config = {
.demod_address = 0x0f,
.demod_init = samsung_tdtc9251dh0_demod_init,
.pll_set = samsung_tdtc9251dh0_pll_set,
};
static int skystar23_samsung_tbdu18132_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params)
{
u8 buf[4];
u32 div;
struct i2c_msg msg = { .addr = 0x61, .flags = 0, .buf = buf, .len = sizeof(buf) };
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
div = (params->frequency + (125/2)) / 125;
buf[0] = (div >> 8) & 0x7f;
buf[1] = (div >> 0) & 0xff;
buf[2] = 0x84 | ((div >> 10) & 0x60);
buf[3] = 0x80;
if (params->frequency < 1550000)
buf[3] |= 0x02;
if (i2c_transfer (&adapter->i2c_adap, &msg, 1) != 1) return -EIO;
return 0;
}
static struct mt312_config skystar23_samsung_tbdu18132_config = {
.demod_address = 0x0e,
.pll_set = skystar23_samsung_tbdu18132_pll_set,
};
static void frontend_init(struct adapter *skystar2)
{
switch(skystar2->pdev->device) {
case 0x2103: // Technisat Skystar2 OR Technisat Airstar2 (DVB-T or ATSC)
// Attempt to load the Nextwave nxt2002 for ATSC support
skystar2->fe = nxt2002_attach(&samsung_tbmv_config, &skystar2->i2c_adap);
if (skystar2->fe != NULL) {
skystar2->fe_sleep = skystar2->fe->ops->sleep;
skystar2->fe->ops->sleep = flexcop_sleep;
break;
}
// try the skystar2 v2.6 first (stv0299/Samsung tbmu24112(sl1935))
skystar2->fe = stv0299_attach(&samsung_tbmu24112_config, &skystar2->i2c_adap);
if (skystar2->fe != NULL) {
skystar2->fe->ops->set_voltage = flexcop_set_voltage;
skystar2->fe_sleep = skystar2->fe->ops->sleep;
skystar2->fe->ops->sleep = flexcop_sleep;
break;
}
// try the airstar2 (mt352/Samsung tdtc9251dh0(??))
skystar2->fe = mt352_attach(&samsung_tdtc9251dh0_config, &skystar2->i2c_adap);
if (skystar2->fe != NULL) {
skystar2->fe->ops->info.frequency_min = 474000000;
skystar2->fe->ops->info.frequency_max = 858000000;
break;
}
// try the skystar2 v2.3 (vp310/Samsung tbdu18132(tsa5059))
skystar2->fe = vp310_attach(&skystar23_samsung_tbdu18132_config, &skystar2->i2c_adap);
if (skystar2->fe != NULL) {
skystar2->fe->ops->diseqc_send_master_cmd = flexcop_diseqc_send_master_cmd;
skystar2->fe->ops->diseqc_send_burst = flexcop_diseqc_send_burst;
skystar2->fe->ops->set_tone = flexcop_set_tone;
skystar2->fe->ops->set_voltage = flexcop_set_voltage;
skystar2->fe_sleep = skystar2->fe->ops->sleep;
skystar2->fe->ops->sleep = flexcop_sleep;
break;
}
break;
}
if (skystar2->fe == NULL) {
printk("skystar2: A frontend driver was not found for device %04x/%04x subsystem %04x/%04x\n",
skystar2->pdev->vendor,
skystar2->pdev->device,
skystar2->pdev->subsystem_vendor,
skystar2->pdev->subsystem_device);
} else {
if (dvb_register_frontend(&skystar2->dvb_adapter, skystar2->fe)) {
printk("skystar2: Frontend registration failed!\n");
if (skystar2->fe->ops->release)
skystar2->fe->ops->release(skystar2->fe);
skystar2->fe = NULL;
}
}
}
static int skystar2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct adapter *adapter;
struct dvb_adapter *dvb_adapter;
struct dvb_demux *dvbdemux;
struct dmx_demux *dmx;
int ret = -ENODEV;
if (!pdev)
goto out;
ret = driver_initialize(pdev);
if (ret < 0)
goto out;
adapter = pci_get_drvdata(pdev);
dvb_adapter = &adapter->dvb_adapter;
ret = dvb_register_adapter(dvb_adapter, skystar2_pci_driver.name,
THIS_MODULE);
if (ret < 0) {
printk("%s: Error registering DVB adapter\n", __FUNCTION__);
goto err_halt;
}
dvb_adapter->priv = adapter;
init_MUTEX(&adapter->i2c_sem);
memset(&adapter->i2c_adap, 0, sizeof(struct i2c_adapter));
strcpy(adapter->i2c_adap.name, "SkyStar2");
i2c_set_adapdata(&adapter->i2c_adap, adapter);
#ifdef I2C_ADAP_CLASS_TV_DIGITAL
adapter->i2c_adap.class = I2C_ADAP_CLASS_TV_DIGITAL;
#else
adapter->i2c_adap.class = I2C_CLASS_TV_DIGITAL;
#endif
adapter->i2c_adap.algo = &flexcop_algo;
adapter->i2c_adap.algo_data = NULL;
adapter->i2c_adap.id = I2C_ALGO_BIT;
ret = i2c_add_adapter(&adapter->i2c_adap);
if (ret < 0)
goto err_dvb_unregister;
dvbdemux = &adapter->demux;
dvbdemux->priv = adapter;
dvbdemux->filternum = N_PID_SLOTS;
dvbdemux->feednum = N_PID_SLOTS;
dvbdemux->start_feed = dvb_start_feed;
dvbdemux->stop_feed = dvb_stop_feed;
dvbdemux->write_to_decoder = NULL;
dvbdemux->dmx.capabilities = (DMX_TS_FILTERING | DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING);
ret = dvb_dmx_init(&adapter->demux);
if (ret < 0)
goto err_i2c_del;
dmx = &dvbdemux->dmx;
adapter->hw_frontend.source = DMX_FRONTEND_0;
adapter->dmxdev.filternum = N_PID_SLOTS;
adapter->dmxdev.demux = dmx;
adapter->dmxdev.capabilities = 0;
ret = dvb_dmxdev_init(&adapter->dmxdev, &adapter->dvb_adapter);
if (ret < 0)
goto err_dmx_release;
ret = dmx->add_frontend(dmx, &adapter->hw_frontend);
if (ret < 0)
goto err_dmxdev_release;
adapter->mem_frontend.source = DMX_MEMORY_FE;
ret = dmx->add_frontend(dmx, &adapter->mem_frontend);
if (ret < 0)
goto err_remove_hw_frontend;
ret = dmx->connect_frontend(dmx, &adapter->hw_frontend);
if (ret < 0)
goto err_remove_mem_frontend;
dvb_net_init(&adapter->dvb_adapter, &adapter->dvbnet, &dvbdemux->dmx);
frontend_init(adapter);
out:
return ret;
err_remove_mem_frontend:
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->mem_frontend);
err_remove_hw_frontend:
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->hw_frontend);
err_dmxdev_release:
dvb_dmxdev_release(&adapter->dmxdev);
err_dmx_release:
dvb_dmx_release(&adapter->demux);
err_i2c_del:
i2c_del_adapter(&adapter->i2c_adap);
err_dvb_unregister:
dvb_unregister_adapter(&adapter->dvb_adapter);
err_halt:
driver_halt(pdev);
goto out;
}
static void skystar2_remove(struct pci_dev *pdev)
{
struct adapter *adapter = pci_get_drvdata(pdev);
struct dvb_demux *dvbdemux;
struct dmx_demux *dmx;
if (!adapter)
return;
dvb_net_release(&adapter->dvbnet);
dvbdemux = &adapter->demux;
dmx = &dvbdemux->dmx;
dmx->close(dmx);
dmx->remove_frontend(dmx, &adapter->hw_frontend);
dmx->remove_frontend(dmx, &adapter->mem_frontend);
dvb_dmxdev_release(&adapter->dmxdev);
dvb_dmx_release(dvbdemux);
if (adapter->fe != NULL)
dvb_unregister_frontend(adapter->fe);
dvb_unregister_adapter(&adapter->dvb_adapter);
i2c_del_adapter(&adapter->i2c_adap);
driver_halt(pdev);
}
static struct pci_device_id skystar2_pci_tbl[] = {
{0x000013d0, 0x00002103, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000},
/* {0x000013d0, 0x00002200, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000}, UNDEFINED HARDWARE - mail linuxtv.org list */ //FCIII
{0,},
};
MODULE_DEVICE_TABLE(pci, skystar2_pci_tbl);
static struct pci_driver skystar2_pci_driver = {
.name = "SkyStar2",
.id_table = skystar2_pci_tbl,
.probe = skystar2_probe,
.remove = skystar2_remove,
};
static int skystar2_init(void)
{
return pci_register_driver(&skystar2_pci_driver);
}
static void skystar2_cleanup(void)
{
pci_unregister_driver(&skystar2_pci_driver);
}
module_init(skystar2_init);
module_exit(skystar2_cleanup);
MODULE_DESCRIPTION("Technisat SkyStar2 DVB PCI Driver");
MODULE_LICENSE("GPL");