blob: daee4ab913daf2bcd2883aeee28ff2e8975d02bd [file] [log] [blame]
/*
* fs/f2fs/segment.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/prefetch.h>
#include <linux/kthread.h>
#include <linux/vmalloc.h>
#include <linux/swap.h>
#include "f2fs.h"
#include "segment.h"
#include "node.h"
#include "trace.h"
#include <trace/events/f2fs.h>
#define __reverse_ffz(x) __reverse_ffs(~(x))
static struct kmem_cache *discard_entry_slab;
static struct kmem_cache *sit_entry_set_slab;
static struct kmem_cache *inmem_entry_slab;
/*
* __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
* MSB and LSB are reversed in a byte by f2fs_set_bit.
*/
static inline unsigned long __reverse_ffs(unsigned long word)
{
int num = 0;
#if BITS_PER_LONG == 64
if ((word & 0xffffffff) == 0) {
num += 32;
word >>= 32;
}
#endif
if ((word & 0xffff) == 0) {
num += 16;
word >>= 16;
}
if ((word & 0xff) == 0) {
num += 8;
word >>= 8;
}
if ((word & 0xf0) == 0)
num += 4;
else
word >>= 4;
if ((word & 0xc) == 0)
num += 2;
else
word >>= 2;
if ((word & 0x2) == 0)
num += 1;
return num;
}
/*
* __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
* f2fs_set_bit makes MSB and LSB reversed in a byte.
* Example:
* LSB <--> MSB
* f2fs_set_bit(0, bitmap) => 0000 0001
* f2fs_set_bit(7, bitmap) => 1000 0000
*/
static unsigned long __find_rev_next_bit(const unsigned long *addr,
unsigned long size, unsigned long offset)
{
const unsigned long *p = addr + BIT_WORD(offset);
unsigned long result = offset & ~(BITS_PER_LONG - 1);
unsigned long tmp;
unsigned long mask, submask;
unsigned long quot, rest;
if (offset >= size)
return size;
size -= result;
offset %= BITS_PER_LONG;
if (!offset)
goto aligned;
tmp = *(p++);
quot = (offset >> 3) << 3;
rest = offset & 0x7;
mask = ~0UL << quot;
submask = (unsigned char)(0xff << rest) >> rest;
submask <<= quot;
mask &= submask;
tmp &= mask;
if (size < BITS_PER_LONG)
goto found_first;
if (tmp)
goto found_middle;
size -= BITS_PER_LONG;
result += BITS_PER_LONG;
aligned:
while (size & ~(BITS_PER_LONG-1)) {
tmp = *(p++);
if (tmp)
goto found_middle;
result += BITS_PER_LONG;
size -= BITS_PER_LONG;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp &= (~0UL >> (BITS_PER_LONG - size));
if (tmp == 0UL) /* Are any bits set? */
return result + size; /* Nope. */
found_middle:
return result + __reverse_ffs(tmp);
}
static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
unsigned long size, unsigned long offset)
{
const unsigned long *p = addr + BIT_WORD(offset);
unsigned long result = offset & ~(BITS_PER_LONG - 1);
unsigned long tmp;
unsigned long mask, submask;
unsigned long quot, rest;
if (offset >= size)
return size;
size -= result;
offset %= BITS_PER_LONG;
if (!offset)
goto aligned;
tmp = *(p++);
quot = (offset >> 3) << 3;
rest = offset & 0x7;
mask = ~(~0UL << quot);
submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
submask <<= quot;
mask += submask;
tmp |= mask;
if (size < BITS_PER_LONG)
goto found_first;
if (~tmp)
goto found_middle;
size -= BITS_PER_LONG;
result += BITS_PER_LONG;
aligned:
while (size & ~(BITS_PER_LONG - 1)) {
tmp = *(p++);
if (~tmp)
goto found_middle;
result += BITS_PER_LONG;
size -= BITS_PER_LONG;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL << size;
if (tmp == ~0UL) /* Are any bits zero? */
return result + size; /* Nope. */
found_middle:
return result + __reverse_ffz(tmp);
}
void register_inmem_page(struct inode *inode, struct page *page)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
struct inmem_pages *new;
int err;
SetPagePrivate(page);
f2fs_trace_pid(page);
new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
/* add atomic page indices to the list */
new->page = page;
INIT_LIST_HEAD(&new->list);
retry:
/* increase reference count with clean state */
mutex_lock(&fi->inmem_lock);
err = radix_tree_insert(&fi->inmem_root, page->index, new);
if (err == -EEXIST) {
mutex_unlock(&fi->inmem_lock);
kmem_cache_free(inmem_entry_slab, new);
return;
} else if (err) {
mutex_unlock(&fi->inmem_lock);
goto retry;
}
get_page(page);
list_add_tail(&new->list, &fi->inmem_pages);
inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
mutex_unlock(&fi->inmem_lock);
}
void commit_inmem_pages(struct inode *inode, bool abort)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct inmem_pages *cur, *tmp;
bool submit_bio = false;
struct f2fs_io_info fio = {
.type = DATA,
.rw = WRITE_SYNC | REQ_PRIO,
};
/*
* The abort is true only when f2fs_evict_inode is called.
* Basically, the f2fs_evict_inode doesn't produce any data writes, so
* that we don't need to call f2fs_balance_fs.
* Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
* inode becomes free by iget_locked in f2fs_iget.
*/
if (!abort) {
f2fs_balance_fs(sbi);
f2fs_lock_op(sbi);
}
mutex_lock(&fi->inmem_lock);
list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
if (!abort) {
lock_page(cur->page);
if (cur->page->mapping == inode->i_mapping) {
f2fs_wait_on_page_writeback(cur->page, DATA);
if (clear_page_dirty_for_io(cur->page))
inode_dec_dirty_pages(inode);
do_write_data_page(cur->page, &fio);
submit_bio = true;
}
f2fs_put_page(cur->page, 1);
} else {
put_page(cur->page);
}
radix_tree_delete(&fi->inmem_root, cur->page->index);
list_del(&cur->list);
kmem_cache_free(inmem_entry_slab, cur);
dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
}
mutex_unlock(&fi->inmem_lock);
if (!abort) {
f2fs_unlock_op(sbi);
if (submit_bio)
f2fs_submit_merged_bio(sbi, DATA, WRITE);
}
}
/*
* This function balances dirty node and dentry pages.
* In addition, it controls garbage collection.
*/
void f2fs_balance_fs(struct f2fs_sb_info *sbi)
{
/*
* We should do GC or end up with checkpoint, if there are so many dirty
* dir/node pages without enough free segments.
*/
if (has_not_enough_free_secs(sbi, 0)) {
mutex_lock(&sbi->gc_mutex);
f2fs_gc(sbi);
}
}
void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
{
/* check the # of cached NAT entries and prefree segments */
if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
excess_prefree_segs(sbi) ||
!available_free_memory(sbi, INO_ENTRIES))
f2fs_sync_fs(sbi->sb, true);
}
static int issue_flush_thread(void *data)
{
struct f2fs_sb_info *sbi = data;
struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
wait_queue_head_t *q = &fcc->flush_wait_queue;
repeat:
if (kthread_should_stop())
return 0;
if (!llist_empty(&fcc->issue_list)) {
struct bio *bio = bio_alloc(GFP_NOIO, 0);
struct flush_cmd *cmd, *next;
int ret;
fcc->dispatch_list = llist_del_all(&fcc->issue_list);
fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
bio->bi_bdev = sbi->sb->s_bdev;
ret = submit_bio_wait(WRITE_FLUSH, bio);
llist_for_each_entry_safe(cmd, next,
fcc->dispatch_list, llnode) {
cmd->ret = ret;
complete(&cmd->wait);
}
bio_put(bio);
fcc->dispatch_list = NULL;
}
wait_event_interruptible(*q,
kthread_should_stop() || !llist_empty(&fcc->issue_list));
goto repeat;
}
int f2fs_issue_flush(struct f2fs_sb_info *sbi)
{
struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
struct flush_cmd cmd;
trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
test_opt(sbi, FLUSH_MERGE));
if (test_opt(sbi, NOBARRIER))
return 0;
if (!test_opt(sbi, FLUSH_MERGE))
return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
init_completion(&cmd.wait);
llist_add(&cmd.llnode, &fcc->issue_list);
if (!fcc->dispatch_list)
wake_up(&fcc->flush_wait_queue);
wait_for_completion(&cmd.wait);
return cmd.ret;
}
int create_flush_cmd_control(struct f2fs_sb_info *sbi)
{
dev_t dev = sbi->sb->s_bdev->bd_dev;
struct flush_cmd_control *fcc;
int err = 0;
fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
if (!fcc)
return -ENOMEM;
init_waitqueue_head(&fcc->flush_wait_queue);
init_llist_head(&fcc->issue_list);
SM_I(sbi)->cmd_control_info = fcc;
fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
if (IS_ERR(fcc->f2fs_issue_flush)) {
err = PTR_ERR(fcc->f2fs_issue_flush);
kfree(fcc);
SM_I(sbi)->cmd_control_info = NULL;
return err;
}
return err;
}
void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
{
struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
if (fcc && fcc->f2fs_issue_flush)
kthread_stop(fcc->f2fs_issue_flush);
kfree(fcc);
SM_I(sbi)->cmd_control_info = NULL;
}
static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
enum dirty_type dirty_type)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
/* need not be added */
if (IS_CURSEG(sbi, segno))
return;
if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
dirty_i->nr_dirty[dirty_type]++;
if (dirty_type == DIRTY) {
struct seg_entry *sentry = get_seg_entry(sbi, segno);
enum dirty_type t = sentry->type;
if (unlikely(t >= DIRTY)) {
f2fs_bug_on(sbi, 1);
return;
}
if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
dirty_i->nr_dirty[t]++;
}
}
static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
enum dirty_type dirty_type)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
dirty_i->nr_dirty[dirty_type]--;
if (dirty_type == DIRTY) {
struct seg_entry *sentry = get_seg_entry(sbi, segno);
enum dirty_type t = sentry->type;
if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
dirty_i->nr_dirty[t]--;
if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
clear_bit(GET_SECNO(sbi, segno),
dirty_i->victim_secmap);
}
}
/*
* Should not occur error such as -ENOMEM.
* Adding dirty entry into seglist is not critical operation.
* If a given segment is one of current working segments, it won't be added.
*/
static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
unsigned short valid_blocks;
if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
return;
mutex_lock(&dirty_i->seglist_lock);
valid_blocks = get_valid_blocks(sbi, segno, 0);
if (valid_blocks == 0) {
__locate_dirty_segment(sbi, segno, PRE);
__remove_dirty_segment(sbi, segno, DIRTY);
} else if (valid_blocks < sbi->blocks_per_seg) {
__locate_dirty_segment(sbi, segno, DIRTY);
} else {
/* Recovery routine with SSR needs this */
__remove_dirty_segment(sbi, segno, DIRTY);
}
mutex_unlock(&dirty_i->seglist_lock);
}
static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
block_t blkstart, block_t blklen)
{
sector_t start = SECTOR_FROM_BLOCK(blkstart);
sector_t len = SECTOR_FROM_BLOCK(blklen);
trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
}
void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
{
if (f2fs_issue_discard(sbi, blkaddr, 1)) {
struct page *page = grab_meta_page(sbi, blkaddr);
/* zero-filled page */
set_page_dirty(page);
f2fs_put_page(page, 1);
}
}
static void __add_discard_entry(struct f2fs_sb_info *sbi,
struct cp_control *cpc, unsigned int start, unsigned int end)
{
struct list_head *head = &SM_I(sbi)->discard_list;
struct discard_entry *new, *last;
if (!list_empty(head)) {
last = list_last_entry(head, struct discard_entry, list);
if (START_BLOCK(sbi, cpc->trim_start) + start ==
last->blkaddr + last->len) {
last->len += end - start;
goto done;
}
}
new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
INIT_LIST_HEAD(&new->list);
new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
new->len = end - start;
list_add_tail(&new->list, head);
done:
SM_I(sbi)->nr_discards += end - start;
cpc->trimmed += end - start;
}
static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
{
int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
int max_blocks = sbi->blocks_per_seg;
struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
unsigned long *dmap = SIT_I(sbi)->tmp_map;
unsigned int start = 0, end = -1;
bool force = (cpc->reason == CP_DISCARD);
int i;
if (!force && (!test_opt(sbi, DISCARD) ||
SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards))
return;
if (force && !se->valid_blocks) {
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
/*
* if this segment is registered in the prefree list, then
* we should skip adding a discard candidate, and let the
* checkpoint do that later.
*/
mutex_lock(&dirty_i->seglist_lock);
if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) {
mutex_unlock(&dirty_i->seglist_lock);
cpc->trimmed += sbi->blocks_per_seg;
return;
}
mutex_unlock(&dirty_i->seglist_lock);
__add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg);
return;
}
/* zero block will be discarded through the prefree list */
if (!se->valid_blocks || se->valid_blocks == max_blocks)
return;
/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
for (i = 0; i < entries; i++)
dmap[i] = force ? ~ckpt_map[i] :
(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
start = __find_rev_next_bit(dmap, max_blocks, end + 1);
if (start >= max_blocks)
break;
end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
if (end - start < cpc->trim_minlen)
continue;
__add_discard_entry(sbi, cpc, start, end);
}
}
void release_discard_addrs(struct f2fs_sb_info *sbi)
{
struct list_head *head = &(SM_I(sbi)->discard_list);
struct discard_entry *entry, *this;
/* drop caches */
list_for_each_entry_safe(entry, this, head, list) {
list_del(&entry->list);
kmem_cache_free(discard_entry_slab, entry);
}
}
/*
* Should call clear_prefree_segments after checkpoint is done.
*/
static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
unsigned int segno;
mutex_lock(&dirty_i->seglist_lock);
for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
__set_test_and_free(sbi, segno);
mutex_unlock(&dirty_i->seglist_lock);
}
void clear_prefree_segments(struct f2fs_sb_info *sbi)
{
struct list_head *head = &(SM_I(sbi)->discard_list);
struct discard_entry *entry, *this;
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
unsigned int start = 0, end = -1;
mutex_lock(&dirty_i->seglist_lock);
while (1) {
int i;
start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
if (start >= MAIN_SEGS(sbi))
break;
end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
start + 1);
for (i = start; i < end; i++)
clear_bit(i, prefree_map);
dirty_i->nr_dirty[PRE] -= end - start;
if (!test_opt(sbi, DISCARD))
continue;
f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
(end - start) << sbi->log_blocks_per_seg);
}
mutex_unlock(&dirty_i->seglist_lock);
/* send small discards */
list_for_each_entry_safe(entry, this, head, list) {
f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
list_del(&entry->list);
SM_I(sbi)->nr_discards -= entry->len;
kmem_cache_free(discard_entry_slab, entry);
}
}
static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
{
struct sit_info *sit_i = SIT_I(sbi);
if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
sit_i->dirty_sentries++;
return false;
}
return true;
}
static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
unsigned int segno, int modified)
{
struct seg_entry *se = get_seg_entry(sbi, segno);
se->type = type;
if (modified)
__mark_sit_entry_dirty(sbi, segno);
}
static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
{
struct seg_entry *se;
unsigned int segno, offset;
long int new_vblocks;
segno = GET_SEGNO(sbi, blkaddr);
se = get_seg_entry(sbi, segno);
new_vblocks = se->valid_blocks + del;
offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
(new_vblocks > sbi->blocks_per_seg)));
se->valid_blocks = new_vblocks;
se->mtime = get_mtime(sbi);
SIT_I(sbi)->max_mtime = se->mtime;
/* Update valid block bitmap */
if (del > 0) {
if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
f2fs_bug_on(sbi, 1);
} else {
if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
f2fs_bug_on(sbi, 1);
}
if (!f2fs_test_bit(offset, se->ckpt_valid_map))
se->ckpt_valid_blocks += del;
__mark_sit_entry_dirty(sbi, segno);
/* update total number of valid blocks to be written in ckpt area */
SIT_I(sbi)->written_valid_blocks += del;
if (sbi->segs_per_sec > 1)
get_sec_entry(sbi, segno)->valid_blocks += del;
}
void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
{
update_sit_entry(sbi, new, 1);
if (GET_SEGNO(sbi, old) != NULL_SEGNO)
update_sit_entry(sbi, old, -1);
locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
}
void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
{
unsigned int segno = GET_SEGNO(sbi, addr);
struct sit_info *sit_i = SIT_I(sbi);
f2fs_bug_on(sbi, addr == NULL_ADDR);
if (addr == NEW_ADDR)
return;
/* add it into sit main buffer */
mutex_lock(&sit_i->sentry_lock);
update_sit_entry(sbi, addr, -1);
/* add it into dirty seglist */
locate_dirty_segment(sbi, segno);
mutex_unlock(&sit_i->sentry_lock);
}
/*
* This function should be resided under the curseg_mutex lock
*/
static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
struct f2fs_summary *sum)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
void *addr = curseg->sum_blk;
addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
memcpy(addr, sum, sizeof(struct f2fs_summary));
}
/*
* Calculate the number of current summary pages for writing
*/
int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
{
int valid_sum_count = 0;
int i, sum_in_page;
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
if (sbi->ckpt->alloc_type[i] == SSR)
valid_sum_count += sbi->blocks_per_seg;
else {
if (for_ra)
valid_sum_count += le16_to_cpu(
F2FS_CKPT(sbi)->cur_data_blkoff[i]);
else
valid_sum_count += curseg_blkoff(sbi, i);
}
}
sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
SUM_FOOTER_SIZE) / SUMMARY_SIZE;
if (valid_sum_count <= sum_in_page)
return 1;
else if ((valid_sum_count - sum_in_page) <=
(PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
return 2;
return 3;
}
/*
* Caller should put this summary page
*/
struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
{
return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
}
static void write_sum_page(struct f2fs_sb_info *sbi,
struct f2fs_summary_block *sum_blk, block_t blk_addr)
{
struct page *page = grab_meta_page(sbi, blk_addr);
void *kaddr = page_address(page);
memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
set_page_dirty(page);
f2fs_put_page(page, 1);
}
static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
unsigned int segno = curseg->segno + 1;
struct free_segmap_info *free_i = FREE_I(sbi);
if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
return !test_bit(segno, free_i->free_segmap);
return 0;
}
/*
* Find a new segment from the free segments bitmap to right order
* This function should be returned with success, otherwise BUG
*/
static void get_new_segment(struct f2fs_sb_info *sbi,
unsigned int *newseg, bool new_sec, int dir)
{
struct free_segmap_info *free_i = FREE_I(sbi);
unsigned int segno, secno, zoneno;
unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
unsigned int hint = *newseg / sbi->segs_per_sec;
unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
unsigned int left_start = hint;
bool init = true;
int go_left = 0;
int i;
spin_lock(&free_i->segmap_lock);
if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
segno = find_next_zero_bit(free_i->free_segmap,
MAIN_SEGS(sbi), *newseg + 1);
if (segno - *newseg < sbi->segs_per_sec -
(*newseg % sbi->segs_per_sec))
goto got_it;
}
find_other_zone:
secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
if (secno >= MAIN_SECS(sbi)) {
if (dir == ALLOC_RIGHT) {
secno = find_next_zero_bit(free_i->free_secmap,
MAIN_SECS(sbi), 0);
f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
} else {
go_left = 1;
left_start = hint - 1;
}
}
if (go_left == 0)
goto skip_left;
while (test_bit(left_start, free_i->free_secmap)) {
if (left_start > 0) {
left_start--;
continue;
}
left_start = find_next_zero_bit(free_i->free_secmap,
MAIN_SECS(sbi), 0);
f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
break;
}
secno = left_start;
skip_left:
hint = secno;
segno = secno * sbi->segs_per_sec;
zoneno = secno / sbi->secs_per_zone;
/* give up on finding another zone */
if (!init)
goto got_it;
if (sbi->secs_per_zone == 1)
goto got_it;
if (zoneno == old_zoneno)
goto got_it;
if (dir == ALLOC_LEFT) {
if (!go_left && zoneno + 1 >= total_zones)
goto got_it;
if (go_left && zoneno == 0)
goto got_it;
}
for (i = 0; i < NR_CURSEG_TYPE; i++)
if (CURSEG_I(sbi, i)->zone == zoneno)
break;
if (i < NR_CURSEG_TYPE) {
/* zone is in user, try another */
if (go_left)
hint = zoneno * sbi->secs_per_zone - 1;
else if (zoneno + 1 >= total_zones)
hint = 0;
else
hint = (zoneno + 1) * sbi->secs_per_zone;
init = false;
goto find_other_zone;
}
got_it:
/* set it as dirty segment in free segmap */
f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
__set_inuse(sbi, segno);
*newseg = segno;
spin_unlock(&free_i->segmap_lock);
}
static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
struct summary_footer *sum_footer;
curseg->segno = curseg->next_segno;
curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
curseg->next_blkoff = 0;
curseg->next_segno = NULL_SEGNO;
sum_footer = &(curseg->sum_blk->footer);
memset(sum_footer, 0, sizeof(struct summary_footer));
if (IS_DATASEG(type))
SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
if (IS_NODESEG(type))
SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
__set_sit_entry_type(sbi, type, curseg->segno, modified);
}
/*
* Allocate a current working segment.
* This function always allocates a free segment in LFS manner.
*/
static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
unsigned int segno = curseg->segno;
int dir = ALLOC_LEFT;
write_sum_page(sbi, curseg->sum_blk,
GET_SUM_BLOCK(sbi, segno));
if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
dir = ALLOC_RIGHT;
if (test_opt(sbi, NOHEAP))
dir = ALLOC_RIGHT;
get_new_segment(sbi, &segno, new_sec, dir);
curseg->next_segno = segno;
reset_curseg(sbi, type, 1);
curseg->alloc_type = LFS;
}
static void __next_free_blkoff(struct f2fs_sb_info *sbi,
struct curseg_info *seg, block_t start)
{
struct seg_entry *se = get_seg_entry(sbi, seg->segno);
int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
unsigned long *target_map = SIT_I(sbi)->tmp_map;
unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
int i, pos;
for (i = 0; i < entries; i++)
target_map[i] = ckpt_map[i] | cur_map[i];
pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
seg->next_blkoff = pos;
}
/*
* If a segment is written by LFS manner, next block offset is just obtained
* by increasing the current block offset. However, if a segment is written by
* SSR manner, next block offset obtained by calling __next_free_blkoff
*/
static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
struct curseg_info *seg)
{
if (seg->alloc_type == SSR)
__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
else
seg->next_blkoff++;
}
/*
* This function always allocates a used segment(from dirty seglist) by SSR
* manner, so it should recover the existing segment information of valid blocks
*/
static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, type);
unsigned int new_segno = curseg->next_segno;
struct f2fs_summary_block *sum_node;
struct page *sum_page;
write_sum_page(sbi, curseg->sum_blk,
GET_SUM_BLOCK(sbi, curseg->segno));
__set_test_and_inuse(sbi, new_segno);
mutex_lock(&dirty_i->seglist_lock);
__remove_dirty_segment(sbi, new_segno, PRE);
__remove_dirty_segment(sbi, new_segno, DIRTY);
mutex_unlock(&dirty_i->seglist_lock);
reset_curseg(sbi, type, 1);
curseg->alloc_type = SSR;
__next_free_blkoff(sbi, curseg, 0);
if (reuse) {
sum_page = get_sum_page(sbi, new_segno);
sum_node = (struct f2fs_summary_block *)page_address(sum_page);
memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
f2fs_put_page(sum_page, 1);
}
}
static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
return v_ops->get_victim(sbi,
&(curseg)->next_segno, BG_GC, type, SSR);
/* For data segments, let's do SSR more intensively */
for (; type >= CURSEG_HOT_DATA; type--)
if (v_ops->get_victim(sbi, &(curseg)->next_segno,
BG_GC, type, SSR))
return 1;
return 0;
}
/*
* flush out current segment and replace it with new segment
* This function should be returned with success, otherwise BUG
*/
static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
int type, bool force)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
if (force)
new_curseg(sbi, type, true);
else if (type == CURSEG_WARM_NODE)
new_curseg(sbi, type, false);
else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
new_curseg(sbi, type, false);
else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
change_curseg(sbi, type, true);
else
new_curseg(sbi, type, false);
stat_inc_seg_type(sbi, curseg);
}
static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
unsigned int old_segno;
old_segno = curseg->segno;
SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
locate_dirty_segment(sbi, old_segno);
}
void allocate_new_segments(struct f2fs_sb_info *sbi)
{
int i;
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
__allocate_new_segments(sbi, i);
}
static const struct segment_allocation default_salloc_ops = {
.allocate_segment = allocate_segment_by_default,
};
int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
{
__u64 start = F2FS_BYTES_TO_BLK(range->start);
__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
unsigned int start_segno, end_segno;
struct cp_control cpc;
if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) ||
range->len < sbi->blocksize)
return -EINVAL;
cpc.trimmed = 0;
if (end <= MAIN_BLKADDR(sbi))
goto out;
/* start/end segment number in main_area */
start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
GET_SEGNO(sbi, end);
cpc.reason = CP_DISCARD;
cpc.trim_minlen = F2FS_BYTES_TO_BLK(range->minlen);
/* do checkpoint to issue discard commands safely */
for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
cpc.trim_start = start_segno;
cpc.trim_end = min_t(unsigned int, rounddown(start_segno +
BATCHED_TRIM_SEGMENTS(sbi),
sbi->segs_per_sec) - 1, end_segno);
mutex_lock(&sbi->gc_mutex);
write_checkpoint(sbi, &cpc);
mutex_unlock(&sbi->gc_mutex);
}
out:
range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
return 0;
}
static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
if (curseg->next_blkoff < sbi->blocks_per_seg)
return true;
return false;
}
static int __get_segment_type_2(struct page *page, enum page_type p_type)
{
if (p_type == DATA)
return CURSEG_HOT_DATA;
else
return CURSEG_HOT_NODE;
}
static int __get_segment_type_4(struct page *page, enum page_type p_type)
{
if (p_type == DATA) {
struct inode *inode = page->mapping->host;
if (S_ISDIR(inode->i_mode))
return CURSEG_HOT_DATA;
else
return CURSEG_COLD_DATA;
} else {
if (IS_DNODE(page) && is_cold_node(page))
return CURSEG_WARM_NODE;
else
return CURSEG_COLD_NODE;
}
}
static int __get_segment_type_6(struct page *page, enum page_type p_type)
{
if (p_type == DATA) {
struct inode *inode = page->mapping->host;
if (S_ISDIR(inode->i_mode))
return CURSEG_HOT_DATA;
else if (is_cold_data(page) || file_is_cold(inode))
return CURSEG_COLD_DATA;
else
return CURSEG_WARM_DATA;
} else {
if (IS_DNODE(page))
return is_cold_node(page) ? CURSEG_WARM_NODE :
CURSEG_HOT_NODE;
else
return CURSEG_COLD_NODE;
}
}
static int __get_segment_type(struct page *page, enum page_type p_type)
{
switch (F2FS_P_SB(page)->active_logs) {
case 2:
return __get_segment_type_2(page, p_type);
case 4:
return __get_segment_type_4(page, p_type);
}
/* NR_CURSEG_TYPE(6) logs by default */
f2fs_bug_on(F2FS_P_SB(page),
F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
return __get_segment_type_6(page, p_type);
}
void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
block_t old_blkaddr, block_t *new_blkaddr,
struct f2fs_summary *sum, int type)
{
struct sit_info *sit_i = SIT_I(sbi);
struct curseg_info *curseg;
bool direct_io = (type == CURSEG_DIRECT_IO);
type = direct_io ? CURSEG_WARM_DATA : type;
curseg = CURSEG_I(sbi, type);
mutex_lock(&curseg->curseg_mutex);
/* direct_io'ed data is aligned to the segment for better performance */
if (direct_io && curseg->next_blkoff)
__allocate_new_segments(sbi, type);
*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
/*
* __add_sum_entry should be resided under the curseg_mutex
* because, this function updates a summary entry in the
* current summary block.
*/
__add_sum_entry(sbi, type, sum);
mutex_lock(&sit_i->sentry_lock);
__refresh_next_blkoff(sbi, curseg);
stat_inc_block_count(sbi, curseg);
if (!__has_curseg_space(sbi, type))
sit_i->s_ops->allocate_segment(sbi, type, false);
/*
* SIT information should be updated before segment allocation,
* since SSR needs latest valid block information.
*/
refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
mutex_unlock(&sit_i->sentry_lock);
if (page && IS_NODESEG(type))
fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
mutex_unlock(&curseg->curseg_mutex);
}
static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
struct f2fs_summary *sum,
struct f2fs_io_info *fio)
{
int type = __get_segment_type(page, fio->type);
allocate_data_block(sbi, page, fio->blk_addr, &fio->blk_addr, sum, type);
/* writeout dirty page into bdev */
f2fs_submit_page_mbio(sbi, page, fio);
}
void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_io_info fio = {
.type = META,
.rw = WRITE_SYNC | REQ_META | REQ_PRIO,
.blk_addr = page->index,
};
set_page_writeback(page);
f2fs_submit_page_mbio(sbi, page, &fio);
}
void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
unsigned int nid, struct f2fs_io_info *fio)
{
struct f2fs_summary sum;
set_summary(&sum, nid, 0, 0);
do_write_page(sbi, page, &sum, fio);
}
void write_data_page(struct page *page, struct dnode_of_data *dn,
struct f2fs_io_info *fio)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
struct f2fs_summary sum;
struct node_info ni;
f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
get_node_info(sbi, dn->nid, &ni);
set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
do_write_page(sbi, page, &sum, fio);
dn->data_blkaddr = fio->blk_addr;
}
void rewrite_data_page(struct page *page, struct f2fs_io_info *fio)
{
stat_inc_inplace_blocks(F2FS_P_SB(page));
f2fs_submit_page_mbio(F2FS_P_SB(page), page, fio);
}
void recover_data_page(struct f2fs_sb_info *sbi,
struct page *page, struct f2fs_summary *sum,
block_t old_blkaddr, block_t new_blkaddr)
{
struct sit_info *sit_i = SIT_I(sbi);
struct curseg_info *curseg;
unsigned int segno, old_cursegno;
struct seg_entry *se;
int type;
segno = GET_SEGNO(sbi, new_blkaddr);
se = get_seg_entry(sbi, segno);
type = se->type;
if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
if (old_blkaddr == NULL_ADDR)
type = CURSEG_COLD_DATA;
else
type = CURSEG_WARM_DATA;
}
curseg = CURSEG_I(sbi, type);
mutex_lock(&curseg->curseg_mutex);
mutex_lock(&sit_i->sentry_lock);
old_cursegno = curseg->segno;
/* change the current segment */
if (segno != curseg->segno) {
curseg->next_segno = segno;
change_curseg(sbi, type, true);
}
curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
__add_sum_entry(sbi, type, sum);
refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
locate_dirty_segment(sbi, old_cursegno);
mutex_unlock(&sit_i->sentry_lock);
mutex_unlock(&curseg->curseg_mutex);
}
static inline bool is_merged_page(struct f2fs_sb_info *sbi,
struct page *page, enum page_type type)
{
enum page_type btype = PAGE_TYPE_OF_BIO(type);
struct f2fs_bio_info *io = &sbi->write_io[btype];
struct bio_vec *bvec;
int i;
down_read(&io->io_rwsem);
if (!io->bio)
goto out;
bio_for_each_segment_all(bvec, io->bio, i) {
if (page == bvec->bv_page) {
up_read(&io->io_rwsem);
return true;
}
}
out:
up_read(&io->io_rwsem);
return false;
}
void f2fs_wait_on_page_writeback(struct page *page,
enum page_type type)
{
if (PageWriteback(page)) {
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
if (is_merged_page(sbi, page, type))
f2fs_submit_merged_bio(sbi, type, WRITE);
wait_on_page_writeback(page);
}
}
static int read_compacted_summaries(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct curseg_info *seg_i;
unsigned char *kaddr;
struct page *page;
block_t start;
int i, j, offset;
start = start_sum_block(sbi);
page = get_meta_page(sbi, start++);
kaddr = (unsigned char *)page_address(page);
/* Step 1: restore nat cache */
seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
/* Step 2: restore sit cache */
seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
SUM_JOURNAL_SIZE);
offset = 2 * SUM_JOURNAL_SIZE;
/* Step 3: restore summary entries */
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
unsigned short blk_off;
unsigned int segno;
seg_i = CURSEG_I(sbi, i);
segno = le32_to_cpu(ckpt->cur_data_segno[i]);
blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
seg_i->next_segno = segno;
reset_curseg(sbi, i, 0);
seg_i->alloc_type = ckpt->alloc_type[i];
seg_i->next_blkoff = blk_off;
if (seg_i->alloc_type == SSR)
blk_off = sbi->blocks_per_seg;
for (j = 0; j < blk_off; j++) {
struct f2fs_summary *s;
s = (struct f2fs_summary *)(kaddr + offset);
seg_i->sum_blk->entries[j] = *s;
offset += SUMMARY_SIZE;
if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
SUM_FOOTER_SIZE)
continue;
f2fs_put_page(page, 1);
page = NULL;
page = get_meta_page(sbi, start++);
kaddr = (unsigned char *)page_address(page);
offset = 0;
}
}
f2fs_put_page(page, 1);
return 0;
}
static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct f2fs_summary_block *sum;
struct curseg_info *curseg;
struct page *new;
unsigned short blk_off;
unsigned int segno = 0;
block_t blk_addr = 0;
/* get segment number and block addr */
if (IS_DATASEG(type)) {
segno = le32_to_cpu(ckpt->cur_data_segno[type]);
blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
CURSEG_HOT_DATA]);
if (__exist_node_summaries(sbi))
blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
else
blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
} else {
segno = le32_to_cpu(ckpt->cur_node_segno[type -
CURSEG_HOT_NODE]);
blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
CURSEG_HOT_NODE]);
if (__exist_node_summaries(sbi))
blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
type - CURSEG_HOT_NODE);
else
blk_addr = GET_SUM_BLOCK(sbi, segno);
}
new = get_meta_page(sbi, blk_addr);
sum = (struct f2fs_summary_block *)page_address(new);
if (IS_NODESEG(type)) {
if (__exist_node_summaries(sbi)) {
struct f2fs_summary *ns = &sum->entries[0];
int i;
for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
ns->version = 0;
ns->ofs_in_node = 0;
}
} else {
int err;
err = restore_node_summary(sbi, segno, sum);
if (err) {
f2fs_put_page(new, 1);
return err;
}
}
}
/* set uncompleted segment to curseg */
curseg = CURSEG_I(sbi, type);
mutex_lock(&curseg->curseg_mutex);
memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
curseg->next_segno = segno;
reset_curseg(sbi, type, 0);
curseg->alloc_type = ckpt->alloc_type[type];
curseg->next_blkoff = blk_off;
mutex_unlock(&curseg->curseg_mutex);
f2fs_put_page(new, 1);
return 0;
}
static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
{
int type = CURSEG_HOT_DATA;
int err;
if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
int npages = npages_for_summary_flush(sbi, true);
if (npages >= 2)
ra_meta_pages(sbi, start_sum_block(sbi), npages,
META_CP);
/* restore for compacted data summary */
if (read_compacted_summaries(sbi))
return -EINVAL;
type = CURSEG_HOT_NODE;
}
if (__exist_node_summaries(sbi))
ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
NR_CURSEG_TYPE - type, META_CP);
for (; type <= CURSEG_COLD_NODE; type++) {
err = read_normal_summaries(sbi, type);
if (err)
return err;
}
return 0;
}
static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
{
struct page *page;
unsigned char *kaddr;
struct f2fs_summary *summary;
struct curseg_info *seg_i;
int written_size = 0;
int i, j;
page = grab_meta_page(sbi, blkaddr++);
kaddr = (unsigned char *)page_address(page);
/* Step 1: write nat cache */
seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
written_size += SUM_JOURNAL_SIZE;
/* Step 2: write sit cache */
seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
SUM_JOURNAL_SIZE);
written_size += SUM_JOURNAL_SIZE;
/* Step 3: write summary entries */
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
unsigned short blkoff;
seg_i = CURSEG_I(sbi, i);
if (sbi->ckpt->alloc_type[i] == SSR)
blkoff = sbi->blocks_per_seg;
else
blkoff = curseg_blkoff(sbi, i);
for (j = 0; j < blkoff; j++) {
if (!page) {
page = grab_meta_page(sbi, blkaddr++);
kaddr = (unsigned char *)page_address(page);
written_size = 0;
}
summary = (struct f2fs_summary *)(kaddr + written_size);
*summary = seg_i->sum_blk->entries[j];
written_size += SUMMARY_SIZE;
if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
SUM_FOOTER_SIZE)
continue;
set_page_dirty(page);
f2fs_put_page(page, 1);
page = NULL;
}
}
if (page) {
set_page_dirty(page);
f2fs_put_page(page, 1);
}
}
static void write_normal_summaries(struct f2fs_sb_info *sbi,
block_t blkaddr, int type)
{
int i, end;
if (IS_DATASEG(type))
end = type + NR_CURSEG_DATA_TYPE;
else
end = type + NR_CURSEG_NODE_TYPE;
for (i = type; i < end; i++) {
struct curseg_info *sum = CURSEG_I(sbi, i);
mutex_lock(&sum->curseg_mutex);
write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
mutex_unlock(&sum->curseg_mutex);
}
}
void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
{
if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
write_compacted_summaries(sbi, start_blk);
else
write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
}
void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
{
write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
}
int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
unsigned int val, int alloc)
{
int i;
if (type == NAT_JOURNAL) {
for (i = 0; i < nats_in_cursum(sum); i++) {
if (le32_to_cpu(nid_in_journal(sum, i)) == val)
return i;
}
if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
return update_nats_in_cursum(sum, 1);
} else if (type == SIT_JOURNAL) {
for (i = 0; i < sits_in_cursum(sum); i++)
if (le32_to_cpu(segno_in_journal(sum, i)) == val)
return i;
if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
return update_sits_in_cursum(sum, 1);
}
return -1;
}
static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
unsigned int segno)
{
return get_meta_page(sbi, current_sit_addr(sbi, segno));
}
static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
unsigned int start)
{
struct sit_info *sit_i = SIT_I(sbi);
struct page *src_page, *dst_page;
pgoff_t src_off, dst_off;
void *src_addr, *dst_addr;
src_off = current_sit_addr(sbi, start);
dst_off = next_sit_addr(sbi, src_off);
/* get current sit block page without lock */
src_page = get_meta_page(sbi, src_off);
dst_page = grab_meta_page(sbi, dst_off);
f2fs_bug_on(sbi, PageDirty(src_page));
src_addr = page_address(src_page);
dst_addr = page_address(dst_page);
memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
set_page_dirty(dst_page);
f2fs_put_page(src_page, 1);
set_to_next_sit(sit_i, start);
return dst_page;
}
static struct sit_entry_set *grab_sit_entry_set(void)
{
struct sit_entry_set *ses =
f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
ses->entry_cnt = 0;
INIT_LIST_HEAD(&ses->set_list);
return ses;
}
static void release_sit_entry_set(struct sit_entry_set *ses)
{
list_del(&ses->set_list);
kmem_cache_free(sit_entry_set_slab, ses);
}
static void adjust_sit_entry_set(struct sit_entry_set *ses,
struct list_head *head)
{
struct sit_entry_set *next = ses;
if (list_is_last(&ses->set_list, head))
return;
list_for_each_entry_continue(next, head, set_list)
if (ses->entry_cnt <= next->entry_cnt)
break;
list_move_tail(&ses->set_list, &next->set_list);
}
static void add_sit_entry(unsigned int segno, struct list_head *head)
{
struct sit_entry_set *ses;
unsigned int start_segno = START_SEGNO(segno);
list_for_each_entry(ses, head, set_list) {
if (ses->start_segno == start_segno) {
ses->entry_cnt++;
adjust_sit_entry_set(ses, head);
return;
}
}
ses = grab_sit_entry_set();
ses->start_segno = start_segno;
ses->entry_cnt++;
list_add(&ses->set_list, head);
}
static void add_sits_in_set(struct f2fs_sb_info *sbi)
{
struct f2fs_sm_info *sm_info = SM_I(sbi);
struct list_head *set_list = &sm_info->sit_entry_set;
unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
unsigned int segno;
for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
add_sit_entry(segno, set_list);
}
static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
{
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
struct f2fs_summary_block *sum = curseg->sum_blk;
int i;
for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
unsigned int segno;
bool dirtied;
segno = le32_to_cpu(segno_in_journal(sum, i));
dirtied = __mark_sit_entry_dirty(sbi, segno);
if (!dirtied)
add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
}
update_sits_in_cursum(sum, -sits_in_cursum(sum));
}
/*
* CP calls this function, which flushes SIT entries including sit_journal,
* and moves prefree segs to free segs.
*/
void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
{
struct sit_info *sit_i = SIT_I(sbi);
unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
struct f2fs_summary_block *sum = curseg->sum_blk;
struct sit_entry_set *ses, *tmp;
struct list_head *head = &SM_I(sbi)->sit_entry_set;
bool to_journal = true;
struct seg_entry *se;
mutex_lock(&curseg->curseg_mutex);
mutex_lock(&sit_i->sentry_lock);
/*
* add and account sit entries of dirty bitmap in sit entry
* set temporarily
*/
add_sits_in_set(sbi);
/*
* if there are no enough space in journal to store dirty sit
* entries, remove all entries from journal and add and account
* them in sit entry set.
*/
if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
remove_sits_in_journal(sbi);
if (!sit_i->dirty_sentries)
goto out;
/*
* there are two steps to flush sit entries:
* #1, flush sit entries to journal in current cold data summary block.
* #2, flush sit entries to sit page.
*/
list_for_each_entry_safe(ses, tmp, head, set_list) {
struct page *page = NULL;
struct f2fs_sit_block *raw_sit = NULL;
unsigned int start_segno = ses->start_segno;
unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
(unsigned long)MAIN_SEGS(sbi));
unsigned int segno = start_segno;
if (to_journal &&
!__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
to_journal = false;
if (!to_journal) {
page = get_next_sit_page(sbi, start_segno);
raw_sit = page_address(page);
}
/* flush dirty sit entries in region of current sit set */
for_each_set_bit_from(segno, bitmap, end) {
int offset, sit_offset;
se = get_seg_entry(sbi, segno);
/* add discard candidates */
if (cpc->reason != CP_DISCARD) {
cpc->trim_start = segno;
add_discard_addrs(sbi, cpc);
}
if (to_journal) {
offset = lookup_journal_in_cursum(sum,
SIT_JOURNAL, segno, 1);
f2fs_bug_on(sbi, offset < 0);
segno_in_journal(sum, offset) =
cpu_to_le32(segno);
seg_info_to_raw_sit(se,
&sit_in_journal(sum, offset));
} else {
sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
seg_info_to_raw_sit(se,
&raw_sit->entries[sit_offset]);
}
__clear_bit(segno, bitmap);
sit_i->dirty_sentries--;
ses->entry_cnt--;
}
if (!to_journal)
f2fs_put_page(page, 1);
f2fs_bug_on(sbi, ses->entry_cnt);
release_sit_entry_set(ses);
}
f2fs_bug_on(sbi, !list_empty(head));
f2fs_bug_on(sbi, sit_i->dirty_sentries);
out:
if (cpc->reason == CP_DISCARD) {
for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
add_discard_addrs(sbi, cpc);
}
mutex_unlock(&sit_i->sentry_lock);
mutex_unlock(&curseg->curseg_mutex);
set_prefree_as_free_segments(sbi);
}
static int build_sit_info(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct sit_info *sit_i;
unsigned int sit_segs, start;
char *src_bitmap, *dst_bitmap;
unsigned int bitmap_size;
/* allocate memory for SIT information */
sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
if (!sit_i)
return -ENOMEM;
SM_I(sbi)->sit_info = sit_i;
sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
if (!sit_i->sentries)
return -ENOMEM;
bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
if (!sit_i->dirty_sentries_bitmap)
return -ENOMEM;
for (start = 0; start < MAIN_SEGS(sbi); start++) {
sit_i->sentries[start].cur_valid_map
= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
sit_i->sentries[start].ckpt_valid_map
= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
if (!sit_i->sentries[start].cur_valid_map
|| !sit_i->sentries[start].ckpt_valid_map)
return -ENOMEM;
}
sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
if (!sit_i->tmp_map)
return -ENOMEM;
if (sbi->segs_per_sec > 1) {
sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
sizeof(struct sec_entry));
if (!sit_i->sec_entries)
return -ENOMEM;
}
/* get information related with SIT */
sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
/* setup SIT bitmap from ckeckpoint pack */
bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
if (!dst_bitmap)
return -ENOMEM;
/* init SIT information */
sit_i->s_ops = &default_salloc_ops;
sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
sit_i->sit_bitmap = dst_bitmap;
sit_i->bitmap_size = bitmap_size;
sit_i->dirty_sentries = 0;
sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
mutex_init(&sit_i->sentry_lock);
return 0;
}
static int build_free_segmap(struct f2fs_sb_info *sbi)
{
struct free_segmap_info *free_i;
unsigned int bitmap_size, sec_bitmap_size;
/* allocate memory for free segmap information */
free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
if (!free_i)
return -ENOMEM;
SM_I(sbi)->free_info = free_i;
bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
if (!free_i->free_segmap)
return -ENOMEM;
sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
if (!free_i->free_secmap)
return -ENOMEM;
/* set all segments as dirty temporarily */
memset(free_i->free_segmap, 0xff, bitmap_size);
memset(free_i->free_secmap, 0xff, sec_bitmap_size);
/* init free segmap information */
free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
free_i->free_segments = 0;
free_i->free_sections = 0;
spin_lock_init(&free_i->segmap_lock);
return 0;
}
static int build_curseg(struct f2fs_sb_info *sbi)
{
struct curseg_info *array;
int i;
array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
if (!array)
return -ENOMEM;
SM_I(sbi)->curseg_array = array;
for (i = 0; i < NR_CURSEG_TYPE; i++) {
mutex_init(&array[i].curseg_mutex);
array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
if (!array[i].sum_blk)
return -ENOMEM;
array[i].segno = NULL_SEGNO;
array[i].next_blkoff = 0;
}
return restore_curseg_summaries(sbi);
}
static void build_sit_entries(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
struct f2fs_summary_block *sum = curseg->sum_blk;
int sit_blk_cnt = SIT_BLK_CNT(sbi);
unsigned int i, start, end;
unsigned int readed, start_blk = 0;
int nrpages = MAX_BIO_BLOCKS(sbi);
do {
readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
start = start_blk * sit_i->sents_per_block;
end = (start_blk + readed) * sit_i->sents_per_block;
for (; start < end && start < MAIN_SEGS(sbi); start++) {
struct seg_entry *se = &sit_i->sentries[start];
struct f2fs_sit_block *sit_blk;
struct f2fs_sit_entry sit;
struct page *page;
mutex_lock(&curseg->curseg_mutex);
for (i = 0; i < sits_in_cursum(sum); i++) {
if (le32_to_cpu(segno_in_journal(sum, i))
== start) {
sit = sit_in_journal(sum, i);
mutex_unlock(&curseg->curseg_mutex);
goto got_it;
}
}
mutex_unlock(&curseg->curseg_mutex);
page = get_current_sit_page(sbi, start);
sit_blk = (struct f2fs_sit_block *)page_address(page);
sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
f2fs_put_page(page, 1);
got_it:
check_block_count(sbi, start, &sit);
seg_info_from_raw_sit(se, &sit);
if (sbi->segs_per_sec > 1) {
struct sec_entry *e = get_sec_entry(sbi, start);
e->valid_blocks += se->valid_blocks;
}
}
start_blk += readed;
} while (start_blk < sit_blk_cnt);
}
static void init_free_segmap(struct f2fs_sb_info *sbi)
{
unsigned int start;
int type;
for (start = 0; start < MAIN_SEGS(sbi); start++) {
struct seg_entry *sentry = get_seg_entry(sbi, start);
if (!sentry->valid_blocks)
__set_free(sbi, start);
}
/* set use the current segments */
for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
struct curseg_info *curseg_t = CURSEG_I(sbi, type);
__set_test_and_inuse(sbi, curseg_t->segno);
}
}
static void init_dirty_segmap(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
struct free_segmap_info *free_i = FREE_I(sbi);
unsigned int segno = 0, offset = 0;
unsigned short valid_blocks;
while (1) {
/* find dirty segment based on free segmap */
segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
if (segno >= MAIN_SEGS(sbi))
break;
offset = segno + 1;
valid_blocks = get_valid_blocks(sbi, segno, 0);
if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
continue;
if (valid_blocks > sbi->blocks_per_seg) {
f2fs_bug_on(sbi, 1);
continue;
}
mutex_lock(&dirty_i->seglist_lock);
__locate_dirty_segment(sbi, segno, DIRTY);
mutex_unlock(&dirty_i->seglist_lock);
}
}
static int init_victim_secmap(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
if (!dirty_i->victim_secmap)
return -ENOMEM;
return 0;
}
static int build_dirty_segmap(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i;
unsigned int bitmap_size, i;
/* allocate memory for dirty segments list information */
dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
if (!dirty_i)
return -ENOMEM;
SM_I(sbi)->dirty_info = dirty_i;
mutex_init(&dirty_i->seglist_lock);
bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
for (i = 0; i < NR_DIRTY_TYPE; i++) {
dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
if (!dirty_i->dirty_segmap[i])
return -ENOMEM;
}
init_dirty_segmap(sbi);
return init_victim_secmap(sbi);
}
/*
* Update min, max modified time for cost-benefit GC algorithm
*/
static void init_min_max_mtime(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
unsigned int segno;
mutex_lock(&sit_i->sentry_lock);
sit_i->min_mtime = LLONG_MAX;
for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
unsigned int i;
unsigned long long mtime = 0;
for (i = 0; i < sbi->segs_per_sec; i++)
mtime += get_seg_entry(sbi, segno + i)->mtime;
mtime = div_u64(mtime, sbi->segs_per_sec);
if (sit_i->min_mtime > mtime)
sit_i->min_mtime = mtime;
}
sit_i->max_mtime = get_mtime(sbi);
mutex_unlock(&sit_i->sentry_lock);
}
int build_segment_manager(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct f2fs_sm_info *sm_info;
int err;
sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
if (!sm_info)
return -ENOMEM;
/* init sm info */
sbi->sm_info = sm_info;
sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
sm_info->rec_prefree_segments = sm_info->main_segments *
DEF_RECLAIM_PREFREE_SEGMENTS / 100;
sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
INIT_LIST_HEAD(&sm_info->discard_list);
sm_info->nr_discards = 0;
sm_info->max_discards = 0;
sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
INIT_LIST_HEAD(&sm_info->sit_entry_set);
if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
err = create_flush_cmd_control(sbi);
if (err)
return err;
}
err = build_sit_info(sbi);
if (err)
return err;
err = build_free_segmap(sbi);
if (err)
return err;
err = build_curseg(sbi);
if (err)
return err;
/* reinit free segmap based on SIT */
build_sit_entries(sbi);
init_free_segmap(sbi);
err = build_dirty_segmap(sbi);
if (err)
return err;
init_min_max_mtime(sbi);
return 0;
}
static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
enum dirty_type dirty_type)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
mutex_lock(&dirty_i->seglist_lock);
kfree(dirty_i->dirty_segmap[dirty_type]);
dirty_i->nr_dirty[dirty_type] = 0;
mutex_unlock(&dirty_i->seglist_lock);
}
static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
kfree(dirty_i->victim_secmap);
}
static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
int i;
if (!dirty_i)
return;
/* discard pre-free/dirty segments list */
for (i = 0; i < NR_DIRTY_TYPE; i++)
discard_dirty_segmap(sbi, i);
destroy_victim_secmap(sbi);
SM_I(sbi)->dirty_info = NULL;
kfree(dirty_i);
}
static void destroy_curseg(struct f2fs_sb_info *sbi)
{
struct curseg_info *array = SM_I(sbi)->curseg_array;
int i;
if (!array)
return;
SM_I(sbi)->curseg_array = NULL;
for (i = 0; i < NR_CURSEG_TYPE; i++)
kfree(array[i].sum_blk);
kfree(array);
}
static void destroy_free_segmap(struct f2fs_sb_info *sbi)
{
struct free_segmap_info *free_i = SM_I(sbi)->free_info;
if (!free_i)
return;
SM_I(sbi)->free_info = NULL;
kfree(free_i->free_segmap);
kfree(free_i->free_secmap);
kfree(free_i);
}
static void destroy_sit_info(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
unsigned int start;
if (!sit_i)
return;
if (sit_i->sentries) {
for (start = 0; start < MAIN_SEGS(sbi); start++) {
kfree(sit_i->sentries[start].cur_valid_map);
kfree(sit_i->sentries[start].ckpt_valid_map);
}
}
kfree(sit_i->tmp_map);
vfree(sit_i->sentries);
vfree(sit_i->sec_entries);
kfree(sit_i->dirty_sentries_bitmap);
SM_I(sbi)->sit_info = NULL;
kfree(sit_i->sit_bitmap);
kfree(sit_i);
}
void destroy_segment_manager(struct f2fs_sb_info *sbi)
{
struct f2fs_sm_info *sm_info = SM_I(sbi);
if (!sm_info)
return;
destroy_flush_cmd_control(sbi);
destroy_dirty_segmap(sbi);
destroy_curseg(sbi);
destroy_free_segmap(sbi);
destroy_sit_info(sbi);
sbi->sm_info = NULL;
kfree(sm_info);
}
int __init create_segment_manager_caches(void)
{
discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
sizeof(struct discard_entry));
if (!discard_entry_slab)
goto fail;
sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
sizeof(struct sit_entry_set));
if (!sit_entry_set_slab)
goto destory_discard_entry;
inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
sizeof(struct inmem_pages));
if (!inmem_entry_slab)
goto destroy_sit_entry_set;
return 0;
destroy_sit_entry_set:
kmem_cache_destroy(sit_entry_set_slab);
destory_discard_entry:
kmem_cache_destroy(discard_entry_slab);
fail:
return -ENOMEM;
}
void destroy_segment_manager_caches(void)
{
kmem_cache_destroy(sit_entry_set_slab);
kmem_cache_destroy(discard_entry_slab);
kmem_cache_destroy(inmem_entry_slab);
}