blob: 3be4cae351744423d6ce58f1889152c894f31dee [file] [log] [blame]
/*
* Copyright (C) 2002 ARM Ltd.
* All Rights Reserved
* Copyright (c) 2010, Code Aurora Forum. All rights reserved.
* Copyright (c) 2014 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/smp.h>
#include <linux/io.h>
#include <linux/qcom_scm.h>
#include <asm/smp_plat.h>
#include <asm/fixmap.h>
#include "platsmp.h"
#ifdef CONFIG_MSM_PM_LEGACY
#include <soc/qcom/pm-legacy.h>
#endif
#include <soc/qcom/scm-boot.h>
#define MSM_APCS_IDR 0x0B011030
/* Base Address of APC IPC block */
#define APCS_ALIAS0_APC_SECURE 0x0B088000
#define VDD_SC1_ARRAY_CLAMP_GFS_CTL 0x35a0
#define SCSS_CPU1CORE_RESET 0x2d80
#define SCSS_DBG_STATUS_CORE_PWRDUP 0x2e64
#define APCS_CPU_PWR_CTL 0x04
#define PLL_CLAMP BIT(8)
#define CORE_PWRD_UP BIT(7)
#define GATE_CLK BIT(6)
#define COREPOR_RST BIT(5)
#define CORE_RST BIT(4)
#define L2DT_SLP BIT(3)
#define L1_RST_DIS BIT(2)
#define CORE_MEM_CLAMP BIT(1)
#define CLAMP BIT(0)
#define APC_PWR_GATE_CTL 0x14
#define BHS_CNT_SHIFT 24
#define LDO_PWR_DWN_SHIFT 16
#define LDO_BYP_SHIFT 8
#define BHS_SEG_SHIFT 1
#define BHS_EN BIT(0)
#define APCS_SAW2_VCTL 0x14
#define APCS_SAW2_2_VCTL 0x1c
extern void secondary_startup_arm(void);
static DEFINE_SPINLOCK(boot_lock);
#ifdef CONFIG_HOTPLUG_CPU
static void qcom_cpu_die(unsigned int cpu)
{
wfi();
}
static bool qcom_cpu_can_disable(unsigned int cpu)
{
return true; /*Hotplug of any CPU is supported */
}
#endif
static void qcom_secondary_init(unsigned int cpu)
{
#ifdef CONFIG_MSM_PM_LEGACY
WARN_ON(msm_platform_secondary_init(cpu));
#endif
/*
* Synchronise with the boot thread.
*/
spin_lock(&boot_lock);
spin_unlock(&boot_lock);
}
static int scss_release_secondary(unsigned int cpu)
{
struct device_node *node;
void __iomem *base;
node = of_find_compatible_node(NULL, NULL, "qcom,gcc-msm8660");
if (!node) {
pr_err("%s: can't find node\n", __func__);
return -ENXIO;
}
base = of_iomap(node, 0);
of_node_put(node);
if (!base)
return -ENOMEM;
writel_relaxed(0, base + VDD_SC1_ARRAY_CLAMP_GFS_CTL);
writel_relaxed(0, base + SCSS_CPU1CORE_RESET);
writel_relaxed(3, base + SCSS_DBG_STATUS_CORE_PWRDUP);
mb();
iounmap(base);
return 0;
}
static int kpssv1_release_secondary(unsigned int cpu)
{
int ret = 0;
void __iomem *reg, *saw_reg;
struct device_node *cpu_node, *acc_node, *saw_node;
u32 val;
cpu_node = of_get_cpu_node(cpu, NULL);
if (!cpu_node)
return -ENODEV;
acc_node = of_parse_phandle(cpu_node, "qcom,acc", 0);
if (!acc_node) {
ret = -ENODEV;
goto out_acc;
}
saw_node = of_parse_phandle(cpu_node, "qcom,saw", 0);
if (!saw_node) {
ret = -ENODEV;
goto out_saw;
}
reg = of_iomap(acc_node, 0);
if (!reg) {
ret = -ENOMEM;
goto out_acc_map;
}
saw_reg = of_iomap(saw_node, 0);
if (!saw_reg) {
ret = -ENOMEM;
goto out_saw_map;
}
/* Turn on CPU rail */
writel_relaxed(0xA4, saw_reg + APCS_SAW2_VCTL);
mb();
udelay(512);
/* Krait bring-up sequence */
val = PLL_CLAMP | L2DT_SLP | CLAMP;
writel_relaxed(val, reg + APCS_CPU_PWR_CTL);
val &= ~L2DT_SLP;
writel_relaxed(val, reg + APCS_CPU_PWR_CTL);
mb();
ndelay(300);
val |= COREPOR_RST;
writel_relaxed(val, reg + APCS_CPU_PWR_CTL);
mb();
udelay(2);
val &= ~CLAMP;
writel_relaxed(val, reg + APCS_CPU_PWR_CTL);
mb();
udelay(2);
val &= ~COREPOR_RST;
writel_relaxed(val, reg + APCS_CPU_PWR_CTL);
mb();
udelay(100);
val |= CORE_PWRD_UP;
writel_relaxed(val, reg + APCS_CPU_PWR_CTL);
mb();
iounmap(saw_reg);
out_saw_map:
iounmap(reg);
out_acc_map:
of_node_put(saw_node);
out_saw:
of_node_put(acc_node);
out_acc:
of_node_put(cpu_node);
return ret;
}
static int kpssv2_release_secondary(unsigned int cpu)
{
void __iomem *reg;
struct device_node *cpu_node, *l2_node, *acc_node, *saw_node;
void __iomem *l2_saw_base;
unsigned reg_val;
int ret;
cpu_node = of_get_cpu_node(cpu, NULL);
if (!cpu_node)
return -ENODEV;
acc_node = of_parse_phandle(cpu_node, "qcom,acc", 0);
if (!acc_node) {
ret = -ENODEV;
goto out_acc;
}
l2_node = of_parse_phandle(cpu_node, "next-level-cache", 0);
if (!l2_node) {
ret = -ENODEV;
goto out_l2;
}
saw_node = of_parse_phandle(l2_node, "qcom,saw", 0);
if (!saw_node) {
ret = -ENODEV;
goto out_saw;
}
reg = of_iomap(acc_node, 0);
if (!reg) {
ret = -ENOMEM;
goto out_map;
}
l2_saw_base = of_iomap(saw_node, 0);
if (!l2_saw_base) {
ret = -ENOMEM;
goto out_saw_map;
}
/* Turn on the BHS, turn off LDO Bypass and power down LDO */
reg_val = (64 << BHS_CNT_SHIFT) | (0x3f << LDO_PWR_DWN_SHIFT) | BHS_EN;
writel_relaxed(reg_val, reg + APC_PWR_GATE_CTL);
mb();
/* wait for the BHS to settle */
udelay(1);
/* Turn on BHS segments */
reg_val |= 0x3f << BHS_SEG_SHIFT;
writel_relaxed(reg_val, reg + APC_PWR_GATE_CTL);
mb();
/* wait for the BHS to settle */
udelay(1);
/* Finally turn on the bypass so that BHS supplies power */
reg_val |= 0x3f << LDO_BYP_SHIFT;
writel_relaxed(reg_val, reg + APC_PWR_GATE_CTL);
/* enable max phases */
writel_relaxed(0x10003, l2_saw_base + APCS_SAW2_2_VCTL);
mb();
udelay(50);
reg_val = COREPOR_RST | CLAMP;
writel_relaxed(reg_val, reg + APCS_CPU_PWR_CTL);
mb();
udelay(2);
reg_val &= ~CLAMP;
writel_relaxed(reg_val, reg + APCS_CPU_PWR_CTL);
mb();
udelay(2);
reg_val &= ~COREPOR_RST;
writel_relaxed(reg_val, reg + APCS_CPU_PWR_CTL);
mb();
reg_val |= CORE_PWRD_UP;
writel_relaxed(reg_val, reg + APCS_CPU_PWR_CTL);
mb();
ret = 0;
iounmap(l2_saw_base);
out_saw_map:
iounmap(reg);
out_map:
of_node_put(saw_node);
out_saw:
of_node_put(l2_node);
out_l2:
of_node_put(acc_node);
out_acc:
of_node_put(cpu_node);
return ret;
}
static DEFINE_PER_CPU(int, cold_boot_done);
/*
* writing to physical address:
* 0xb088000 + (cpu * 0x10000) + 0x04 and
* 0xb088000 + (cpu * 0x10000) + 0x014
* For each secondary cpu
*/
static int arm_release_secondary(unsigned int cpu)
{
phys_addr_t base = APCS_ALIAS0_APC_SECURE;
void __iomem *base_ptr;
unsigned int reg_val;
base_ptr = ioremap_nocache(base + (cpu * 0x10000), SZ_4K);
if (!base_ptr)
return -ENODEV;
reg_val = COREPOR_RST | CORE_RST | CORE_MEM_CLAMP | CLAMP;
writel_relaxed(reg_val, base_ptr + APCS_CPU_PWR_CTL);
/* memory barrier */
mb();
/* Turn on the BHS, set the BHS_CNT value with 16 */
reg_val = (0x10 << BHS_CNT_SHIFT) | BHS_EN;
writel_relaxed(reg_val, base_ptr + APC_PWR_GATE_CTL);
/* memory barrier */
mb();
udelay(2);
reg_val = COREPOR_RST | CORE_RST | CLAMP;
writel_relaxed(reg_val, base_ptr + APCS_CPU_PWR_CTL);
/* memory barrier */
mb();
reg_val = COREPOR_RST | CORE_RST | L2DT_SLP | CLAMP;
writel_relaxed(reg_val, base_ptr + APCS_CPU_PWR_CTL);
/* memory barrier */
mb();
udelay(2);
reg_val = COREPOR_RST | CORE_RST | L2DT_SLP;
writel_relaxed(reg_val, base_ptr + APCS_CPU_PWR_CTL);
/* memory barrier */
mb();
udelay(2);
reg_val = L2DT_SLP;
writel_relaxed(reg_val, base_ptr + APCS_CPU_PWR_CTL);
/* memory barrier */
mb();
reg_val = CORE_PWRD_UP | L2DT_SLP;
writel_relaxed(reg_val, base_ptr + APCS_CPU_PWR_CTL);
/* memory barrier */
mb();
iounmap(base_ptr);
return 0;
}
static int qcom_boot_secondary(unsigned int cpu, int (*func)(unsigned int))
{
int ret = 0;
if (!per_cpu(cold_boot_done, cpu)) {
ret = func(cpu);
if (!ret)
per_cpu(cold_boot_done, cpu) = true;
}
/*
* set synchronisation state between this boot processor
* and the secondary one
*/
spin_lock(&boot_lock);
/*
* Send the secondary CPU a soft interrupt, thereby causing
* the boot monitor to read the system wide flags register,
* and branch to the address found there.
*/
arch_send_wakeup_ipi_mask(cpumask_of(cpu));
/*
* now the secondary core is starting up let it run its
* calibrations, then wait for it to finish
*/
spin_unlock(&boot_lock);
return ret;
}
/*
* Initialise the CPU possible map early - this describes the CPUs
* which may be present or become present in the system.
*/
static void __init arm_smp_init_cpus(void)
{
unsigned int i, ncores;
void __iomem *base;
set_fixmap_io(FIX_SMP_MEM_BASE, MSM_APCS_IDR & PAGE_MASK);
base = (void __iomem *)__fix_to_virt(FIX_SMP_MEM_BASE);
if (!base)
return;
base += MSM_APCS_IDR & ~PAGE_MASK;
ncores = (__raw_readl(base)) & 0xF;
if (ncores > nr_cpu_ids) {
pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
ncores, nr_cpu_ids);
ncores = nr_cpu_ids;
}
for (i = 0; i < ncores; i++)
set_cpu_possible(i, true);
}
static int msm8909_boot_secondary(unsigned int cpu, struct task_struct *idle)
{
pr_debug("Starting secondary CPU %d\n", cpu);
return qcom_boot_secondary(cpu, arm_release_secondary);
}
static int msm8660_boot_secondary(unsigned int cpu, struct task_struct *idle)
{
return qcom_boot_secondary(cpu, scss_release_secondary);
}
static int kpssv1_boot_secondary(unsigned int cpu, struct task_struct *idle)
{
return qcom_boot_secondary(cpu, kpssv1_release_secondary);
}
static int kpssv2_boot_secondary(unsigned int cpu, struct task_struct *idle)
{
return qcom_boot_secondary(cpu, kpssv2_release_secondary);
}
static void __init qcom_smp_prepare_cpus(unsigned int max_cpus)
{
int cpu, map;
u32 aff0_mask = 0;
u32 aff1_mask = 0;
u32 aff2_mask = 0;
for_each_present_cpu(cpu) {
map = cpu_logical_map(cpu);
aff0_mask |= BIT(MPIDR_AFFINITY_LEVEL(map, 0));
aff1_mask |= BIT(MPIDR_AFFINITY_LEVEL(map, 1));
aff2_mask |= BIT(MPIDR_AFFINITY_LEVEL(map, 2));
}
if (scm_set_boot_addr_mc(virt_to_phys(secondary_startup_arm),
aff0_mask, aff1_mask, aff2_mask, SCM_FLAG_COLDBOOT_MC)) {
for_each_present_cpu(cpu) {
if (cpu == smp_processor_id())
continue;
set_cpu_present(cpu, false);
}
pr_warn("Failed to set CPU boot address, disabling SMP\n");
}
}
static const struct smp_operations smp_msm8660_ops __initconst = {
.smp_prepare_cpus = qcom_smp_prepare_cpus,
.smp_secondary_init = qcom_secondary_init,
.smp_boot_secondary = msm8660_boot_secondary,
#ifdef CONFIG_HOTPLUG_CPU
.cpu_die = qcom_cpu_die,
#endif
};
CPU_METHOD_OF_DECLARE(qcom_smp, "qcom,gcc-msm8660", &smp_msm8660_ops);
static const struct smp_operations qcom_smp_kpssv1_ops __initconst = {
.smp_prepare_cpus = qcom_smp_prepare_cpus,
.smp_secondary_init = qcom_secondary_init,
.smp_boot_secondary = kpssv1_boot_secondary,
#ifdef CONFIG_HOTPLUG_CPU
.cpu_die = qcom_cpu_die,
#endif
};
CPU_METHOD_OF_DECLARE(qcom_smp_kpssv1, "qcom,kpss-acc-v1", &qcom_smp_kpssv1_ops);
static const struct smp_operations qcom_smp_kpssv2_ops __initconst = {
.smp_prepare_cpus = qcom_smp_prepare_cpus,
.smp_secondary_init = qcom_secondary_init,
.smp_boot_secondary = kpssv2_boot_secondary,
#ifdef CONFIG_HOTPLUG_CPU
.cpu_die = qcom_cpu_die,
#endif
};
CPU_METHOD_OF_DECLARE(qcom_smp_kpssv2, "qcom,kpss-acc-v2", &qcom_smp_kpssv2_ops);
struct smp_operations msm8909_smp_ops __initdata = {
.smp_init_cpus = arm_smp_init_cpus,
.smp_prepare_cpus = qcom_smp_prepare_cpus,
.smp_secondary_init = qcom_secondary_init,
.smp_boot_secondary = msm8909_boot_secondary,
#ifdef CONFIG_HOTPLUG_CPU
#ifdef CONFIG_MSM_PM_LEGACY
.cpu_die = qcom_cpu_die_legacy,
.cpu_kill = qcom_cpu_kill_legacy,
#else
.cpu_die = qcom_cpu_die,
#endif
.cpu_can_disable = qcom_cpu_can_disable,
#endif
};
CPU_METHOD_OF_DECLARE(qcom_smp_8909, "qcom,apss-8909", &msm8909_smp_ops);