blob: e22a2595ef97aad60c8dc5655007edadc4ecb899 [file] [log] [blame]
/* Copyright (c) 2014-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "ACC: %s: " fmt, __func__
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include <linux/string.h>
#include <soc/qcom/scm.h>
#define MEM_ACC_DEFAULT_SEL_SIZE 2
#define BYTES_PER_FUSE_ROW 8
/* mem-acc config flags */
enum {
MEM_ACC_USE_CORNER_ACC_MAP = BIT(0),
MEM_ACC_USE_ADDR_VAL_MAP = BIT(1),
};
#define FUSE_MAP_NO_MATCH (-1)
#define FUSE_PARAM_MATCH_ANY (-1)
#define PARAM_MATCH_ANY (-1)
enum {
MEMORY_L1,
MEMORY_L2,
MEMORY_MAX,
};
#define MEM_ACC_TYPE_MAX 6
/**
* struct acc_reg_value - Acc register configuration structure
* @addr_index: An index in to phys_reg_addr_list and remap_reg_addr_list
* to get the ACC register physical address and remapped address.
* @reg_val: Value to program in to the register mapped by addr_index.
*/
struct acc_reg_value {
u32 addr_index;
u32 reg_val;
};
struct corner_acc_reg_config {
struct acc_reg_value *reg_config_list;
int max_reg_config_len;
};
struct mem_acc_regulator {
struct device *dev;
struct regulator_desc rdesc;
struct regulator_dev *rdev;
int corner;
bool mem_acc_supported[MEMORY_MAX];
bool mem_acc_custom_supported[MEMORY_MAX];
u32 *acc_sel_mask[MEMORY_MAX];
u32 *acc_sel_bit_pos[MEMORY_MAX];
u32 acc_sel_bit_size[MEMORY_MAX];
u32 num_acc_sel[MEMORY_MAX];
u32 *acc_en_bit_pos;
u32 num_acc_en;
u32 *corner_acc_map;
u32 num_corners;
u32 override_fuse_value;
int override_map_match;
int override_map_count;
void __iomem *acc_sel_base[MEMORY_MAX];
void __iomem *acc_en_base;
phys_addr_t acc_sel_addr[MEMORY_MAX];
phys_addr_t acc_en_addr;
u32 flags;
void __iomem *acc_custom_addr[MEMORY_MAX];
u32 *acc_custom_data[MEMORY_MAX];
phys_addr_t mem_acc_type_addr[MEM_ACC_TYPE_MAX];
u32 *mem_acc_type_data;
/* eFuse parameters */
phys_addr_t efuse_addr;
void __iomem *efuse_base;
u32 num_acc_reg;
u32 *phys_reg_addr_list;
void __iomem **remap_reg_addr_list;
struct corner_acc_reg_config *corner_acc_reg_config;
u32 *override_acc_range_fuse_list;
int override_acc_range_fuse_num;
};
static DEFINE_MUTEX(mem_acc_memory_mutex);
static u64 mem_acc_read_efuse_row(struct mem_acc_regulator *mem_acc_vreg,
u32 row_num, bool use_tz_api)
{
int rc;
u64 efuse_bits;
struct scm_desc desc = {0};
struct mem_acc_read_req {
u32 row_address;
int addr_type;
} req;
struct mem_acc_read_rsp {
u32 row_data[2];
u32 status;
} rsp;
if (!use_tz_api) {
efuse_bits = readq_relaxed(mem_acc_vreg->efuse_base
+ row_num * BYTES_PER_FUSE_ROW);
return efuse_bits;
}
desc.args[0] = req.row_address = mem_acc_vreg->efuse_addr +
row_num * BYTES_PER_FUSE_ROW;
desc.args[1] = req.addr_type = 0;
desc.arginfo = SCM_ARGS(2);
efuse_bits = 0;
if (!is_scm_armv8()) {
rc = scm_call(SCM_SVC_FUSE, SCM_FUSE_READ,
&req, sizeof(req), &rsp, sizeof(rsp));
} else {
rc = scm_call2(SCM_SIP_FNID(SCM_SVC_FUSE, SCM_FUSE_READ),
&desc);
rsp.row_data[0] = desc.ret[0];
rsp.row_data[1] = desc.ret[1];
rsp.status = desc.ret[2];
}
if (rc) {
pr_err("read row %d failed, err code = %d", row_num, rc);
} else {
efuse_bits = ((u64)(rsp.row_data[1]) << 32) +
(u64)rsp.row_data[0];
}
return efuse_bits;
}
static inline u32 apc_to_acc_corner(struct mem_acc_regulator *mem_acc_vreg,
int corner)
{
/*
* corner_acc_map maps the corner from index 0 and APC corner value
* starts from the value 1
*/
return mem_acc_vreg->corner_acc_map[corner - 1];
}
static void __update_acc_sel(struct mem_acc_regulator *mem_acc_vreg,
int corner, int mem_type)
{
u32 acc_data, acc_data_old, i, bit, acc_corner;
acc_data = readl_relaxed(mem_acc_vreg->acc_sel_base[mem_type]);
acc_data_old = acc_data;
for (i = 0; i < mem_acc_vreg->num_acc_sel[mem_type]; i++) {
bit = mem_acc_vreg->acc_sel_bit_pos[mem_type][i];
acc_data &= ~mem_acc_vreg->acc_sel_mask[mem_type][i];
acc_corner = apc_to_acc_corner(mem_acc_vreg, corner);
acc_data |= (acc_corner << bit) &
mem_acc_vreg->acc_sel_mask[mem_type][i];
}
pr_debug("corner=%d old_acc_sel=0x%02x new_acc_sel=0x%02x mem_type=%d\n",
corner, acc_data_old, acc_data, mem_type);
writel_relaxed(acc_data, mem_acc_vreg->acc_sel_base[mem_type]);
}
static void __update_acc_type(struct mem_acc_regulator *mem_acc_vreg,
int corner)
{
int i, rc;
for (i = 0; i < MEM_ACC_TYPE_MAX; i++) {
if (mem_acc_vreg->mem_acc_type_addr[i]) {
rc = scm_io_write(mem_acc_vreg->mem_acc_type_addr[i],
mem_acc_vreg->mem_acc_type_data[corner - 1 + i *
mem_acc_vreg->num_corners]);
if (rc)
pr_err("scm_io_write: %pa failure rc:%d\n",
&(mem_acc_vreg->mem_acc_type_addr[i]),
rc);
}
}
}
static void __update_acc_custom(struct mem_acc_regulator *mem_acc_vreg,
int corner, int mem_type)
{
writel_relaxed(
mem_acc_vreg->acc_custom_data[mem_type][corner-1],
mem_acc_vreg->acc_custom_addr[mem_type]);
pr_debug("corner=%d mem_type=%d custom_data=0x%2x\n", corner,
mem_type, mem_acc_vreg->acc_custom_data[mem_type][corner-1]);
}
static void update_acc_sel(struct mem_acc_regulator *mem_acc_vreg, int corner)
{
int i;
for (i = 0; i < MEMORY_MAX; i++) {
if (mem_acc_vreg->mem_acc_supported[i])
__update_acc_sel(mem_acc_vreg, corner, i);
if (mem_acc_vreg->mem_acc_custom_supported[i])
__update_acc_custom(mem_acc_vreg, corner, i);
}
if (mem_acc_vreg->mem_acc_type_data)
__update_acc_type(mem_acc_vreg, corner);
}
static void update_acc_reg(struct mem_acc_regulator *mem_acc_vreg, int corner)
{
struct corner_acc_reg_config *corner_acc_reg_config;
struct acc_reg_value *reg_config_list;
int i, index;
u32 addr_index, reg_val;
corner_acc_reg_config =
&mem_acc_vreg->corner_acc_reg_config[mem_acc_vreg->corner];
reg_config_list = corner_acc_reg_config->reg_config_list;
for (i = 0; i < corner_acc_reg_config->max_reg_config_len; i++) {
/*
* Use (corner - 1) in the below equation as
* the reg_config_list[] stores the values starting from
* index '0' where as the minimum corner value allowed
* in regulator framework is '1'.
*/
index = (corner - 1) * corner_acc_reg_config->max_reg_config_len
+ i;
addr_index = reg_config_list[index].addr_index;
reg_val = reg_config_list[index].reg_val;
if (addr_index == PARAM_MATCH_ANY)
break;
writel_relaxed(reg_val,
mem_acc_vreg->remap_reg_addr_list[addr_index]);
/* make sure write complete */
mb();
pr_debug("corner=%d register:0x%x value:0x%x\n", corner,
mem_acc_vreg->phys_reg_addr_list[addr_index], reg_val);
}
}
static int mem_acc_regulator_set_voltage(struct regulator_dev *rdev,
int corner, int corner_max, unsigned int *selector)
{
struct mem_acc_regulator *mem_acc_vreg = rdev_get_drvdata(rdev);
int i;
if (corner > mem_acc_vreg->num_corners) {
pr_err("Invalid corner=%d requested\n", corner);
return -EINVAL;
}
pr_debug("old corner=%d, new corner=%d\n",
mem_acc_vreg->corner, corner);
if (corner == mem_acc_vreg->corner)
return 0;
/* go up or down one level at a time */
mutex_lock(&mem_acc_memory_mutex);
if (mem_acc_vreg->flags & MEM_ACC_USE_ADDR_VAL_MAP) {
update_acc_reg(mem_acc_vreg, corner);
} else if (mem_acc_vreg->flags & MEM_ACC_USE_CORNER_ACC_MAP) {
if (corner > mem_acc_vreg->corner) {
for (i = mem_acc_vreg->corner + 1; i <= corner; i++) {
pr_debug("UP: to corner %d\n", i);
update_acc_sel(mem_acc_vreg, i);
}
} else {
for (i = mem_acc_vreg->corner - 1; i >= corner; i--) {
pr_debug("DOWN: to corner %d\n", i);
update_acc_sel(mem_acc_vreg, i);
}
}
}
mutex_unlock(&mem_acc_memory_mutex);
pr_debug("new voltage corner set %d\n", corner);
mem_acc_vreg->corner = corner;
return 0;
}
static int mem_acc_regulator_get_voltage(struct regulator_dev *rdev)
{
struct mem_acc_regulator *mem_acc_vreg = rdev_get_drvdata(rdev);
return mem_acc_vreg->corner;
}
static struct regulator_ops mem_acc_corner_ops = {
.set_voltage = mem_acc_regulator_set_voltage,
.get_voltage = mem_acc_regulator_get_voltage,
};
static int __mem_acc_sel_init(struct mem_acc_regulator *mem_acc_vreg,
int mem_type)
{
int i;
u32 bit, mask;
mem_acc_vreg->acc_sel_mask[mem_type] = devm_kzalloc(mem_acc_vreg->dev,
mem_acc_vreg->num_acc_sel[mem_type] * sizeof(u32), GFP_KERNEL);
if (!mem_acc_vreg->acc_sel_mask[mem_type])
return -ENOMEM;
for (i = 0; i < mem_acc_vreg->num_acc_sel[mem_type]; i++) {
bit = mem_acc_vreg->acc_sel_bit_pos[mem_type][i];
mask = BIT(mem_acc_vreg->acc_sel_bit_size[mem_type]) - 1;
mem_acc_vreg->acc_sel_mask[mem_type][i] = mask << bit;
}
return 0;
}
static int mem_acc_sel_init(struct mem_acc_regulator *mem_acc_vreg)
{
int i, rc;
for (i = 0; i < MEMORY_MAX; i++) {
if (mem_acc_vreg->mem_acc_supported[i]) {
rc = __mem_acc_sel_init(mem_acc_vreg, i);
if (rc) {
pr_err("Unable to initialize mem_type=%d rc=%d\n",
i, rc);
return rc;
}
}
}
return 0;
}
static void mem_acc_en_init(struct mem_acc_regulator *mem_acc_vreg)
{
int i, bit;
u32 acc_data;
acc_data = readl_relaxed(mem_acc_vreg->acc_en_base);
pr_debug("init: acc_en_register=%x\n", acc_data);
for (i = 0; i < mem_acc_vreg->num_acc_en; i++) {
bit = mem_acc_vreg->acc_en_bit_pos[i];
acc_data |= BIT(bit);
}
pr_debug("final: acc_en_register=%x\n", acc_data);
writel_relaxed(acc_data, mem_acc_vreg->acc_en_base);
}
static int populate_acc_data(struct mem_acc_regulator *mem_acc_vreg,
const char *prop_name, u32 **value, u32 *len)
{
int rc;
if (!of_get_property(mem_acc_vreg->dev->of_node, prop_name, len)) {
pr_err("Unable to find %s property\n", prop_name);
return -EINVAL;
}
*len /= sizeof(u32);
if (!(*len)) {
pr_err("Incorrect entries in %s\n", prop_name);
return -EINVAL;
}
*value = devm_kzalloc(mem_acc_vreg->dev, (*len) * sizeof(u32),
GFP_KERNEL);
if (!(*value)) {
pr_err("Unable to allocate memory for %s\n", prop_name);
return -ENOMEM;
}
pr_debug("Found %s, data-length = %d\n", prop_name, *len);
rc = of_property_read_u32_array(mem_acc_vreg->dev->of_node,
prop_name, *value, *len);
if (rc) {
pr_err("Unable to populate %s rc=%d\n", prop_name, rc);
return rc;
}
return 0;
}
static int mem_acc_sel_setup(struct mem_acc_regulator *mem_acc_vreg,
struct resource *res, int mem_type)
{
int len, rc;
char *mem_select_str;
char *mem_select_size_str;
mem_acc_vreg->acc_sel_addr[mem_type] = res->start;
len = res->end - res->start + 1;
pr_debug("'acc_sel_addr' = %pa mem_type=%d (len=%d)\n",
&res->start, mem_type, len);
mem_acc_vreg->acc_sel_base[mem_type] = devm_ioremap(mem_acc_vreg->dev,
mem_acc_vreg->acc_sel_addr[mem_type], len);
if (!mem_acc_vreg->acc_sel_base[mem_type]) {
pr_err("Unable to map 'acc_sel_addr' %pa for mem_type=%d\n",
&mem_acc_vreg->acc_sel_addr[mem_type], mem_type);
return -EINVAL;
}
switch (mem_type) {
case MEMORY_L1:
mem_select_str = "qcom,acc-sel-l1-bit-pos";
mem_select_size_str = "qcom,acc-sel-l1-bit-size";
break;
case MEMORY_L2:
mem_select_str = "qcom,acc-sel-l2-bit-pos";
mem_select_size_str = "qcom,acc-sel-l2-bit-size";
break;
default:
pr_err("Invalid memory type: %d\n", mem_type);
return -EINVAL;
}
mem_acc_vreg->acc_sel_bit_size[mem_type] = MEM_ACC_DEFAULT_SEL_SIZE;
of_property_read_u32(mem_acc_vreg->dev->of_node, mem_select_size_str,
&mem_acc_vreg->acc_sel_bit_size[mem_type]);
rc = populate_acc_data(mem_acc_vreg, mem_select_str,
&mem_acc_vreg->acc_sel_bit_pos[mem_type],
&mem_acc_vreg->num_acc_sel[mem_type]);
if (rc)
pr_err("Unable to populate '%s' rc=%d\n", mem_select_str, rc);
return rc;
}
static int mem_acc_efuse_init(struct platform_device *pdev,
struct mem_acc_regulator *mem_acc_vreg)
{
struct resource *res;
int len;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse_addr");
if (!res || !res->start) {
mem_acc_vreg->efuse_base = NULL;
pr_debug("'efuse_addr' resource missing or not used.\n");
return 0;
}
mem_acc_vreg->efuse_addr = res->start;
len = res->end - res->start + 1;
pr_info("efuse_addr = %pa (len=0x%x)\n", &res->start, len);
mem_acc_vreg->efuse_base = devm_ioremap(&pdev->dev,
mem_acc_vreg->efuse_addr, len);
if (!mem_acc_vreg->efuse_base) {
pr_err("Unable to map efuse_addr %pa\n",
&mem_acc_vreg->efuse_addr);
return -EINVAL;
}
return 0;
}
static int mem_acc_custom_data_init(struct platform_device *pdev,
struct mem_acc_regulator *mem_acc_vreg,
int mem_type)
{
struct resource *res;
char *custom_apc_addr_str, *custom_apc_data_str;
int len, rc = 0;
switch (mem_type) {
case MEMORY_L1:
custom_apc_addr_str = "acc-l1-custom";
custom_apc_data_str = "qcom,l1-acc-custom-data";
break;
case MEMORY_L2:
custom_apc_addr_str = "acc-l2-custom";
custom_apc_data_str = "qcom,l2-acc-custom-data";
break;
default:
pr_err("Invalid memory type: %d\n", mem_type);
return -EINVAL;
}
if (!of_find_property(mem_acc_vreg->dev->of_node,
custom_apc_data_str, NULL)) {
pr_debug("%s custom_data not specified\n", custom_apc_data_str);
return 0;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
custom_apc_addr_str);
if (!res || !res->start) {
pr_debug("%s resource missing\n", custom_apc_addr_str);
return -EINVAL;
}
len = res->end - res->start + 1;
mem_acc_vreg->acc_custom_addr[mem_type] =
devm_ioremap(mem_acc_vreg->dev, res->start, len);
if (!mem_acc_vreg->acc_custom_addr[mem_type]) {
pr_err("Unable to map %s %pa\n",
custom_apc_addr_str, &res->start);
return -EINVAL;
}
rc = populate_acc_data(mem_acc_vreg, custom_apc_data_str,
&mem_acc_vreg->acc_custom_data[mem_type], &len);
if (rc) {
pr_err("Unable to find %s rc=%d\n", custom_apc_data_str, rc);
return rc;
}
if (mem_acc_vreg->num_corners != len) {
pr_err("Custom data is not present for all the corners\n");
return -EINVAL;
}
mem_acc_vreg->mem_acc_custom_supported[mem_type] = true;
return 0;
}
static int override_mem_acc_custom_data(struct mem_acc_regulator *mem_acc_vreg,
int mem_type)
{
char *custom_apc_data_str;
int len, rc = 0, i;
int tuple_count, tuple_match;
u32 index = 0, value = 0;
switch (mem_type) {
case MEMORY_L1:
custom_apc_data_str = "qcom,override-l1-acc-custom-data";
break;
case MEMORY_L2:
custom_apc_data_str = "qcom,override-l2-acc-custom-data";
break;
default:
pr_err("Invalid memory type: %d\n", mem_type);
return -EINVAL;
}
if (!of_find_property(mem_acc_vreg->dev->of_node,
custom_apc_data_str, &len)) {
pr_debug("%s not specified\n", custom_apc_data_str);
return 0;
}
if (mem_acc_vreg->override_map_count) {
if (mem_acc_vreg->override_map_match == FUSE_MAP_NO_MATCH)
return 0;
tuple_count = mem_acc_vreg->override_map_count;
tuple_match = mem_acc_vreg->override_map_match;
} else {
tuple_count = 1;
tuple_match = 0;
}
if (len != mem_acc_vreg->num_corners * tuple_count * sizeof(u32)) {
pr_err("%s length=%d is invalid\n", custom_apc_data_str, len);
return -EINVAL;
}
for (i = 0; i < mem_acc_vreg->num_corners; i++) {
index = (tuple_match * mem_acc_vreg->num_corners) + i;
rc = of_property_read_u32_index(mem_acc_vreg->dev->of_node,
custom_apc_data_str, index, &value);
if (rc) {
pr_err("Unable read %s index %u, rc=%d\n",
custom_apc_data_str, index, rc);
return rc;
}
mem_acc_vreg->acc_custom_data[mem_type][i] = value;
}
return 0;
}
static int mem_acc_override_corner_map(struct mem_acc_regulator *mem_acc_vreg)
{
int len = 0, i, rc;
int tuple_count, tuple_match;
u32 index = 0, value = 0;
char *prop_str = "qcom,override-corner-acc-map";
if (!of_find_property(mem_acc_vreg->dev->of_node, prop_str, &len))
return 0;
if (mem_acc_vreg->override_map_count) {
if (mem_acc_vreg->override_map_match == FUSE_MAP_NO_MATCH)
return 0;
tuple_count = mem_acc_vreg->override_map_count;
tuple_match = mem_acc_vreg->override_map_match;
} else {
tuple_count = 1;
tuple_match = 0;
}
if (len != mem_acc_vreg->num_corners * tuple_count * sizeof(u32)) {
pr_err("%s length=%d is invalid\n", prop_str, len);
return -EINVAL;
}
for (i = 0; i < mem_acc_vreg->num_corners; i++) {
index = (tuple_match * mem_acc_vreg->num_corners) + i;
rc = of_property_read_u32_index(mem_acc_vreg->dev->of_node,
prop_str, index, &value);
if (rc) {
pr_err("Unable read %s index %u, rc=%d\n",
prop_str, index, rc);
return rc;
}
mem_acc_vreg->corner_acc_map[i] = value;
}
return 0;
}
static void mem_acc_read_efuse_param(struct mem_acc_regulator *mem_acc_vreg,
u32 *fuse_sel, int *val)
{
u64 fuse_bits;
fuse_bits = mem_acc_read_efuse_row(mem_acc_vreg, fuse_sel[0],
fuse_sel[3]);
/*
* fuse_sel[1] = LSB position in row (shift)
* fuse_sel[2] = num of bits (mask)
*/
*val = (fuse_bits >> fuse_sel[1]) & ((1 << fuse_sel[2]) - 1);
}
#define FUSE_TUPLE_SIZE 4
static int mem_acc_parse_override_fuse_version_map(
struct mem_acc_regulator *mem_acc_vreg)
{
struct device_node *of_node = mem_acc_vreg->dev->of_node;
int i, rc, tuple_size;
int len = 0;
u32 *tmp;
u32 fuse_sel[4];
char *prop_str;
prop_str = "qcom,override-acc-fuse-sel";
rc = of_property_read_u32_array(of_node, prop_str, fuse_sel,
FUSE_TUPLE_SIZE);
if (rc < 0) {
pr_err("Read failed - %s rc=%d\n", prop_str, rc);
return rc;
}
mem_acc_read_efuse_param(mem_acc_vreg, fuse_sel,
&mem_acc_vreg->override_fuse_value);
prop_str = "qcom,override-fuse-version-map";
if (!of_find_property(of_node, prop_str, &len))
return -EINVAL;
tuple_size = 1;
mem_acc_vreg->override_map_count = len / (sizeof(u32) * tuple_size);
if (len == 0 || len % (sizeof(u32) * tuple_size)) {
pr_err("%s length=%d is invalid\n", prop_str, len);
return -EINVAL;
}
tmp = kzalloc(len, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
rc = of_property_read_u32_array(of_node, prop_str, tmp,
mem_acc_vreg->override_map_count * tuple_size);
if (rc) {
pr_err("could not read %s rc=%d\n", prop_str, rc);
goto done;
}
for (i = 0; i < mem_acc_vreg->override_map_count; i++) {
if (tmp[i * tuple_size] != mem_acc_vreg->override_fuse_value
&& tmp[i * tuple_size] != FUSE_PARAM_MATCH_ANY) {
continue;
} else {
mem_acc_vreg->override_map_match = i;
break;
}
}
if (mem_acc_vreg->override_map_match != FUSE_MAP_NO_MATCH)
pr_info("override_fuse_val=%d, %s tuple match found: %d\n",
mem_acc_vreg->override_fuse_value, prop_str,
mem_acc_vreg->override_map_match);
else
pr_err("%s tuple match not found\n", prop_str);
done:
kfree(tmp);
return rc;
}
static int mem_acc_parse_override_fuse_version_range(
struct mem_acc_regulator *mem_acc_vreg)
{
struct device_node *of_node = mem_acc_vreg->dev->of_node;
int i, j, rc, size, row_size;
int num_fuse_sel, len = 0;
u32 *tmp = NULL;
char *prop_str;
u32 *fuse_val, *fuse_sel;
char *buf = NULL;
int pos = 0, buflen;
prop_str = "qcom,override-acc-range-fuse-list";
if (!of_find_property(of_node, prop_str, &len)) {
pr_err("%s property is missing\n", prop_str);
return -EINVAL;
}
size = len / sizeof(u32);
if (len == 0 || (size % FUSE_TUPLE_SIZE)) {
pr_err("%s property length (%d) is invalid\n", prop_str, len);
return -EINVAL;
}
num_fuse_sel = size / FUSE_TUPLE_SIZE;
fuse_val = devm_kcalloc(mem_acc_vreg->dev, num_fuse_sel,
sizeof(*fuse_val), GFP_KERNEL);
if (!fuse_val)
return -ENOMEM;
mem_acc_vreg->override_acc_range_fuse_list = fuse_val;
mem_acc_vreg->override_acc_range_fuse_num = num_fuse_sel;
fuse_sel = kzalloc(len, GFP_KERNEL);
if (!fuse_sel) {
rc = -ENOMEM;
goto done;
}
rc = of_property_read_u32_array(of_node, prop_str, fuse_sel,
size);
if (rc) {
pr_err("%s read failed, rc=%d\n", prop_str, rc);
goto done;
}
for (i = 0; i < num_fuse_sel; i++) {
mem_acc_read_efuse_param(mem_acc_vreg, &fuse_sel[i * 4],
&fuse_val[i]);
}
prop_str = "qcom,override-fuse-range-map";
if (!of_find_property(of_node, prop_str, &len))
goto done;
row_size = num_fuse_sel * 2;
mem_acc_vreg->override_map_count = len / (sizeof(u32) * row_size);
if (len == 0 || len % (sizeof(u32) * row_size)) {
pr_err("%s length=%d is invalid\n", prop_str, len);
rc = -EINVAL;
goto done;
}
tmp = kzalloc(len, GFP_KERNEL);
if (!tmp) {
rc = -ENOMEM;
goto done;
}
rc = of_property_read_u32_array(of_node, prop_str, tmp,
mem_acc_vreg->override_map_count * row_size);
if (rc) {
pr_err("could not read %s rc=%d\n", prop_str, rc);
goto done;
}
for (i = 0; i < mem_acc_vreg->override_map_count; i++) {
for (j = 0; j < num_fuse_sel; j++) {
if (tmp[i * row_size + j * 2] > fuse_val[j]
|| tmp[i * row_size + j * 2 + 1] < fuse_val[j])
break;
}
if (j == num_fuse_sel) {
mem_acc_vreg->override_map_match = i;
break;
}
}
/*
* Log register and value mapping since they are useful for
* baseline MEM ACC logging.
*/
buflen = num_fuse_sel * sizeof("fuse_selxxxx = XXXX ");
buf = kzalloc(buflen, GFP_KERNEL);
if (!buf)
goto done;
for (j = 0; j < num_fuse_sel; j++)
pos += scnprintf(buf + pos, buflen - pos, "fuse_sel%d = %d ",
j, fuse_val[j]);
buf[pos] = '\0';
if (mem_acc_vreg->override_map_match != FUSE_MAP_NO_MATCH)
pr_info("%s %s tuple match found: %d\n", buf, prop_str,
mem_acc_vreg->override_map_match);
else
pr_err("%s %s tuple match not found\n", buf, prop_str);
done:
kfree(fuse_sel);
kfree(tmp);
kfree(buf);
return rc;
}
#define MAX_CHARS_PER_INT 20
static int mem_acc_reg_addr_val_dump(struct mem_acc_regulator *mem_acc_vreg,
struct corner_acc_reg_config *corner_acc_reg_config,
u32 corner)
{
int i, k, index, pos = 0;
u32 addr_index;
size_t buflen;
char *buf;
struct acc_reg_value *reg_config_list =
corner_acc_reg_config->reg_config_list;
int max_reg_config_len = corner_acc_reg_config->max_reg_config_len;
int num_corners = mem_acc_vreg->num_corners;
/*
* Log register and value mapping since they are useful for
* baseline MEM ACC logging.
*/
buflen = max_reg_config_len * (MAX_CHARS_PER_INT + 6) * sizeof(*buf);
buf = kzalloc(buflen, GFP_KERNEL);
if (buf == NULL) {
pr_err("Could not allocate memory for acc register and value logging\n");
return -ENOMEM;
}
for (i = 0; i < num_corners; i++) {
if (corner == i + 1)
continue;
pr_debug("Corner: %d --> %d:\n", corner, i + 1);
pos = 0;
for (k = 0; k < max_reg_config_len; k++) {
index = i * max_reg_config_len + k;
addr_index = reg_config_list[index].addr_index;
if (addr_index == PARAM_MATCH_ANY)
break;
pos += scnprintf(buf + pos, buflen - pos,
"<0x%x 0x%x> ",
mem_acc_vreg->phys_reg_addr_list[addr_index],
reg_config_list[index].reg_val);
}
buf[pos] = '\0';
pr_debug("%s\n", buf);
}
kfree(buf);
return 0;
}
static int mem_acc_get_reg_addr_val(struct device_node *of_node,
const char *prop_str, struct acc_reg_value *reg_config_list,
int list_offset, int list_size, u32 max_reg_index)
{
int i, index, rc = 0;
for (i = 0; i < list_size / 2; i++) {
index = (list_offset * list_size) + i * 2;
rc = of_property_read_u32_index(of_node, prop_str, index,
&reg_config_list[i].addr_index);
rc |= of_property_read_u32_index(of_node, prop_str, index + 1,
&reg_config_list[i].reg_val);
if (rc) {
pr_err("could not read %s at tuple %u: rc=%d\n",
prop_str, index, rc);
return rc;
}
if (reg_config_list[i].addr_index == PARAM_MATCH_ANY)
continue;
if ((!reg_config_list[i].addr_index) ||
reg_config_list[i].addr_index > max_reg_index) {
pr_err("Invalid register index %u in %s at tuple %u\n",
reg_config_list[i].addr_index, prop_str, index);
return -EINVAL;
}
}
return rc;
}
static int mem_acc_override_reg_addr_val_init(
struct mem_acc_regulator *mem_acc_vreg)
{
struct device_node *of_node = mem_acc_vreg->dev->of_node;
struct corner_acc_reg_config *corner_acc_reg_config;
struct acc_reg_value *override_reg_config_list;
int i, tuple_count, tuple_match, len = 0, rc = 0;
u32 list_size, override_max_reg_config_len;
char prop_str[40];
struct property *prop;
int num_corners = mem_acc_vreg->num_corners;
if (!mem_acc_vreg->corner_acc_reg_config)
return 0;
if (mem_acc_vreg->override_map_count) {
if (mem_acc_vreg->override_map_match == FUSE_MAP_NO_MATCH)
return 0;
tuple_count = mem_acc_vreg->override_map_count;
tuple_match = mem_acc_vreg->override_map_match;
} else {
tuple_count = 1;
tuple_match = 0;
}
corner_acc_reg_config = mem_acc_vreg->corner_acc_reg_config;
for (i = 1; i <= num_corners; i++) {
snprintf(prop_str, sizeof(prop_str),
"qcom,override-corner%d-addr-val-map", i);
prop = of_find_property(of_node, prop_str, &len);
list_size = len / (tuple_count * sizeof(u32));
if (!prop) {
pr_debug("%s property not specified\n", prop_str);
continue;
}
if ((!list_size) || list_size < (num_corners * 2)) {
pr_err("qcom,override-corner%d-addr-val-map property is missed or invalid length: len=%d\n",
i, len);
return -EINVAL;
}
override_max_reg_config_len = list_size / (num_corners * 2);
override_reg_config_list =
corner_acc_reg_config[i].reg_config_list;
if (corner_acc_reg_config[i].max_reg_config_len
!= override_max_reg_config_len) {
/* Free already allocate memory */
devm_kfree(mem_acc_vreg->dev, override_reg_config_list);
/* Allocated memory for new requirement */
override_reg_config_list =
devm_kcalloc(mem_acc_vreg->dev,
override_max_reg_config_len * num_corners,
sizeof(*override_reg_config_list), GFP_KERNEL);
if (!override_reg_config_list)
return -ENOMEM;
corner_acc_reg_config[i].max_reg_config_len =
override_max_reg_config_len;
corner_acc_reg_config[i].reg_config_list =
override_reg_config_list;
}
rc = mem_acc_get_reg_addr_val(of_node, prop_str,
override_reg_config_list, tuple_match,
list_size, mem_acc_vreg->num_acc_reg);
if (rc) {
pr_err("Failed to read %s property: rc=%d\n",
prop_str, rc);
return rc;
}
rc = mem_acc_reg_addr_val_dump(mem_acc_vreg,
&corner_acc_reg_config[i], i);
if (rc) {
pr_err("could not dump acc address-value dump for corner=%d: rc=%d\n",
i, rc);
return rc;
}
}
return rc;
}
static int mem_acc_parse_override_config(struct mem_acc_regulator *mem_acc_vreg)
{
struct device_node *of_node = mem_acc_vreg->dev->of_node;
int i, rc = 0;
/* Specify default no match case. */
mem_acc_vreg->override_map_match = FUSE_MAP_NO_MATCH;
mem_acc_vreg->override_map_count = 0;
if (of_find_property(of_node, "qcom,override-fuse-range-map",
NULL)) {
rc = mem_acc_parse_override_fuse_version_range(mem_acc_vreg);
if (rc) {
pr_err("parsing qcom,override-fuse-range-map property failed, rc=%d\n",
rc);
return rc;
}
} else if (of_find_property(of_node, "qcom,override-fuse-version-map",
NULL)) {
rc = mem_acc_parse_override_fuse_version_map(mem_acc_vreg);
if (rc) {
pr_err("parsing qcom,override-fuse-version-map property failed, rc=%d\n",
rc);
return rc;
}
} else {
/* No override fuse configuration defined in device node */
return 0;
}
if (mem_acc_vreg->override_map_match == FUSE_MAP_NO_MATCH)
return 0;
rc = mem_acc_override_corner_map(mem_acc_vreg);
if (rc) {
pr_err("Unable to override corner map rc=%d\n", rc);
return rc;
}
rc = mem_acc_override_reg_addr_val_init(mem_acc_vreg);
if (rc) {
pr_err("Unable to override reg_config_list init rc=%d\n",
rc);
return rc;
}
for (i = 0; i < MEMORY_MAX; i++) {
rc = override_mem_acc_custom_data(mem_acc_vreg, i);
if (rc) {
pr_err("Unable to override custom data for mem_type=%d rc=%d\n",
i, rc);
return rc;
}
}
return rc;
}
static int mem_acc_init_reg_config(struct mem_acc_regulator *mem_acc_vreg)
{
struct device_node *of_node = mem_acc_vreg->dev->of_node;
int i, size, len = 0, rc = 0;
u32 addr_index, reg_val, index;
char *prop_str = "qcom,acc-init-reg-config";
if (!of_find_property(of_node, prop_str, &len)) {
/* Initial acc register configuration not specified */
return rc;
}
size = len / sizeof(u32);
if ((!size) || (size % 2)) {
pr_err("%s specified with invalid length: %d\n",
prop_str, size);
return -EINVAL;
}
for (i = 0; i < size / 2; i++) {
index = i * 2;
rc = of_property_read_u32_index(of_node, prop_str, index,
&addr_index);
rc |= of_property_read_u32_index(of_node, prop_str, index + 1,
&reg_val);
if (rc) {
pr_err("could not read %s at tuple %u: rc=%d\n",
prop_str, index, rc);
return rc;
}
if ((!addr_index) || addr_index > mem_acc_vreg->num_acc_reg) {
pr_err("Invalid register index %u in %s at tuple %u\n",
addr_index, prop_str, index);
return -EINVAL;
}
writel_relaxed(reg_val,
mem_acc_vreg->remap_reg_addr_list[addr_index]);
/* make sure write complete */
mb();
pr_debug("acc initial config: register:0x%x value:0x%x\n",
mem_acc_vreg->phys_reg_addr_list[addr_index], reg_val);
}
return rc;
}
static int mem_acc_get_reg_addr(struct mem_acc_regulator *mem_acc_vreg)
{
struct device_node *of_node = mem_acc_vreg->dev->of_node;
void __iomem **remap_reg_addr_list;
u32 *phys_reg_addr_list;
int i, num_acc_reg, len = 0, rc = 0;
if (!of_find_property(of_node, "qcom,acc-reg-addr-list", &len)) {
/* acc register address list not specified */
return rc;
}
num_acc_reg = len / sizeof(u32);
if (!num_acc_reg) {
pr_err("qcom,acc-reg-addr-list has invalid len = %d\n", len);
return -EINVAL;
}
phys_reg_addr_list = devm_kcalloc(mem_acc_vreg->dev, num_acc_reg + 1,
sizeof(*phys_reg_addr_list), GFP_KERNEL);
if (!phys_reg_addr_list)
return -ENOMEM;
remap_reg_addr_list = devm_kcalloc(mem_acc_vreg->dev, num_acc_reg + 1,
sizeof(*remap_reg_addr_list), GFP_KERNEL);
if (!remap_reg_addr_list)
return -ENOMEM;
rc = of_property_read_u32_array(of_node, "qcom,acc-reg-addr-list",
&phys_reg_addr_list[1], num_acc_reg);
if (rc) {
pr_err("Read- qcom,acc-reg-addr-list failed: rc=%d\n", rc);
return rc;
}
for (i = 1; i <= num_acc_reg; i++) {
remap_reg_addr_list[i] = devm_ioremap(mem_acc_vreg->dev,
phys_reg_addr_list[i], 0x4);
if (!remap_reg_addr_list[i]) {
pr_err("Unable to map register address 0x%x\n",
phys_reg_addr_list[i]);
return -EINVAL;
}
}
mem_acc_vreg->num_acc_reg = num_acc_reg;
mem_acc_vreg->phys_reg_addr_list = phys_reg_addr_list;
mem_acc_vreg->remap_reg_addr_list = remap_reg_addr_list;
return rc;
}
static int mem_acc_reg_config_init(struct mem_acc_regulator *mem_acc_vreg)
{
struct device_node *of_node = mem_acc_vreg->dev->of_node;
struct acc_reg_value *reg_config_list;
int len, size, rc, i, num_corners;
struct property *prop;
char prop_str[30];
struct corner_acc_reg_config *corner_acc_reg_config;
rc = of_property_read_u32(of_node, "qcom,num-acc-corners",
&num_corners);
if (rc) {
pr_err("could not read qcom,num-acc-corners: rc=%d\n", rc);
return rc;
}
mem_acc_vreg->num_corners = num_corners;
rc = of_property_read_u32(of_node, "qcom,boot-acc-corner",
&mem_acc_vreg->corner);
if (rc) {
pr_err("could not read qcom,boot-acc-corner: rc=%d\n", rc);
return rc;
}
pr_debug("boot acc corner = %d\n", mem_acc_vreg->corner);
corner_acc_reg_config = devm_kcalloc(mem_acc_vreg->dev, num_corners + 1,
sizeof(*corner_acc_reg_config),
GFP_KERNEL);
if (!corner_acc_reg_config)
return -ENOMEM;
for (i = 1; i <= num_corners; i++) {
snprintf(prop_str, sizeof(prop_str),
"qcom,corner%d-reg-config", i);
prop = of_find_property(of_node, prop_str, &len);
size = len / sizeof(u32);
if ((!prop) || (!size) || size < (num_corners * 2)) {
pr_err("%s property is missed or invalid length: len=%d\n",
prop_str, len);
return -EINVAL;
}
reg_config_list = devm_kcalloc(mem_acc_vreg->dev, size / 2,
sizeof(*reg_config_list), GFP_KERNEL);
if (!reg_config_list)
return -ENOMEM;
rc = mem_acc_get_reg_addr_val(of_node, prop_str,
reg_config_list, 0, size,
mem_acc_vreg->num_acc_reg);
if (rc) {
pr_err("Failed to read %s property: rc=%d\n",
prop_str, rc);
return rc;
}
corner_acc_reg_config[i].max_reg_config_len =
size / (num_corners * 2);
corner_acc_reg_config[i].reg_config_list = reg_config_list;
rc = mem_acc_reg_addr_val_dump(mem_acc_vreg,
&corner_acc_reg_config[i], i);
if (rc) {
pr_err("could not dump acc address-value dump for corner=%d: rc=%d\n",
i, rc);
return rc;
}
}
mem_acc_vreg->corner_acc_reg_config = corner_acc_reg_config;
mem_acc_vreg->flags |= MEM_ACC_USE_ADDR_VAL_MAP;
return rc;
}
#define MEM_TYPE_STRING_LEN 20
static int mem_acc_init(struct platform_device *pdev,
struct mem_acc_regulator *mem_acc_vreg)
{
struct device_node *of_node = pdev->dev.of_node;
struct resource *res;
int len, rc, i, j;
bool acc_type_present = false;
char tmps[MEM_TYPE_STRING_LEN];
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acc-en");
if (!res || !res->start) {
pr_debug("'acc-en' resource missing or not used.\n");
} else {
mem_acc_vreg->acc_en_addr = res->start;
len = res->end - res->start + 1;
pr_debug("'acc_en_addr' = %pa (len=0x%x)\n", &res->start, len);
mem_acc_vreg->acc_en_base = devm_ioremap(mem_acc_vreg->dev,
mem_acc_vreg->acc_en_addr, len);
if (!mem_acc_vreg->acc_en_base) {
pr_err("Unable to map 'acc_en_addr' %pa\n",
&mem_acc_vreg->acc_en_addr);
return -EINVAL;
}
rc = populate_acc_data(mem_acc_vreg, "qcom,acc-en-bit-pos",
&mem_acc_vreg->acc_en_bit_pos,
&mem_acc_vreg->num_acc_en);
if (rc) {
pr_err("Unable to populate 'qcom,acc-en-bit-pos' rc=%d\n",
rc);
return rc;
}
}
rc = mem_acc_efuse_init(pdev, mem_acc_vreg);
if (rc) {
pr_err("Wrong eFuse address specified: rc=%d\n", rc);
return rc;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acc-sel-l1");
if (!res || !res->start) {
pr_debug("'acc-sel-l1' resource missing or not used.\n");
} else {
rc = mem_acc_sel_setup(mem_acc_vreg, res, MEMORY_L1);
if (rc) {
pr_err("Unable to setup mem-acc for mem_type=%d rc=%d\n",
MEMORY_L1, rc);
return rc;
}
mem_acc_vreg->mem_acc_supported[MEMORY_L1] = true;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acc-sel-l2");
if (!res || !res->start) {
pr_debug("'acc-sel-l2' resource missing or not used.\n");
} else {
rc = mem_acc_sel_setup(mem_acc_vreg, res, MEMORY_L2);
if (rc) {
pr_err("Unable to setup mem-acc for mem_type=%d rc=%d\n",
MEMORY_L2, rc);
return rc;
}
mem_acc_vreg->mem_acc_supported[MEMORY_L2] = true;
}
for (i = 0; i < MEM_ACC_TYPE_MAX; i++) {
snprintf(tmps, MEM_TYPE_STRING_LEN, "mem-acc-type%d", i + 1);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, tmps);
if (!res || !res->start) {
pr_debug("'%s' resource missing or not used.\n", tmps);
} else {
mem_acc_vreg->mem_acc_type_addr[i] = res->start;
acc_type_present = true;
}
}
rc = mem_acc_get_reg_addr(mem_acc_vreg);
if (rc) {
pr_err("Unable to get acc register addresses: rc=%d\n", rc);
return rc;
}
if (mem_acc_vreg->phys_reg_addr_list) {
rc = mem_acc_reg_config_init(mem_acc_vreg);
if (rc) {
pr_err("acc register address-value map failed: rc=%d\n",
rc);
return rc;
}
}
if (of_find_property(of_node, "qcom,corner-acc-map", NULL)) {
rc = populate_acc_data(mem_acc_vreg, "qcom,corner-acc-map",
&mem_acc_vreg->corner_acc_map,
&mem_acc_vreg->num_corners);
/* Check if at least one valid mem-acc config. is specified */
for (i = 0; i < MEMORY_MAX; i++) {
if (mem_acc_vreg->mem_acc_supported[i])
break;
}
if (i == MEMORY_MAX && !acc_type_present) {
pr_err("No mem-acc configuration specified\n");
return -EINVAL;
}
mem_acc_vreg->flags |= MEM_ACC_USE_CORNER_ACC_MAP;
}
if ((mem_acc_vreg->flags & MEM_ACC_USE_CORNER_ACC_MAP) &&
(mem_acc_vreg->flags & MEM_ACC_USE_ADDR_VAL_MAP)) {
pr_err("Invalid configuration, both qcom,corner-acc-map and qcom,cornerX-addr-val-map specified\n");
return -EINVAL;
}
pr_debug("num_corners = %d\n", mem_acc_vreg->num_corners);
if (mem_acc_vreg->num_acc_en)
mem_acc_en_init(mem_acc_vreg);
if (mem_acc_vreg->phys_reg_addr_list) {
rc = mem_acc_init_reg_config(mem_acc_vreg);
if (rc) {
pr_err("acc initial register configuration failed: rc=%d\n",
rc);
return rc;
}
}
rc = mem_acc_sel_init(mem_acc_vreg);
if (rc) {
pr_err("Unable to initialize mem_acc_sel reg rc=%d\n", rc);
return rc;
}
for (i = 0; i < MEMORY_MAX; i++) {
rc = mem_acc_custom_data_init(pdev, mem_acc_vreg, i);
if (rc) {
pr_err("Unable to initialize custom data for mem_type=%d rc=%d\n",
i, rc);
return rc;
}
}
rc = mem_acc_parse_override_config(mem_acc_vreg);
if (rc) {
pr_err("Unable to parse mem acc override configuration, rc=%d\n",
rc);
return rc;
}
if (acc_type_present) {
mem_acc_vreg->mem_acc_type_data = devm_kzalloc(
mem_acc_vreg->dev, mem_acc_vreg->num_corners *
MEM_ACC_TYPE_MAX * sizeof(u32), GFP_KERNEL);
if (!mem_acc_vreg->mem_acc_type_data) {
pr_err("Unable to allocate memory for mem_acc_type\n");
return -ENOMEM;
}
for (i = 0; i < MEM_ACC_TYPE_MAX; i++) {
if (mem_acc_vreg->mem_acc_type_addr[i]) {
snprintf(tmps, MEM_TYPE_STRING_LEN,
"qcom,mem-acc-type%d", i + 1);
j = i * mem_acc_vreg->num_corners;
rc = of_property_read_u32_array(
mem_acc_vreg->dev->of_node,
tmps,
&mem_acc_vreg->mem_acc_type_data[j],
mem_acc_vreg->num_corners);
if (rc) {
pr_err("Unable to get property %s rc=%d\n",
tmps, rc);
return rc;
}
}
}
}
return 0;
}
static int mem_acc_regulator_probe(struct platform_device *pdev)
{
struct regulator_config reg_config = {};
struct mem_acc_regulator *mem_acc_vreg;
struct regulator_desc *rdesc;
struct regulator_init_data *init_data;
int rc;
if (!pdev->dev.of_node) {
pr_err("Device tree node is missing\n");
return -EINVAL;
}
init_data = of_get_regulator_init_data(&pdev->dev, pdev->dev.of_node,
NULL);
if (!init_data) {
pr_err("regulator init data is missing\n");
return -EINVAL;
}
init_data->constraints.input_uV = init_data->constraints.max_uV;
init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE;
mem_acc_vreg = devm_kzalloc(&pdev->dev, sizeof(*mem_acc_vreg),
GFP_KERNEL);
if (!mem_acc_vreg)
return -ENOMEM;
mem_acc_vreg->dev = &pdev->dev;
rc = mem_acc_init(pdev, mem_acc_vreg);
if (rc) {
pr_err("Unable to initialize mem_acc configuration rc=%d\n",
rc);
return rc;
}
rdesc = &mem_acc_vreg->rdesc;
rdesc->owner = THIS_MODULE;
rdesc->type = REGULATOR_VOLTAGE;
rdesc->ops = &mem_acc_corner_ops;
rdesc->name = init_data->constraints.name;
reg_config.dev = &pdev->dev;
reg_config.init_data = init_data;
reg_config.driver_data = mem_acc_vreg;
reg_config.of_node = pdev->dev.of_node;
mem_acc_vreg->rdev = regulator_register(rdesc, &reg_config);
if (IS_ERR(mem_acc_vreg->rdev)) {
rc = PTR_ERR(mem_acc_vreg->rdev);
if (rc != -EPROBE_DEFER)
pr_err("regulator_register failed: rc=%d\n", rc);
return rc;
}
platform_set_drvdata(pdev, mem_acc_vreg);
return 0;
}
static int mem_acc_regulator_remove(struct platform_device *pdev)
{
struct mem_acc_regulator *mem_acc_vreg = platform_get_drvdata(pdev);
regulator_unregister(mem_acc_vreg->rdev);
return 0;
}
static const struct of_device_id mem_acc_regulator_match_table[] = {
{ .compatible = "qcom,mem-acc-regulator", },
{}
};
static struct platform_driver mem_acc_regulator_driver = {
.probe = mem_acc_regulator_probe,
.remove = mem_acc_regulator_remove,
.driver = {
.name = "qcom,mem-acc-regulator",
.of_match_table = mem_acc_regulator_match_table,
.owner = THIS_MODULE,
},
};
int __init mem_acc_regulator_init(void)
{
return platform_driver_register(&mem_acc_regulator_driver);
}
postcore_initcall(mem_acc_regulator_init);
static void __exit mem_acc_regulator_exit(void)
{
platform_driver_unregister(&mem_acc_regulator_driver);
}
module_exit(mem_acc_regulator_exit);
MODULE_DESCRIPTION("MEM-ACC-SEL regulator driver");
MODULE_LICENSE("GPL v2");