blob: a2522c6d781b5e2c0e443dd69da10ee1f7de104f [file] [log] [blame]
/* drivers/serial/msm_serial_hs.c
*
* MSM 7k High speed uart driver
*
* Copyright (c) 2008 Google Inc.
* Copyright (c) 2007-2018, The Linux Foundation. All rights reserved.
* Modified: Nick Pelly <npelly@google.com>
*
* All source code in this file is licensed under the following license
* except where indicated.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* Has optional support for uart power management independent of linux
* suspend/resume:
*
* RX wakeup.
* UART wakeup can be triggered by RX activity (using a wakeup GPIO on the
* UART RX pin). This should only be used if there is not a wakeup
* GPIO on the UART CTS, and the first RX byte is known (for example, with the
* Bluetooth Texas Instruments HCILL protocol), since the first RX byte will
* always be lost. RTS will be asserted even while the UART is off in this mode
* of operation. See msm_serial_hs_platform_data.rx_wakeup_irq.
*/
#include <linux/module.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/dma-mapping.h>
#include <linux/tty_flip.h>
#include <linux/wait.h>
#include <linux/sysfs.h>
#include <linux/stat.h>
#include <linux/device.h>
#include <linux/debugfs.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/gpio.h>
#include <linux/ipc_logging.h>
#include <asm/irq.h>
#include <linux/kthread.h>
#include <linux/msm-sps.h>
#include <linux/platform_data/msm_serial_hs.h>
#include <linux/msm-bus.h>
#include "msm_serial_hs_hwreg.h"
#define UART_SPS_CONS_PERIPHERAL 0
#define UART_SPS_PROD_PERIPHERAL 1
#define IPC_MSM_HS_LOG_STATE_PAGES 2
#define IPC_MSM_HS_LOG_USER_PAGES 2
#define IPC_MSM_HS_LOG_DATA_PAGES 3
#define UART_DMA_DESC_NR 8
#define BUF_DUMP_SIZE 32
/* If the debug_mask gets set to FATAL_LEV,
* a fatal error has happened and further IPC logging
* is disabled so that this problem can be detected
*/
enum {
FATAL_LEV = 0U,
ERR_LEV = 1U,
WARN_LEV = 2U,
INFO_LEV = 3U,
DBG_LEV = 4U,
};
#define MSM_HS_DBG(x...) do { \
if (msm_uport->ipc_debug_mask >= DBG_LEV) { \
if (msm_uport->ipc_msm_hs_log_ctxt) \
ipc_log_string(msm_uport->ipc_msm_hs_log_ctxt, x); \
} \
} while (0)
#define MSM_HS_INFO(x...) do { \
if (msm_uport->ipc_debug_mask >= INFO_LEV) {\
if (msm_uport->ipc_msm_hs_log_ctxt) \
ipc_log_string(msm_uport->ipc_msm_hs_log_ctxt, x); \
} \
} while (0)
/* warnings and errors show up on console always */
#define MSM_HS_WARN(x...) do { \
pr_warn(x); \
if (msm_uport->ipc_msm_hs_log_ctxt && \
msm_uport->ipc_debug_mask >= WARN_LEV) \
ipc_log_string(msm_uport->ipc_msm_hs_log_ctxt, x); \
} while (0)
/* ERROR condition in the driver sets the hs_serial_debug_mask
* to ERR_FATAL level, so that this message can be seen
* in IPC logging. Further errors continue to log on the console
*/
#define MSM_HS_ERR(x...) do { \
pr_err(x); \
if (msm_uport->ipc_msm_hs_log_ctxt && \
msm_uport->ipc_debug_mask >= ERR_LEV) { \
ipc_log_string(msm_uport->ipc_msm_hs_log_ctxt, x); \
msm_uport->ipc_debug_mask = FATAL_LEV; \
} \
} while (0)
#define LOG_USR_MSG(ctx, x...) do { \
if (ctx) \
ipc_log_string(ctx, x); \
} while (0)
/*
* There are 3 different kind of UART Core available on MSM.
* High Speed UART (i.e. Legacy HSUART), GSBI based HSUART
* and BSLP based HSUART.
*/
enum uart_core_type {
LEGACY_HSUART,
GSBI_HSUART,
BLSP_HSUART,
};
enum flush_reason {
FLUSH_NONE,
FLUSH_DATA_READY,
FLUSH_DATA_INVALID, /* values after this indicate invalid data */
FLUSH_IGNORE,
FLUSH_STOP,
FLUSH_SHUTDOWN,
};
/*
* SPS data structures to support HSUART with BAM
* @sps_pipe - This struct defines BAM pipe descriptor
* @sps_connect - This struct defines a connection's end point
* @sps_register - This struct defines a event registration parameters
*/
struct msm_hs_sps_ep_conn_data {
struct sps_pipe *pipe_handle;
struct sps_connect config;
struct sps_register_event event;
};
struct msm_hs_tx {
bool dma_in_flight; /* tx dma in progress */
enum flush_reason flush;
wait_queue_head_t wait;
int tx_count;
dma_addr_t dma_base;
struct kthread_work kwork;
struct kthread_worker kworker;
struct task_struct *task;
struct msm_hs_sps_ep_conn_data cons;
struct timer_list tx_timeout_timer;
void *ipc_tx_ctxt;
};
struct msm_hs_rx {
enum flush_reason flush;
wait_queue_head_t wait;
dma_addr_t rbuffer;
unsigned char *buffer;
unsigned int buffer_pending;
struct delayed_work flip_insert_work;
struct kthread_work kwork;
struct kthread_worker kworker;
struct task_struct *task;
struct msm_hs_sps_ep_conn_data prod;
unsigned long queued_flag;
unsigned long pending_flag;
int rx_inx;
struct sps_iovec iovec[UART_DMA_DESC_NR]; /* track descriptors */
void *ipc_rx_ctxt;
};
enum buffer_states {
NONE_PENDING = 0x0,
FIFO_OVERRUN = 0x1,
PARITY_ERROR = 0x2,
CHARS_NORMAL = 0x4,
};
enum msm_hs_pm_state {
MSM_HS_PM_ACTIVE,
MSM_HS_PM_SUSPENDED,
MSM_HS_PM_SYS_SUSPENDED,
};
/* optional low power wakeup, typically on a GPIO RX irq */
struct msm_hs_wakeup {
int irq; /* < 0 indicates low power wakeup disabled */
unsigned char ignore; /* bool */
/* bool: inject char into rx tty on wakeup */
bool inject_rx;
unsigned char rx_to_inject;
bool enabled;
bool freed;
};
struct msm_hs_port {
struct uart_port uport;
unsigned long imr_reg; /* shadow value of UARTDM_IMR */
struct clk *clk;
struct clk *pclk;
struct msm_hs_tx tx;
struct msm_hs_rx rx;
atomic_t resource_count;
struct msm_hs_wakeup wakeup;
struct dentry *loopback_dir;
struct work_struct clock_off_w; /* work for actual clock off */
struct workqueue_struct *hsuart_wq; /* hsuart workqueue */
struct mutex mtx; /* resource access mutex */
enum uart_core_type uart_type;
unsigned long bam_handle;
resource_size_t bam_mem;
int bam_irq;
unsigned char __iomem *bam_base;
unsigned int bam_tx_ep_pipe_index;
unsigned int bam_rx_ep_pipe_index;
/* struct sps_event_notify is an argument passed when triggering a
* callback event object registered for an SPS connection end point.
*/
struct sps_event_notify notify;
/* bus client handler */
u32 bus_perf_client;
/* BLSP UART required BUS Scaling data */
struct msm_bus_scale_pdata *bus_scale_table;
bool rx_bam_inprogress;
wait_queue_head_t bam_disconnect_wait;
bool use_pinctrl;
struct pinctrl *pinctrl;
struct pinctrl_state *gpio_state_active;
struct pinctrl_state *gpio_state_suspend;
bool flow_control;
enum msm_hs_pm_state pm_state;
atomic_t client_count;
bool obs; /* out of band sleep flag */
atomic_t client_req_state;
void *ipc_msm_hs_log_ctxt;
void *ipc_msm_hs_pwr_ctxt;
int ipc_debug_mask;
};
static const struct of_device_id msm_hs_match_table[] = {
{ .compatible = "qcom,msm-hsuart-v14"},
{}
};
#define MSM_UARTDM_BURST_SIZE 16 /* DM burst size (in bytes) */
#define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE
#define UARTDM_RX_BUF_SIZE 512
#define RETRY_TIMEOUT 5
#define UARTDM_NR 256
#define BAM_PIPE_MIN 0
#define BAM_PIPE_MAX 11
#define BUS_SCALING 1
#define BUS_RESET 0
#define RX_FLUSH_COMPLETE_TIMEOUT 300 /* In jiffies */
#define BLSP_UART_CLK_FMAX 63160000
static struct dentry *debug_base;
static struct platform_driver msm_serial_hs_platform_driver;
static struct uart_driver msm_hs_driver;
static const struct uart_ops msm_hs_ops;
static void msm_hs_start_rx_locked(struct uart_port *uport);
static void msm_serial_hs_rx_work(struct kthread_work *work);
static void flip_insert_work(struct work_struct *work);
static void msm_hs_bus_voting(struct msm_hs_port *msm_uport, unsigned int vote);
static struct msm_hs_port *msm_hs_get_hs_port(int port_index);
static void msm_hs_queue_rx_desc(struct msm_hs_port *msm_uport);
static int disconnect_rx_endpoint(struct msm_hs_port *msm_uport);
static int msm_hs_pm_resume(struct device *dev);
#define UARTDM_TO_MSM(uart_port) \
container_of((uart_port), struct msm_hs_port, uport)
static int msm_hs_ioctl(struct uart_port *uport, unsigned int cmd,
unsigned long arg)
{
int ret = 0, state = 1;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (!msm_uport)
return -ENODEV;
switch (cmd) {
case MSM_ENABLE_UART_CLOCK: {
ret = msm_hs_request_clock_on(&msm_uport->uport);
break;
}
case MSM_DISABLE_UART_CLOCK: {
ret = msm_hs_request_clock_off(&msm_uport->uport);
break;
}
case MSM_GET_UART_CLOCK_STATUS: {
/* Return value 0 - UART CLOCK is OFF
* Return value 1 - UART CLOCK is ON
*/
if (msm_uport->pm_state != MSM_HS_PM_ACTIVE)
state = 0;
ret = state;
MSM_HS_INFO("%s():GET UART CLOCK STATUS: cmd=%d state=%d\n",
__func__, cmd, state);
break;
}
default: {
MSM_HS_INFO("%s():Unknown cmd specified: cmd=%d\n", __func__,
cmd);
ret = -ENOIOCTLCMD;
break;
}
}
return ret;
}
/*
* This function is called initially during probe and then
* through the runtime PM framework. The function directly calls
* resource APIs to enable them.
*/
static int msm_hs_clk_bus_vote(struct msm_hs_port *msm_uport)
{
int rc = 0;
msm_hs_bus_voting(msm_uport, BUS_SCALING);
/* Turn on core clk and iface clk */
if (msm_uport->pclk) {
rc = clk_prepare_enable(msm_uport->pclk);
if (rc) {
dev_err(msm_uport->uport.dev,
"%s: Could not turn on pclk [%d]\n",
__func__, rc);
goto busreset;
}
}
rc = clk_prepare_enable(msm_uport->clk);
if (rc) {
dev_err(msm_uport->uport.dev,
"%s: Could not turn on core clk [%d]\n",
__func__, rc);
goto core_unprepare;
}
MSM_HS_DBG("%s: Clock ON successful\n", __func__);
return rc;
core_unprepare:
clk_disable_unprepare(msm_uport->pclk);
busreset:
msm_hs_bus_voting(msm_uport, BUS_RESET);
return rc;
}
/*
* This function is called initially during probe and then
* through the runtime PM framework. The function directly calls
* resource apis to disable them.
*/
static void msm_hs_clk_bus_unvote(struct msm_hs_port *msm_uport)
{
clk_disable_unprepare(msm_uport->clk);
if (msm_uport->pclk)
clk_disable_unprepare(msm_uport->pclk);
msm_hs_bus_voting(msm_uport, BUS_RESET);
MSM_HS_DBG("%s: Clock OFF successful\n", __func__);
}
/* Remove vote for resources when done */
static void msm_hs_resource_unvote(struct msm_hs_port *msm_uport)
{
struct uart_port *uport = &(msm_uport->uport);
int rc = atomic_read(&msm_uport->resource_count);
MSM_HS_DBG("%s(): power usage count %d", __func__, rc);
if (rc <= 0) {
MSM_HS_WARN("%s(): rc zero, bailing\n", __func__);
WARN_ON(1);
return;
}
atomic_dec(&msm_uport->resource_count);
pm_runtime_mark_last_busy(uport->dev);
pm_runtime_put_autosuspend(uport->dev);
}
/* Vote for resources before accessing them */
static void msm_hs_resource_vote(struct msm_hs_port *msm_uport)
{
int ret;
struct uart_port *uport = &(msm_uport->uport);
ret = pm_runtime_get_sync(uport->dev);
if (ret < 0 || msm_uport->pm_state != MSM_HS_PM_ACTIVE) {
MSM_HS_WARN("%s:%s runtime callback not invoked ret:%d st:%d",
__func__, dev_name(uport->dev), ret,
msm_uport->pm_state);
msm_hs_pm_resume(uport->dev);
}
atomic_inc(&msm_uport->resource_count);
}
/* Check if the uport line number matches with user id stored in pdata.
* User id information is stored during initialization. This function
* ensues that the same device is selected
*/
static struct msm_hs_port *get_matching_hs_port(struct platform_device *pdev)
{
struct msm_serial_hs_platform_data *pdata = pdev->dev.platform_data;
struct msm_hs_port *msm_uport = msm_hs_get_hs_port(pdev->id);
if ((!msm_uport) || (msm_uport->uport.line != pdev->id
&& msm_uport->uport.line != pdata->userid)) {
pr_err("uport line number mismatch!");
WARN_ON(1);
return NULL;
}
return msm_uport;
}
static ssize_t show_clock(struct device *dev, struct device_attribute *attr,
char *buf)
{
int state = 1;
ssize_t ret = 0;
struct platform_device *pdev = container_of(dev, struct
platform_device, dev);
struct msm_hs_port *msm_uport = get_matching_hs_port(pdev);
/* This check should not fail */
if (msm_uport) {
if (msm_uport->pm_state != MSM_HS_PM_ACTIVE)
state = 0;
ret = snprintf(buf, PAGE_SIZE, "%d\n", state);
}
return ret;
}
static ssize_t set_clock(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int state;
ssize_t ret = 0;
struct platform_device *pdev = container_of(dev, struct
platform_device, dev);
struct msm_hs_port *msm_uport = get_matching_hs_port(pdev);
/* This check should not fail */
if (msm_uport) {
state = buf[0] - '0';
switch (state) {
case 0:
MSM_HS_DBG("%s: Request clock OFF\n", __func__);
msm_hs_request_clock_off(&msm_uport->uport);
ret = count;
break;
case 1:
MSM_HS_DBG("%s: Request clock ON\n", __func__);
msm_hs_request_clock_on(&msm_uport->uport);
ret = count;
break;
default:
ret = -EINVAL;
}
}
return ret;
}
static DEVICE_ATTR(clock, 0644, show_clock, set_clock);
static ssize_t show_debug_mask(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t ret = 0;
struct platform_device *pdev = container_of(dev, struct
platform_device, dev);
struct msm_hs_port *msm_uport = get_matching_hs_port(pdev);
/* This check should not fail */
if (msm_uport)
ret = snprintf(buf, sizeof(int), "%u\n",
msm_uport->ipc_debug_mask);
return ret;
}
static ssize_t set_debug_mask(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = container_of(dev, struct
platform_device, dev);
struct msm_hs_port *msm_uport = get_matching_hs_port(pdev);
/* This check should not fail */
if (msm_uport) {
msm_uport->ipc_debug_mask = buf[0] - '0';
if (msm_uport->ipc_debug_mask < FATAL_LEV ||
msm_uport->ipc_debug_mask > DBG_LEV) {
/* set to default level */
msm_uport->ipc_debug_mask = INFO_LEV;
MSM_HS_ERR("Range is 0 to 4;Set to default level 3\n");
return -EINVAL;
}
}
return count;
}
static DEVICE_ATTR(debug_mask, 0644, show_debug_mask,
set_debug_mask);
static inline bool is_use_low_power_wakeup(struct msm_hs_port *msm_uport)
{
return msm_uport->wakeup.irq > 0;
}
static void msm_hs_bus_voting(struct msm_hs_port *msm_uport, unsigned int vote)
{
int ret;
if (msm_uport->bus_perf_client) {
MSM_HS_DBG("Bus voting:%d\n", vote);
ret = msm_bus_scale_client_update_request(
msm_uport->bus_perf_client, vote);
if (ret)
MSM_HS_ERR("%s(): Failed for Bus voting: %d\n",
__func__, vote);
}
}
static inline unsigned int msm_hs_read(struct uart_port *uport,
unsigned int index)
{
return readl_relaxed(uport->membase + index);
}
static inline void msm_hs_write(struct uart_port *uport, unsigned int index,
unsigned int value)
{
writel_relaxed(value, uport->membase + index);
}
static int sps_rx_disconnect(struct sps_pipe *sps_pipe_handler)
{
struct sps_connect config;
int ret;
ret = sps_get_config(sps_pipe_handler, &config);
if (ret) {
pr_err("%s: sps_get_config() failed ret %d\n", __func__, ret);
return ret;
}
config.options |= SPS_O_POLL;
ret = sps_set_config(sps_pipe_handler, &config);
if (ret) {
pr_err("%s: sps_set_config() failed ret %d\n", __func__, ret);
return ret;
}
return sps_disconnect(sps_pipe_handler);
}
static void hex_dump_ipc(struct msm_hs_port *msm_uport, void *ipc_ctx,
char *prefix, char *string, u64 addr, int size)
{
char buf[(BUF_DUMP_SIZE * 3) + 2];
int len = 0;
len = min(size, BUF_DUMP_SIZE);
/*
* Print upto 32 data bytes, 32 bytes per line, 1 byte at a time and
* don't include the ASCII text at the end of the buffer.
*/
hex_dump_to_buffer(string, len, 32, 1, buf, sizeof(buf), false);
ipc_log_string(ipc_ctx, "%s[0x%.10x:%d] : %s", prefix,
(unsigned int)addr, size, buf);
}
/*
* This API read and provides UART Core registers information.
*/
static void dump_uart_hs_registers(struct msm_hs_port *msm_uport)
{
struct uart_port *uport = &(msm_uport->uport);
if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) {
MSM_HS_INFO("%s:Failed clocks are off, resource_count %d",
__func__, atomic_read(&msm_uport->resource_count));
return;
}
MSM_HS_DBG(
"MR1:%x MR2:%x TFWR:%x RFWR:%x DMEN:%x IMR:%x MISR:%x NCF_TX:%x\n",
msm_hs_read(uport, UART_DM_MR1),
msm_hs_read(uport, UART_DM_MR2),
msm_hs_read(uport, UART_DM_TFWR),
msm_hs_read(uport, UART_DM_RFWR),
msm_hs_read(uport, UART_DM_DMEN),
msm_hs_read(uport, UART_DM_IMR),
msm_hs_read(uport, UART_DM_MISR),
msm_hs_read(uport, UART_DM_NCF_TX));
MSM_HS_INFO("SR:%x ISR:%x DMRX:%x RX_SNAP:%x TXFS:%x RXFS:%x\n",
msm_hs_read(uport, UART_DM_SR),
msm_hs_read(uport, UART_DM_ISR),
msm_hs_read(uport, UART_DM_DMRX),
msm_hs_read(uport, UART_DM_RX_TOTAL_SNAP),
msm_hs_read(uport, UART_DM_TXFS),
msm_hs_read(uport, UART_DM_RXFS));
MSM_HS_DBG("rx.flush:%u\n", msm_uport->rx.flush);
}
static int msm_serial_loopback_enable_set(void *data, u64 val)
{
struct msm_hs_port *msm_uport = data;
struct uart_port *uport = &(msm_uport->uport);
unsigned long flags;
int ret = 0;
msm_hs_resource_vote(msm_uport);
if (val) {
spin_lock_irqsave(&uport->lock, flags);
ret = msm_hs_read(uport, UART_DM_MR2);
ret |= (UARTDM_MR2_LOOP_MODE_BMSK |
UARTDM_MR2_RFR_CTS_LOOP_MODE_BMSK);
msm_hs_write(uport, UART_DM_MR2, ret);
spin_unlock_irqrestore(&uport->lock, flags);
} else {
spin_lock_irqsave(&uport->lock, flags);
ret = msm_hs_read(uport, UART_DM_MR2);
ret &= ~(UARTDM_MR2_LOOP_MODE_BMSK |
UARTDM_MR2_RFR_CTS_LOOP_MODE_BMSK);
msm_hs_write(uport, UART_DM_MR2, ret);
spin_unlock_irqrestore(&uport->lock, flags);
}
/* Calling CLOCK API. Hence mb() requires here. */
mb();
msm_hs_resource_unvote(msm_uport);
return 0;
}
static int msm_serial_loopback_enable_get(void *data, u64 *val)
{
struct msm_hs_port *msm_uport = data;
struct uart_port *uport = &(msm_uport->uport);
unsigned long flags;
int ret = 0;
msm_hs_resource_vote(msm_uport);
spin_lock_irqsave(&uport->lock, flags);
ret = msm_hs_read(&msm_uport->uport, UART_DM_MR2);
spin_unlock_irqrestore(&uport->lock, flags);
msm_hs_resource_unvote(msm_uport);
*val = (ret & UARTDM_MR2_LOOP_MODE_BMSK) ? 1 : 0;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(loopback_enable_fops, msm_serial_loopback_enable_get,
msm_serial_loopback_enable_set, "%llu\n");
/*
* msm_serial_hs debugfs node: <debugfs_root>/msm_serial_hs/loopback.<id>
* writing 1 turns on internal loopback mode in HW. Useful for automation
* test scripts.
* writing 0 disables the internal loopback mode. Default is disabled.
*/
static void msm_serial_debugfs_init(struct msm_hs_port *msm_uport,
int id)
{
char node_name[15];
snprintf(node_name, sizeof(node_name), "loopback.%d", id);
msm_uport->loopback_dir = debugfs_create_file(node_name,
0644,
debug_base,
msm_uport,
&loopback_enable_fops);
if (IS_ERR_OR_NULL(msm_uport->loopback_dir))
MSM_HS_ERR("%s(): Cannot create loopback.%d debug entry",
__func__, id);
}
static int msm_hs_remove(struct platform_device *pdev)
{
struct msm_hs_port *msm_uport;
struct device *dev;
if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
pr_err("Invalid plaform device ID = %d\n", pdev->id);
return -EINVAL;
}
msm_uport = get_matching_hs_port(pdev);
if (!msm_uport)
return -EINVAL;
dev = msm_uport->uport.dev;
sysfs_remove_file(&pdev->dev.kobj, &dev_attr_clock.attr);
sysfs_remove_file(&pdev->dev.kobj, &dev_attr_debug_mask.attr);
debugfs_remove(msm_uport->loopback_dir);
dma_free_coherent(msm_uport->uport.dev,
UART_DMA_DESC_NR * UARTDM_RX_BUF_SIZE,
msm_uport->rx.buffer, msm_uport->rx.rbuffer);
msm_uport->rx.buffer = NULL;
msm_uport->rx.rbuffer = 0;
destroy_workqueue(msm_uport->hsuart_wq);
mutex_destroy(&msm_uport->mtx);
uart_remove_one_port(&msm_hs_driver, &msm_uport->uport);
clk_put(msm_uport->clk);
if (msm_uport->pclk)
clk_put(msm_uport->pclk);
iounmap(msm_uport->uport.membase);
return 0;
}
/* Connect a UART peripheral's SPS endpoint(consumer endpoint)
*
* Also registers a SPS callback function for the consumer
* process with the SPS driver
*
* @uport - Pointer to uart uport structure
*
* @return - 0 if successful else negative value.
*
*/
static int msm_hs_spsconnect_tx(struct msm_hs_port *msm_uport)
{
int ret;
struct uart_port *uport = &msm_uport->uport;
struct msm_hs_tx *tx = &msm_uport->tx;
struct sps_pipe *sps_pipe_handle = tx->cons.pipe_handle;
struct sps_connect *sps_config = &tx->cons.config;
struct sps_register_event *sps_event = &tx->cons.event;
unsigned long flags;
unsigned int data;
if (tx->flush != FLUSH_SHUTDOWN) {
MSM_HS_ERR("%s:Invalid flush state:%d\n", __func__, tx->flush);
return 0;
}
/* Establish connection between peripheral and memory endpoint */
ret = sps_connect(sps_pipe_handle, sps_config);
if (ret) {
MSM_HS_ERR("msm_serial_hs: sps_connect() failed for tx!!\n"
"pipe_handle=0x%p ret=%d", sps_pipe_handle, ret);
return ret;
}
/* Register callback event for EOT (End of transfer) event. */
ret = sps_register_event(sps_pipe_handle, sps_event);
if (ret) {
MSM_HS_ERR("msm_serial_hs: sps_connect() failed for tx!!\n"
"pipe_handle=0x%p ret=%d", sps_pipe_handle, ret);
goto reg_event_err;
}
spin_lock_irqsave(&(msm_uport->uport.lock), flags);
msm_uport->tx.flush = FLUSH_STOP;
spin_unlock_irqrestore(&(msm_uport->uport.lock), flags);
data = msm_hs_read(uport, UART_DM_DMEN);
/* Enable UARTDM Tx BAM Interface */
data |= UARTDM_TX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
msm_hs_write(uport, UART_DM_CR, RESET_TX);
msm_hs_write(uport, UART_DM_CR, START_TX_BAM_IFC);
msm_hs_write(uport, UART_DM_CR, UARTDM_CR_TX_EN_BMSK);
MSM_HS_DBG("%s(): TX Connect", __func__);
return 0;
reg_event_err:
sps_disconnect(sps_pipe_handle);
return ret;
}
/* Connect a UART peripheral's SPS endpoint(producer endpoint)
*
* Also registers a SPS callback function for the producer
* process with the SPS driver
*
* @uport - Pointer to uart uport structure
*
* @return - 0 if successful else negative value.
*
*/
static int msm_hs_spsconnect_rx(struct uart_port *uport)
{
int ret;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_rx *rx = &msm_uport->rx;
struct sps_pipe *sps_pipe_handle = rx->prod.pipe_handle;
struct sps_connect *sps_config = &rx->prod.config;
struct sps_register_event *sps_event = &rx->prod.event;
unsigned long flags;
/* Establish connection between peripheral and memory endpoint */
ret = sps_connect(sps_pipe_handle, sps_config);
if (ret) {
MSM_HS_ERR("msm_serial_hs: sps_connect() failed for rx!!\n"
"pipe_handle=0x%p ret=%d", sps_pipe_handle, ret);
return ret;
}
/* Register callback event for DESC_DONE event. */
ret = sps_register_event(sps_pipe_handle, sps_event);
if (ret) {
MSM_HS_ERR("msm_serial_hs: sps_connect() failed for rx!!\n"
"pipe_handle=0x%p ret=%d", sps_pipe_handle, ret);
goto reg_event_err;
}
spin_lock_irqsave(&uport->lock, flags);
if (msm_uport->rx.pending_flag)
MSM_HS_WARN("%s(): Buffers may be pending 0x%lx",
__func__, msm_uport->rx.pending_flag);
msm_uport->rx.queued_flag = 0;
msm_uport->rx.pending_flag = 0;
msm_uport->rx.rx_inx = 0;
msm_uport->rx.flush = FLUSH_STOP;
spin_unlock_irqrestore(&uport->lock, flags);
MSM_HS_DBG("%s(): RX Connect\n", __func__);
return 0;
reg_event_err:
sps_disconnect(sps_pipe_handle);
return ret;
}
/*
* programs the UARTDM_CSR register with correct bit rates
*
* Interrupts should be disabled before we are called, as
* we modify Set Baud rate
* Set receive stale interrupt level, dependent on Bit Rate
* Goal is to have around 8 ms before indicate stale.
* roundup (((Bit Rate * .008) / 10) + 1
*/
static void msm_hs_set_bps_locked(struct uart_port *uport,
unsigned int bps)
{
unsigned long rxstale;
unsigned long data;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
switch (bps) {
case 300:
msm_hs_write(uport, UART_DM_CSR, 0x00);
rxstale = 1;
break;
case 600:
msm_hs_write(uport, UART_DM_CSR, 0x11);
rxstale = 1;
break;
case 1200:
msm_hs_write(uport, UART_DM_CSR, 0x22);
rxstale = 1;
break;
case 2400:
msm_hs_write(uport, UART_DM_CSR, 0x33);
rxstale = 1;
break;
case 4800:
msm_hs_write(uport, UART_DM_CSR, 0x44);
rxstale = 1;
break;
case 9600:
msm_hs_write(uport, UART_DM_CSR, 0x55);
rxstale = 2;
break;
case 14400:
msm_hs_write(uport, UART_DM_CSR, 0x66);
rxstale = 3;
break;
case 19200:
msm_hs_write(uport, UART_DM_CSR, 0x77);
rxstale = 4;
break;
case 28800:
msm_hs_write(uport, UART_DM_CSR, 0x88);
rxstale = 6;
break;
case 38400:
msm_hs_write(uport, UART_DM_CSR, 0x99);
rxstale = 8;
break;
case 57600:
msm_hs_write(uport, UART_DM_CSR, 0xaa);
rxstale = 16;
break;
case 76800:
msm_hs_write(uport, UART_DM_CSR, 0xbb);
rxstale = 16;
break;
case 115200:
msm_hs_write(uport, UART_DM_CSR, 0xcc);
rxstale = 31;
break;
case 230400:
msm_hs_write(uport, UART_DM_CSR, 0xee);
rxstale = 31;
break;
case 460800:
msm_hs_write(uport, UART_DM_CSR, 0xff);
rxstale = 31;
break;
case 4000000:
case 3686400:
case 3200000:
case 3500000:
case 3000000:
case 2500000:
case 2000000:
case 1500000:
case 1152000:
case 1000000:
case 921600:
msm_hs_write(uport, UART_DM_CSR, 0xff);
rxstale = 31;
break;
default:
msm_hs_write(uport, UART_DM_CSR, 0xff);
/* default to 9600 */
bps = 9600;
rxstale = 2;
break;
}
/*
* uart baud rate depends on CSR and MND Values
* we are updating CSR before and then calling
* clk_set_rate which updates MND Values. Hence
* dsb requires here.
*/
mb();
if (bps > 460800) {
uport->uartclk = bps * 16;
/* BLSP based UART supports maximum clock frequency
* of 63.16 Mhz. With this (63.16 Mhz) clock frequency
* UART can support baud rate of 3.94 Mbps which is
* equivalent to 4 Mbps.
* UART hardware is robust enough to handle this
* deviation to achieve baud rate ~4 Mbps.
*/
if (bps == 4000000)
uport->uartclk = BLSP_UART_CLK_FMAX;
} else {
uport->uartclk = 7372800;
}
if (clk_set_rate(msm_uport->clk, uport->uartclk)) {
MSM_HS_WARN("Error setting clock rate on UART\n");
WARN_ON(1);
}
data = rxstale & UARTDM_IPR_STALE_LSB_BMSK;
data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
msm_hs_write(uport, UART_DM_IPR, data);
/*
* It is suggested to do reset of transmitter and receiver after
* changing any protocol configuration. Here Baud rate and stale
* timeout are getting updated. Hence reset transmitter and receiver.
*/
msm_hs_write(uport, UART_DM_CR, RESET_TX);
msm_hs_write(uport, UART_DM_CR, RESET_RX);
}
static void msm_hs_set_std_bps_locked(struct uart_port *uport,
unsigned int bps)
{
unsigned long rxstale;
unsigned long data;
switch (bps) {
case 9600:
msm_hs_write(uport, UART_DM_CSR, 0x99);
rxstale = 2;
break;
case 14400:
msm_hs_write(uport, UART_DM_CSR, 0xaa);
rxstale = 3;
break;
case 19200:
msm_hs_write(uport, UART_DM_CSR, 0xbb);
rxstale = 4;
break;
case 28800:
msm_hs_write(uport, UART_DM_CSR, 0xcc);
rxstale = 6;
break;
case 38400:
msm_hs_write(uport, UART_DM_CSR, 0xdd);
rxstale = 8;
break;
case 57600:
msm_hs_write(uport, UART_DM_CSR, 0xee);
rxstale = 16;
break;
case 115200:
msm_hs_write(uport, UART_DM_CSR, 0xff);
rxstale = 31;
break;
default:
msm_hs_write(uport, UART_DM_CSR, 0x99);
/* default to 9600 */
bps = 9600;
rxstale = 2;
break;
}
data = rxstale & UARTDM_IPR_STALE_LSB_BMSK;
data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
msm_hs_write(uport, UART_DM_IPR, data);
}
static void msm_hs_enable_flow_control(struct uart_port *uport, bool override)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
unsigned int data;
if (msm_uport->flow_control || override) {
/* Enable RFR line */
msm_hs_write(uport, UART_DM_CR, RFR_LOW);
/* Enable auto RFR */
data = msm_hs_read(uport, UART_DM_MR1);
data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hs_write(uport, UART_DM_MR1, data);
/* Ensure register IO completion */
mb();
}
}
static void msm_hs_disable_flow_control(struct uart_port *uport, bool override)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
unsigned int data;
/*
* Clear the Rx Ready Ctl bit - This ensures that
* flow control lines stop the other side from sending
* data while we change the parameters
*/
if (msm_uport->flow_control || override) {
data = msm_hs_read(uport, UART_DM_MR1);
/* disable auto ready-for-receiving */
data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hs_write(uport, UART_DM_MR1, data);
/* Disable RFR line */
msm_hs_write(uport, UART_DM_CR, RFR_HIGH);
/* Ensure register IO completion */
mb();
}
}
/*
* termios : new ktermios
* oldtermios: old ktermios previous setting
*
* Configure the serial port
*/
static void msm_hs_set_termios(struct uart_port *uport,
struct ktermios *termios,
struct ktermios *oldtermios)
{
unsigned int bps;
unsigned long data;
unsigned int c_cflag = termios->c_cflag;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
/**
* set_termios can be invoked from the framework when
* the clocks are off and the client has not had a chance
* to turn them on. Make sure that they are on
*/
msm_hs_resource_vote(msm_uport);
mutex_lock(&msm_uport->mtx);
msm_hs_write(uport, UART_DM_IMR, 0);
msm_hs_disable_flow_control(uport, true);
/*
* Disable Rx channel of UARTDM
* DMA Rx Stall happens if enqueue and flush of Rx command happens
* concurrently. Hence before changing the baud rate/protocol
* configuration and sending flush command to ADM, disable the Rx
* channel of UARTDM.
* Note: should not reset the receiver here immediately as it is not
* suggested to do disable/reset or reset/disable at the same time.
*/
data = msm_hs_read(uport, UART_DM_DMEN);
/* Disable UARTDM RX BAM Interface */
data &= ~UARTDM_RX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
/*
* Reset RX and TX.
* Resetting the RX enables it, therefore we must reset and disable.
*/
msm_hs_write(uport, UART_DM_CR, RESET_RX);
msm_hs_write(uport, UART_DM_CR, UARTDM_CR_RX_DISABLE_BMSK);
msm_hs_write(uport, UART_DM_CR, RESET_TX);
/* 300 is the minimum baud support by the driver */
bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000);
/* Temporary remapping 200 BAUD to 3.2 mbps */
if (bps == 200)
bps = 3200000;
uport->uartclk = clk_get_rate(msm_uport->clk);
if (!uport->uartclk)
msm_hs_set_std_bps_locked(uport, bps);
else
msm_hs_set_bps_locked(uport, bps);
data = msm_hs_read(uport, UART_DM_MR2);
data &= ~UARTDM_MR2_PARITY_MODE_BMSK;
/* set parity */
if (c_cflag & PARENB) {
if (c_cflag & PARODD)
data |= ODD_PARITY;
else if (c_cflag & CMSPAR)
data |= SPACE_PARITY;
else
data |= EVEN_PARITY;
}
/* Set bits per char */
data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK;
switch (c_cflag & CSIZE) {
case CS5:
data |= FIVE_BPC;
break;
case CS6:
data |= SIX_BPC;
break;
case CS7:
data |= SEVEN_BPC;
break;
default:
data |= EIGHT_BPC;
break;
}
/* stop bits */
if (c_cflag & CSTOPB) {
data |= STOP_BIT_TWO;
} else {
/* otherwise 1 stop bit */
data |= STOP_BIT_ONE;
}
data |= UARTDM_MR2_ERROR_MODE_BMSK;
/* write parity/bits per char/stop bit configuration */
msm_hs_write(uport, UART_DM_MR2, data);
uport->ignore_status_mask = termios->c_iflag & INPCK;
uport->ignore_status_mask |= termios->c_iflag & IGNPAR;
uport->ignore_status_mask |= termios->c_iflag & IGNBRK;
uport->read_status_mask = (termios->c_cflag & CREAD);
/* Set Transmit software time out */
uart_update_timeout(uport, c_cflag, bps);
/* Enable UARTDM Rx BAM Interface */
data = msm_hs_read(uport, UART_DM_DMEN);
data |= UARTDM_RX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
msm_hs_write(uport, UART_DM_CR, UARTDM_CR_RX_EN_BMSK);
/* Issue TX,RX BAM Start IFC command */
msm_hs_write(uport, UART_DM_CR, START_TX_BAM_IFC);
msm_hs_write(uport, UART_DM_CR, START_RX_BAM_IFC);
/* Ensure Register Writes Complete */
mb();
/* Configure HW flow control
* UART Core would see status of CTS line when it is sending data
* to remote uart to confirm that it can receive or not.
* UART Core would trigger RFR if it is not having any space with
* RX FIFO.
*/
/* Pulling RFR line high */
msm_hs_write(uport, UART_DM_CR, RFR_LOW);
data = msm_hs_read(uport, UART_DM_MR1);
data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK);
if (c_cflag & CRTSCTS) {
data |= UARTDM_MR1_CTS_CTL_BMSK;
data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_uport->flow_control = true;
}
msm_hs_write(uport, UART_DM_MR1, data);
MSM_HS_INFO("%s: Cflags 0x%x Baud %u\n", __func__, c_cflag, bps);
mutex_unlock(&msm_uport->mtx);
msm_hs_resource_unvote(msm_uport);
}
/*
* Standard API, Transmitter
* Any character in the transmit shift register is sent
*/
unsigned int msm_hs_tx_empty(struct uart_port *uport)
{
unsigned int data;
unsigned int isr;
unsigned int ret = 0;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
msm_hs_resource_vote(msm_uport);
data = msm_hs_read(uport, UART_DM_SR);
isr = msm_hs_read(uport, UART_DM_ISR);
msm_hs_resource_unvote(msm_uport);
MSM_HS_INFO("%s(): SR:0x%x ISR:0x%x ", __func__, data, isr);
if (data & UARTDM_SR_TXEMT_BMSK) {
ret = TIOCSER_TEMT;
} else
/*
* Add an extra sleep here because sometimes the framework's
* delay (based on baud rate) isn't good enough.
* Note that this won't happen during every port close, only
* on select occassions when the userspace does back to back
* write() and close().
*/
usleep_range(5000, 7000);
return ret;
}
EXPORT_SYMBOL(msm_hs_tx_empty);
/*
* Standard API, Stop transmitter.
* Any character in the transmit shift register is sent as
* well as the current data mover transfer .
*/
static void msm_hs_stop_tx_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_tx *tx = &msm_uport->tx;
tx->flush = FLUSH_STOP;
}
static int disconnect_rx_endpoint(struct msm_hs_port *msm_uport)
{
struct msm_hs_rx *rx = &msm_uport->rx;
struct sps_pipe *sps_pipe_handle = rx->prod.pipe_handle;
int ret = 0;
ret = sps_rx_disconnect(sps_pipe_handle);
if (msm_uport->rx.pending_flag)
MSM_HS_WARN("%s(): Buffers may be pending 0x%lx",
__func__, msm_uport->rx.pending_flag);
MSM_HS_DBG("%s(): clearing desc usage flag", __func__);
msm_uport->rx.queued_flag = 0;
msm_uport->rx.pending_flag = 0;
msm_uport->rx.rx_inx = 0;
if (ret)
MSM_HS_ERR("%s(): sps_disconnect failed\n", __func__);
msm_uport->rx.flush = FLUSH_SHUTDOWN;
MSM_HS_DBG("%s: Calling Completion\n", __func__);
wake_up(&msm_uport->bam_disconnect_wait);
MSM_HS_DBG("%s: Done Completion\n", __func__);
wake_up(&msm_uport->rx.wait);
return ret;
}
static int sps_tx_disconnect(struct msm_hs_port *msm_uport)
{
struct uart_port *uport = &msm_uport->uport;
struct msm_hs_tx *tx = &msm_uport->tx;
struct sps_pipe *tx_pipe = tx->cons.pipe_handle;
unsigned long flags;
int ret = 0;
if (msm_uport->tx.flush == FLUSH_SHUTDOWN) {
MSM_HS_DBG("%s(): pipe already disonnected", __func__);
return ret;
}
ret = sps_disconnect(tx_pipe);
if (ret) {
MSM_HS_ERR("%s(): sps_disconnect failed %d", __func__, ret);
return ret;
}
spin_lock_irqsave(&uport->lock, flags);
msm_uport->tx.flush = FLUSH_SHUTDOWN;
spin_unlock_irqrestore(&uport->lock, flags);
MSM_HS_DBG("%s(): TX Disconnect", __func__);
return ret;
}
static void msm_hs_disable_rx(struct uart_port *uport)
{
unsigned int data;
data = msm_hs_read(uport, UART_DM_DMEN);
data &= ~UARTDM_RX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
}
/*
* Standard API, Stop receiver as soon as possible.
*
* Function immediately terminates the operation of the
* channel receiver and any incoming characters are lost. None
* of the receiver status bits are affected by this command and
* characters that are already in the receive FIFO there.
*/
static void msm_hs_stop_rx_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (msm_uport->pm_state != MSM_HS_PM_ACTIVE)
MSM_HS_WARN("%s(): Clocks are off\n", __func__);
else
msm_hs_disable_rx(uport);
if (msm_uport->rx.flush == FLUSH_NONE)
msm_uport->rx.flush = FLUSH_STOP;
}
static void msm_hs_disconnect_rx(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
msm_hs_disable_rx(uport);
/* Disconnect the BAM RX pipe */
if (msm_uport->rx.flush == FLUSH_NONE)
msm_uport->rx.flush = FLUSH_STOP;
disconnect_rx_endpoint(msm_uport);
MSM_HS_DBG("%s(): rx->flush %d", __func__, msm_uport->rx.flush);
}
/* Tx timeout callback function */
void tx_timeout_handler(unsigned long arg)
{
struct msm_hs_port *msm_uport = (struct msm_hs_port *) arg;
struct uart_port *uport = &msm_uport->uport;
int isr;
if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) {
MSM_HS_WARN("%s(): clocks are off", __func__);
return;
}
isr = msm_hs_read(uport, UART_DM_ISR);
if (UARTDM_ISR_CURRENT_CTS_BMSK & isr)
MSM_HS_WARN("%s(): CTS Disabled, ISR 0x%x", __func__, isr);
dump_uart_hs_registers(msm_uport);
}
/* Transmit the next chunk of data */
static void msm_hs_submit_tx_locked(struct uart_port *uport)
{
int left;
int tx_count;
int aligned_tx_count;
dma_addr_t src_addr;
dma_addr_t aligned_src_addr;
u32 flags = SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_INT;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_tx *tx = &msm_uport->tx;
struct circ_buf *tx_buf = &msm_uport->uport.state->xmit;
struct sps_pipe *sps_pipe_handle;
int ret;
if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) {
tx->dma_in_flight = false;
msm_hs_stop_tx_locked(uport);
return;
}
tx_count = uart_circ_chars_pending(tx_buf);
if (tx_count > UARTDM_TX_BUF_SIZE)
tx_count = UARTDM_TX_BUF_SIZE;
left = UART_XMIT_SIZE - tx_buf->tail;
if (tx_count > left)
tx_count = left;
src_addr = tx->dma_base + tx_buf->tail;
/* Mask the src_addr to align on a cache
* and add those bytes to tx_count
*/
aligned_src_addr = src_addr & ~(dma_get_cache_alignment() - 1);
aligned_tx_count = tx_count + src_addr - aligned_src_addr;
dma_sync_single_for_device(uport->dev, aligned_src_addr,
aligned_tx_count, DMA_TO_DEVICE);
tx->tx_count = tx_count;
hex_dump_ipc(msm_uport, tx->ipc_tx_ctxt, "Tx",
&tx_buf->buf[tx_buf->tail], (u64)src_addr, tx_count);
sps_pipe_handle = tx->cons.pipe_handle;
/* Set 1 second timeout */
mod_timer(&tx->tx_timeout_timer,
jiffies + msecs_to_jiffies(MSEC_PER_SEC));
/* Queue transfer request to SPS */
ret = sps_transfer_one(sps_pipe_handle, src_addr, tx_count,
msm_uport, flags);
MSM_HS_DBG("%s:Enqueue Tx Cmd, ret %d\n", __func__, ret);
}
/* This function queues the rx descriptor for BAM transfer */
static void msm_hs_post_rx_desc(struct msm_hs_port *msm_uport, int inx)
{
u32 flags = SPS_IOVEC_FLAG_INT;
struct msm_hs_rx *rx = &msm_uport->rx;
int ret;
phys_addr_t rbuff_addr = rx->rbuffer + (UARTDM_RX_BUF_SIZE * inx);
u8 *virt_addr = rx->buffer + (UARTDM_RX_BUF_SIZE * inx);
MSM_HS_DBG("%s: %d:Queue desc %d, 0x%llx, base 0x%llx virtaddr %p",
__func__, msm_uport->uport.line, inx,
(u64)rbuff_addr, (u64)rx->rbuffer, virt_addr);
rx->iovec[inx].size = 0;
ret = sps_transfer_one(rx->prod.pipe_handle, rbuff_addr,
UARTDM_RX_BUF_SIZE, msm_uport, flags);
if (ret)
MSM_HS_ERR("Error processing descriptor %d", ret);
}
/* Update the rx descriptor index to specify the next one to be processed */
static void msm_hs_mark_next(struct msm_hs_port *msm_uport, int inx)
{
struct msm_hs_rx *rx = &msm_uport->rx;
int prev;
inx %= UART_DMA_DESC_NR;
MSM_HS_DBG("%s(): inx %d, pending 0x%lx", __func__, inx,
rx->pending_flag);
if (!inx)
prev = UART_DMA_DESC_NR - 1;
else
prev = inx - 1;
if (!test_bit(prev, &rx->pending_flag))
msm_uport->rx.rx_inx = inx;
MSM_HS_DBG("%s(): prev %d pending flag 0x%lx, next %d", __func__,
prev, rx->pending_flag, msm_uport->rx.rx_inx);
}
/*
* Queue the rx descriptor that has just been processed or
* all of them if queueing for the first time
*/
static void msm_hs_queue_rx_desc(struct msm_hs_port *msm_uport)
{
struct msm_hs_rx *rx = &msm_uport->rx;
int i, flag = 0;
/* At first, queue all, if not, queue only one */
if (rx->queued_flag || rx->pending_flag) {
if (!test_bit(rx->rx_inx, &rx->queued_flag) &&
!test_bit(rx->rx_inx, &rx->pending_flag)) {
msm_hs_post_rx_desc(msm_uport, rx->rx_inx);
set_bit(rx->rx_inx, &rx->queued_flag);
MSM_HS_DBG("%s(): Set Queued Bit %d",
__func__, rx->rx_inx);
} else
MSM_HS_ERR("%s(): rx_inx pending or queued", __func__);
return;
}
for (i = 0; i < UART_DMA_DESC_NR; i++) {
if (!test_bit(i, &rx->queued_flag) &&
!test_bit(i, &rx->pending_flag)) {
MSM_HS_DBG("%s(): Calling post rx %d", __func__, i);
msm_hs_post_rx_desc(msm_uport, i);
set_bit(i, &rx->queued_flag);
flag = 1;
}
}
if (!flag)
MSM_HS_ERR("%s(): error queueing descriptor", __func__);
}
/* Start to receive the next chunk of data */
static void msm_hs_start_rx_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_rx *rx = &msm_uport->rx;
unsigned int buffer_pending = msm_uport->rx.buffer_pending;
unsigned int data;
if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) {
MSM_HS_WARN("%s(): Clocks are off\n", __func__);
return;
}
if (rx->pending_flag) {
MSM_HS_INFO("%s: Rx Cmd got executed, wait for rx_tlet\n",
__func__);
rx->flush = FLUSH_IGNORE;
return;
}
if (buffer_pending)
MSM_HS_ERR("Error: rx started in buffer state =%x",
buffer_pending);
msm_hs_write(uport, UART_DM_CR, RESET_STALE_INT);
msm_hs_write(uport, UART_DM_DMRX, UARTDM_RX_BUF_SIZE);
msm_hs_write(uport, UART_DM_CR, STALE_EVENT_ENABLE);
/*
* Enable UARTDM Rx Interface as previously it has been
* disable in set_termios before configuring baud rate.
*/
data = msm_hs_read(uport, UART_DM_DMEN);
/* Enable UARTDM Rx BAM Interface */
data |= UARTDM_RX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg);
/* Calling next DMOV API. Hence mb() here. */
mb();
/*
* RX-transfer will be automatically re-activated
* after last data of previous transfer was read.
*/
data = (RX_STALE_AUTO_RE_EN | RX_TRANS_AUTO_RE_ACTIVATE |
RX_DMRX_CYCLIC_EN);
msm_hs_write(uport, UART_DM_RX_TRANS_CTRL, data);
/* Issue RX BAM Start IFC command */
msm_hs_write(uport, UART_DM_CR, START_RX_BAM_IFC);
/* Ensure register IO completion */
mb();
msm_uport->rx.flush = FLUSH_NONE;
msm_uport->rx_bam_inprogress = true;
msm_hs_queue_rx_desc(msm_uport);
msm_uport->rx_bam_inprogress = false;
wake_up(&msm_uport->rx.wait);
MSM_HS_DBG("%s:Enqueue Rx Cmd\n", __func__);
}
static void flip_insert_work(struct work_struct *work)
{
unsigned long flags;
int retval;
struct msm_hs_port *msm_uport =
container_of(work, struct msm_hs_port,
rx.flip_insert_work.work);
struct tty_struct *tty = msm_uport->uport.state->port.tty;
spin_lock_irqsave(&msm_uport->uport.lock, flags);
if (!tty || msm_uport->rx.flush == FLUSH_SHUTDOWN) {
dev_err(msm_uport->uport.dev,
"%s:Invalid driver state flush %d\n",
__func__, msm_uport->rx.flush);
MSM_HS_ERR("%s:Invalid driver state flush %d\n",
__func__, msm_uport->rx.flush);
spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
return;
}
if (msm_uport->rx.buffer_pending == NONE_PENDING) {
MSM_HS_ERR("Error: No buffer pending in %s", __func__);
spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
return;
}
if (msm_uport->rx.buffer_pending & FIFO_OVERRUN) {
retval = tty_insert_flip_char(tty->port, 0, TTY_OVERRUN);
if (retval)
msm_uport->rx.buffer_pending &= ~FIFO_OVERRUN;
}
if (msm_uport->rx.buffer_pending & PARITY_ERROR) {
retval = tty_insert_flip_char(tty->port, 0, TTY_PARITY);
if (retval)
msm_uport->rx.buffer_pending &= ~PARITY_ERROR;
}
if (msm_uport->rx.buffer_pending & CHARS_NORMAL) {
int rx_count, rx_offset;
rx_count = (msm_uport->rx.buffer_pending & 0xFFFF0000) >> 16;
rx_offset = (msm_uport->rx.buffer_pending & 0xFFD0) >> 5;
retval = tty_insert_flip_string(tty->port,
msm_uport->rx.buffer +
(msm_uport->rx.rx_inx * UARTDM_RX_BUF_SIZE)
+ rx_offset, rx_count);
msm_uport->rx.buffer_pending &= (FIFO_OVERRUN |
PARITY_ERROR);
if (retval != rx_count)
msm_uport->rx.buffer_pending |= CHARS_NORMAL |
retval << 8 | (rx_count - retval) << 16;
}
if (msm_uport->rx.buffer_pending) {
schedule_delayed_work(&msm_uport->rx.flip_insert_work,
msecs_to_jiffies(RETRY_TIMEOUT));
} else if (msm_uport->rx.flush <= FLUSH_IGNORE) {
MSM_HS_WARN("Pending buffers cleared, restarting");
clear_bit(msm_uport->rx.rx_inx,
&msm_uport->rx.pending_flag);
msm_hs_start_rx_locked(&msm_uport->uport);
msm_hs_mark_next(msm_uport, msm_uport->rx.rx_inx+1);
}
spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
tty_flip_buffer_push(tty->port);
}
static void msm_serial_hs_rx_work(struct kthread_work *work)
{
int retval;
int rx_count = 0;
unsigned long status;
unsigned long flags;
unsigned int error_f = 0;
struct uart_port *uport;
struct msm_hs_port *msm_uport;
unsigned int flush = FLUSH_DATA_INVALID;
struct tty_struct *tty;
struct sps_event_notify *notify;
struct msm_hs_rx *rx;
struct sps_pipe *sps_pipe_handle;
struct platform_device *pdev;
const struct msm_serial_hs_platform_data *pdata;
msm_uport = container_of((struct kthread_work *) work,
struct msm_hs_port, rx.kwork);
msm_hs_resource_vote(msm_uport);
uport = &msm_uport->uport;
tty = uport->state->port.tty;
notify = &msm_uport->notify;
rx = &msm_uport->rx;
pdev = to_platform_device(uport->dev);
pdata = pdev->dev.platform_data;
spin_lock_irqsave(&uport->lock, flags);
if (!tty || rx->flush == FLUSH_SHUTDOWN) {
dev_err(uport->dev, "%s:Invalid driver state flush %d\n",
__func__, rx->flush);
MSM_HS_ERR("%s:Invalid driver state flush %d\n",
__func__, rx->flush);
spin_unlock_irqrestore(&uport->lock, flags);
msm_hs_resource_unvote(msm_uport);
return;
}
/*
* Process all pending descs or if nothing is
* queued - called from termios
*/
while (!rx->buffer_pending &&
(rx->pending_flag || !rx->queued_flag)) {
MSM_HS_DBG("%s(): Loop P 0x%lx Q 0x%lx", __func__,
rx->pending_flag, rx->queued_flag);
status = msm_hs_read(uport, UART_DM_SR);
MSM_HS_DBG("In %s\n", __func__);
/* overflow is not connect to data in a FIFO */
if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) &&
(uport->read_status_mask & CREAD))) {
retval = tty_insert_flip_char(tty->port,
0, TTY_OVERRUN);
MSM_HS_WARN("%s(): RX Buffer Overrun Detected\n",
__func__);
if (!retval)
msm_uport->rx.buffer_pending |= TTY_OVERRUN;
uport->icount.buf_overrun++;
error_f = 1;
}
if (!(uport->ignore_status_mask & INPCK))
status = status & ~(UARTDM_SR_PAR_FRAME_BMSK);
if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) {
/* Can not tell diff between parity & frame error */
MSM_HS_WARN("msm_serial_hs: parity error\n");
uport->icount.parity++;
error_f = 1;
if (!(uport->ignore_status_mask & IGNPAR)) {
retval = tty_insert_flip_char(tty->port,
0, TTY_PARITY);
if (!retval)
msm_uport->rx.buffer_pending
|= TTY_PARITY;
}
}
if (unlikely(status & UARTDM_SR_RX_BREAK_BMSK)) {
MSM_HS_DBG("msm_serial_hs: Rx break\n");
uport->icount.brk++;
error_f = 1;
if (!(uport->ignore_status_mask & IGNBRK)) {
retval = tty_insert_flip_char(tty->port,
0, TTY_BREAK);
if (!retval)
msm_uport->rx.buffer_pending
|= TTY_BREAK;
}
}
if (error_f)
msm_hs_write(uport, UART_DM_CR, RESET_ERROR_STATUS);
flush = msm_uport->rx.flush;
if (flush == FLUSH_IGNORE)
if (!msm_uport->rx.buffer_pending) {
MSM_HS_DBG("%s: calling start_rx_locked\n",
__func__);
msm_hs_start_rx_locked(uport);
}
if (flush >= FLUSH_DATA_INVALID)
goto out;
rx_count = msm_uport->rx.iovec[msm_uport->rx.rx_inx].size;
hex_dump_ipc(msm_uport, rx->ipc_rx_ctxt, "Rx",
(msm_uport->rx.buffer +
(msm_uport->rx.rx_inx * UARTDM_RX_BUF_SIZE)),
msm_uport->rx.iovec[msm_uport->rx.rx_inx].addr,
rx_count);
/*
* We are in a spin locked context, spin lock taken at
* other places where these flags are updated
*/
if (0 != (uport->read_status_mask & CREAD)) {
if (!test_bit(msm_uport->rx.rx_inx,
&msm_uport->rx.pending_flag) &&
!test_bit(msm_uport->rx.rx_inx,
&msm_uport->rx.queued_flag))
MSM_HS_ERR("%s: RX INX not set", __func__);
else if (test_bit(msm_uport->rx.rx_inx,
&msm_uport->rx.pending_flag) &&
!test_bit(msm_uport->rx.rx_inx,
&msm_uport->rx.queued_flag)) {
MSM_HS_DBG("%s(): Clear Pending Bit %d",
__func__, msm_uport->rx.rx_inx);
retval = tty_insert_flip_string(tty->port,
msm_uport->rx.buffer +
(msm_uport->rx.rx_inx *
UARTDM_RX_BUF_SIZE),
rx_count);
if (retval != rx_count) {
MSM_HS_INFO("%s(): ret %d rx_count %d",
__func__, retval, rx_count);
msm_uport->rx.buffer_pending |=
CHARS_NORMAL | retval << 5 |
(rx_count - retval) << 16;
}
} else
MSM_HS_ERR("%s: Error in inx %d", __func__,
msm_uport->rx.rx_inx);
}
if (!msm_uport->rx.buffer_pending) {
msm_uport->rx.flush = FLUSH_NONE;
msm_uport->rx_bam_inprogress = true;
sps_pipe_handle = rx->prod.pipe_handle;
MSM_HS_DBG("Queing bam descriptor\n");
/* Queue transfer request to SPS */
clear_bit(msm_uport->rx.rx_inx,
&msm_uport->rx.pending_flag);
msm_hs_queue_rx_desc(msm_uport);
msm_hs_mark_next(msm_uport, msm_uport->rx.rx_inx+1);
msm_hs_write(uport, UART_DM_CR, START_RX_BAM_IFC);
msm_uport->rx_bam_inprogress = false;
wake_up(&msm_uport->rx.wait);
} else
break;
}
out:
if (msm_uport->rx.buffer_pending) {
MSM_HS_WARN("%s: tty buffer exhausted. Stalling\n", __func__);
schedule_delayed_work(&msm_uport->rx.flip_insert_work
, msecs_to_jiffies(RETRY_TIMEOUT));
}
/* tty_flip_buffer_push() might call msm_hs_start(), so unlock */
spin_unlock_irqrestore(&uport->lock, flags);
if (flush < FLUSH_DATA_INVALID)
tty_flip_buffer_push(tty->port);
msm_hs_resource_unvote(msm_uport);
}
static void msm_hs_start_tx_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_tx *tx = &msm_uport->tx;
/* Bail if transfer in progress */
if (tx->flush < FLUSH_STOP || tx->dma_in_flight) {
MSM_HS_INFO("%s(): retry, flush %d, dma_in_flight %d\n",
__func__, tx->flush, tx->dma_in_flight);
return;
}
if (!tx->dma_in_flight) {
tx->dma_in_flight = true;
kthread_queue_work(&msm_uport->tx.kworker,
&msm_uport->tx.kwork);
}
}
/**
* Callback notification from SPS driver
*
* This callback function gets triggered called from
* SPS driver when requested SPS data transfer is
* completed.
*
*/
static void msm_hs_sps_tx_callback(struct sps_event_notify *notify)
{
struct msm_hs_port *msm_uport =
(struct msm_hs_port *)
((struct sps_event_notify *)notify)->user;
phys_addr_t addr = DESC_FULL_ADDR(notify->data.transfer.iovec.flags,
notify->data.transfer.iovec.addr);
msm_uport->notify = *notify;
MSM_HS_INFO("tx_cb: addr=0x%pa, size=0x%x, flags=0x%x\n",
&addr, notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags);
del_timer(&msm_uport->tx.tx_timeout_timer);
MSM_HS_DBG("%s(): Queue kthread work", __func__);
kthread_queue_work(&msm_uport->tx.kworker, &msm_uport->tx.kwork);
}
static void msm_serial_hs_tx_work(struct kthread_work *work)
{
unsigned long flags;
struct msm_hs_port *msm_uport =
container_of((struct kthread_work *)work,
struct msm_hs_port, tx.kwork);
struct uart_port *uport = &msm_uport->uport;
struct circ_buf *tx_buf = &uport->state->xmit;
struct msm_hs_tx *tx = &msm_uport->tx;
/*
* Do the work buffer related work in BAM
* mode that is equivalent to legacy mode
*/
msm_hs_resource_vote(msm_uport);
if (tx->flush >= FLUSH_STOP) {
spin_lock_irqsave(&(msm_uport->uport.lock), flags);
tx->flush = FLUSH_NONE;
MSM_HS_DBG("%s(): calling submit_tx", __func__);
msm_hs_submit_tx_locked(uport);
spin_unlock_irqrestore(&(msm_uport->uport.lock), flags);
msm_hs_resource_unvote(msm_uport);
return;
}
spin_lock_irqsave(&(msm_uport->uport.lock), flags);
if (!uart_circ_empty(tx_buf))
tx_buf->tail = (tx_buf->tail +
tx->tx_count) & ~UART_XMIT_SIZE;
else
MSM_HS_DBG("%s:circ buffer is empty\n", __func__);
wake_up(&msm_uport->tx.wait);
uport->icount.tx += tx->tx_count;
/*
* Calling to send next chunk of data
* If the circ buffer is empty, we stop
* If the clock off was requested, the clock
* off sequence is kicked off
*/
MSM_HS_DBG("%s(): calling submit_tx", __func__);
msm_hs_submit_tx_locked(uport);
if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS)
uart_write_wakeup(uport);
spin_unlock_irqrestore(&(msm_uport->uport.lock), flags);
msm_hs_resource_unvote(msm_uport);
}
static void
msm_hs_mark_proc_rx_desc(struct msm_hs_port *msm_uport,
struct sps_event_notify *notify)
{
struct msm_hs_rx *rx = &msm_uport->rx;
phys_addr_t addr = DESC_FULL_ADDR(notify->data.transfer.iovec.flags,
notify->data.transfer.iovec.addr);
/* divide by UARTDM_RX_BUF_SIZE */
int inx = (addr - rx->rbuffer) >> 9;
set_bit(inx, &rx->pending_flag);
clear_bit(inx, &rx->queued_flag);
rx->iovec[inx] = notify->data.transfer.iovec;
MSM_HS_DBG("Clear Q, Set P Bit %d, Q 0x%lx P 0x%lx",
inx, rx->queued_flag, rx->pending_flag);
}
/**
* Callback notification from SPS driver
*
* This callback function gets triggered called from
* SPS driver when requested SPS data transfer is
* completed.
*
*/
static void msm_hs_sps_rx_callback(struct sps_event_notify *notify)
{
struct msm_hs_port *msm_uport =
(struct msm_hs_port *)
((struct sps_event_notify *)notify)->user;
struct uart_port *uport;
unsigned long flags;
struct msm_hs_rx *rx = &msm_uport->rx;
phys_addr_t addr = DESC_FULL_ADDR(notify->data.transfer.iovec.flags,
notify->data.transfer.iovec.addr);
/* divide by UARTDM_RX_BUF_SIZE */
int inx = (addr - rx->rbuffer) >> 9;
uport = &(msm_uport->uport);
msm_uport->notify = *notify;
MSM_HS_INFO("rx_cb: addr=0x%pa, size=0x%x, flags=0x%x\n",
&addr, notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags);
spin_lock_irqsave(&uport->lock, flags);
msm_hs_mark_proc_rx_desc(msm_uport, notify);
spin_unlock_irqrestore(&uport->lock, flags);
if (msm_uport->rx.flush == FLUSH_NONE) {
/* Test if others are queued */
if (msm_uport->rx.pending_flag & ~(1 << inx)) {
MSM_HS_DBG("%s(): inx 0x%x, 0x%lx not processed",
__func__, inx,
msm_uport->rx.pending_flag & ~(1<<inx));
}
kthread_queue_work(&msm_uport->rx.kworker,
&msm_uport->rx.kwork);
MSM_HS_DBG("%s(): Scheduled rx_tlet", __func__);
}
}
/*
* Standard API, Current states of modem control inputs
*
* Since CTS can be handled entirely by HARDWARE we always
* indicate clear to send and count on the TX FIFO to block when
* it fills up.
*
* - TIOCM_DCD
* - TIOCM_CTS
* - TIOCM_DSR
* - TIOCM_RI
* (Unsupported) DCD and DSR will return them high. RI will return low.
*/
static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport)
{
return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS;
}
/*
* Standard API, Set or clear RFR_signal
*
* Set RFR high, (Indicate we are not ready for data), we disable auto
* ready for receiving and then set RFR_N high. To set RFR to low we just turn
* back auto ready for receiving and it should lower RFR signal
* when hardware is ready
*/
void msm_hs_set_mctrl_locked(struct uart_port *uport,
unsigned int mctrl)
{
unsigned int set_rts;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) {
MSM_HS_WARN("%s(): Clocks are off\n", __func__);
return;
}
/* RTS is active low */
set_rts = TIOCM_RTS & mctrl ? 0 : 1;
MSM_HS_INFO("%s: set_rts %d\n", __func__, set_rts);
if (set_rts)
msm_hs_disable_flow_control(uport, false);
else
msm_hs_enable_flow_control(uport, false);
}
void msm_hs_set_mctrl(struct uart_port *uport,
unsigned int mctrl)
{
unsigned long flags;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
msm_hs_resource_vote(msm_uport);
spin_lock_irqsave(&uport->lock, flags);
msm_hs_set_mctrl_locked(uport, mctrl);
spin_unlock_irqrestore(&uport->lock, flags);
msm_hs_resource_unvote(msm_uport);
}
EXPORT_SYMBOL(msm_hs_set_mctrl);
/* Standard API, Enable modem status (CTS) interrupt */
static void msm_hs_enable_ms_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) {
MSM_HS_WARN("%s(): Clocks are off\n", __func__);
return;
}
/* Enable DELTA_CTS Interrupt */
msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK;
msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg);
/* Ensure register IO completion */
mb();
}
/*
* Standard API, Break Signal
*
* Control the transmission of a break signal. ctl eq 0 => break
* signal terminate ctl ne 0 => start break signal
*/
static void msm_hs_break_ctl(struct uart_port *uport, int ctl)
{
unsigned long flags;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
msm_hs_resource_vote(msm_uport);
spin_lock_irqsave(&uport->lock, flags);
msm_hs_write(uport, UART_DM_CR, ctl ? START_BREAK : STOP_BREAK);
/* Ensure register IO completion */
mb();
spin_unlock_irqrestore(&uport->lock, flags);
msm_hs_resource_unvote(msm_uport);
}
static void msm_hs_config_port(struct uart_port *uport, int cfg_flags)
{
if (cfg_flags & UART_CONFIG_TYPE)
uport->type = PORT_MSM;
}
/* Handle CTS changes (Called from interrupt handler) */
static void msm_hs_handle_delta_cts_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
msm_hs_resource_vote(msm_uport);
/* clear interrupt */
msm_hs_write(uport, UART_DM_CR, RESET_CTS);
/* Calling CLOCK API. Hence mb() requires here. */
mb();
uport->icount.cts++;
/* clear the IOCTL TIOCMIWAIT if called */
wake_up_interruptible(&uport->state->port.delta_msr_wait);
msm_hs_resource_unvote(msm_uport);
}
static irqreturn_t msm_hs_isr(int irq, void *dev)
{
unsigned long flags;
unsigned int isr_status;
struct msm_hs_port *msm_uport = (struct msm_hs_port *)dev;
struct uart_port *uport = &msm_uport->uport;
struct circ_buf *tx_buf = &uport->state->xmit;
struct msm_hs_tx *tx = &msm_uport->tx;
spin_lock_irqsave(&uport->lock, flags);
isr_status = msm_hs_read(uport, UART_DM_MISR);
MSM_HS_INFO("%s: DM_ISR: 0x%x\n", __func__, isr_status);
dump_uart_hs_registers(msm_uport);
/* Uart RX starting */
if (isr_status & UARTDM_ISR_RXLEV_BMSK) {
MSM_HS_DBG("%s:UARTDM_ISR_RXLEV_BMSK\n", __func__);
msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK;
msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg);
/* Complete device write for IMR. Hence mb() requires. */
mb();
}
/* Stale rx interrupt */
if (isr_status & UARTDM_ISR_RXSTALE_BMSK) {
msm_hs_write(uport, UART_DM_CR, STALE_EVENT_DISABLE);
msm_hs_write(uport, UART_DM_CR, RESET_STALE_INT);
/*
* Complete device write before calling DMOV API. Hence
* mb() requires here.
*/
mb();
MSM_HS_DBG("%s:Stal Interrupt\n", __func__);
}
/* tx ready interrupt */
if (isr_status & UARTDM_ISR_TX_READY_BMSK) {
MSM_HS_DBG("%s: ISR_TX_READY Interrupt\n", __func__);
/* Clear TX Ready */
msm_hs_write(uport, UART_DM_CR, CLEAR_TX_READY);
/*
* Complete both writes before starting new TX.
* Hence mb() requires here.
*/
mb();
/* Complete DMA TX transactions and submit new transactions */
/* Do not update tx_buf.tail if uart_flush_buffer already
* called in serial core
*/
if (!uart_circ_empty(tx_buf))
tx_buf->tail = (tx_buf->tail +
tx->tx_count) & ~UART_XMIT_SIZE;
tx->dma_in_flight = false;
uport->icount.tx += tx->tx_count;
if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS)
uart_write_wakeup(uport);
}
if (isr_status & UARTDM_ISR_TXLEV_BMSK) {
/* TX FIFO is empty */
msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK;
msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg);
MSM_HS_DBG("%s: TXLEV Interrupt\n", __func__);
/*
* Complete device write before starting clock_off request.
* Hence mb() requires here.
*/
mb();
queue_work(msm_uport->hsuart_wq, &msm_uport->clock_off_w);
}
/* Change in CTS interrupt */
if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK)
msm_hs_handle_delta_cts_locked(uport);
spin_unlock_irqrestore(&uport->lock, flags);
return IRQ_HANDLED;
}
/* The following two functions provide interfaces to get the underlying
* port structure (struct uart_port or struct msm_hs_port) given
* the port index. msm_hs_get_uart port is called by clients.
* The function msm_hs_get_hs_port is for internal use
*/
struct uart_port *msm_hs_get_uart_port(int port_index)
{
struct uart_state *state = msm_hs_driver.state + port_index;
/* The uart_driver structure stores the states in an array.
* Thus the corresponding offset from the drv->state returns
* the state for the uart_port that is requested
*/
if (port_index == state->uart_port->line)
return state->uart_port;
return NULL;
}
EXPORT_SYMBOL(msm_hs_get_uart_port);
static struct msm_hs_port *msm_hs_get_hs_port(int port_index)
{
struct uart_port *uport = msm_hs_get_uart_port(port_index);
if (uport)
return UARTDM_TO_MSM(uport);
return NULL;
}
void enable_wakeup_interrupt(struct msm_hs_port *msm_uport)
{
unsigned long flags;
struct uart_port *uport = &(msm_uport->uport);
if (!is_use_low_power_wakeup(msm_uport))
return;
if (msm_uport->wakeup.freed)
return;
if (!(msm_uport->wakeup.enabled)) {
spin_lock_irqsave(&uport->lock, flags);
msm_uport->wakeup.ignore = 1;
msm_uport->wakeup.enabled = true;
spin_unlock_irqrestore(&uport->lock, flags);
disable_irq(uport->irq);
enable_irq(msm_uport->wakeup.irq);
} else {
MSM_HS_WARN("%s:Wake up IRQ already enabled", __func__);
}
}
void disable_wakeup_interrupt(struct msm_hs_port *msm_uport)
{
unsigned long flags;
struct uart_port *uport = &(msm_uport->uport);
if (!is_use_low_power_wakeup(msm_uport))
return;
if (msm_uport->wakeup.freed)
return;
if (msm_uport->wakeup.enabled) {
disable_irq_nosync(msm_uport->wakeup.irq);
enable_irq(uport->irq);
spin_lock_irqsave(&uport->lock, flags);
msm_uport->wakeup.enabled = false;
spin_unlock_irqrestore(&uport->lock, flags);
} else {
MSM_HS_WARN("%s:Wake up IRQ already disabled", __func__);
}
}
void msm_hs_resource_off(struct msm_hs_port *msm_uport)
{
struct uart_port *uport = &(msm_uport->uport);
unsigned int data;
MSM_HS_DBG("%s(): begin", __func__);
msm_hs_disable_flow_control(uport, false);
if (msm_uport->rx.flush == FLUSH_NONE)
msm_hs_disconnect_rx(uport);
/* disable dlink */
if (msm_uport->tx.flush == FLUSH_NONE)
wait_event_timeout(msm_uport->tx.wait,
msm_uport->tx.flush == FLUSH_STOP, 500);
if (msm_uport->tx.flush != FLUSH_SHUTDOWN) {
data = msm_hs_read(uport, UART_DM_DMEN);
data &= ~UARTDM_TX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
sps_tx_disconnect(msm_uport);
}
if (!atomic_read(&msm_uport->client_req_state))
msm_hs_enable_flow_control(uport, false);
}
void msm_hs_resource_on(struct msm_hs_port *msm_uport)
{
struct uart_port *uport = &(msm_uport->uport);
unsigned int data;
unsigned long flags;
if (msm_uport->rx.flush == FLUSH_SHUTDOWN ||
msm_uport->rx.flush == FLUSH_STOP) {
msm_hs_write(uport, UART_DM_CR, RESET_RX);
data = msm_hs_read(uport, UART_DM_DMEN);
data |= UARTDM_RX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
}
msm_hs_spsconnect_tx(msm_uport);
if (msm_uport->rx.flush == FLUSH_SHUTDOWN) {
msm_hs_spsconnect_rx(uport);
spin_lock_irqsave(&uport->lock, flags);
msm_hs_start_rx_locked(uport);
spin_unlock_irqrestore(&uport->lock, flags);
}
}
/* Request to turn off uart clock once pending TX is flushed */
int msm_hs_request_clock_off(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
int ret = 0;
int client_count = 0;
mutex_lock(&msm_uport->mtx);
/*
* If we're in the middle of a system suspend, don't process these
* userspace/kernel API commands.
*/
if (msm_uport->pm_state == MSM_HS_PM_SYS_SUSPENDED) {
MSM_HS_WARN("%s:Can't process clk request during suspend",
__func__);
ret = -EIO;
}
mutex_unlock(&msm_uport->mtx);
if (ret)
goto exit_request_clock_off;
if (atomic_read(&msm_uport->client_count) <= 0) {
MSM_HS_WARN("%s(): ioctl count -ve, client check voting",
__func__);
ret = -EPERM;
goto exit_request_clock_off;
}
/* Set the flag to disable flow control and wakeup irq */
if (msm_uport->obs)
atomic_set(&msm_uport->client_req_state, 1);
msm_hs_resource_unvote(msm_uport);
atomic_dec(&msm_uport->client_count);
client_count = atomic_read(&msm_uport->client_count);
LOG_USR_MSG(msm_uport->ipc_msm_hs_pwr_ctxt,
"%s: Client_Count %d\n", __func__,
client_count);
exit_request_clock_off:
return ret;
}
EXPORT_SYMBOL(msm_hs_request_clock_off);
int msm_hs_request_clock_on(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
int client_count;
int ret = 0;
mutex_lock(&msm_uport->mtx);
/*
* If we're in the middle of a system suspend, don't process these
* userspace/kernel API commands.
*/
if (msm_uport->pm_state == MSM_HS_PM_SYS_SUSPENDED) {
MSM_HS_WARN("%s:Can't process clk request during suspend",
__func__);
ret = -EIO;
}
mutex_unlock(&msm_uport->mtx);
if (ret)
goto exit_request_clock_on;
msm_hs_resource_vote(UARTDM_TO_MSM(uport));
atomic_inc(&msm_uport->client_count);
client_count = atomic_read(&msm_uport->client_count);
LOG_USR_MSG(msm_uport->ipc_msm_hs_pwr_ctxt,
"%s: Client_Count %d\n", __func__,
client_count);
/* Clear the flag */
if (msm_uport->obs)
atomic_set(&msm_uport->client_req_state, 0);
exit_request_clock_on:
return ret;
}
EXPORT_SYMBOL(msm_hs_request_clock_on);
static irqreturn_t msm_hs_wakeup_isr(int irq, void *dev)
{
unsigned int wakeup = 0;
unsigned long flags;
struct msm_hs_port *msm_uport = (struct msm_hs_port *)dev;
struct uart_port *uport = &msm_uport->uport;
struct tty_struct *tty = NULL;
spin_lock_irqsave(&uport->lock, flags);
if (msm_uport->wakeup.ignore)
msm_uport->wakeup.ignore = 0;
else
wakeup = 1;
if (wakeup) {
/*
* Port was clocked off during rx, wake up and
* optionally inject char into tty rx
*/
if (msm_uport->wakeup.inject_rx) {
tty = uport->state->port.tty;
tty_insert_flip_char(tty->port,
msm_uport->wakeup.rx_to_inject,
TTY_NORMAL);
hex_dump_ipc(msm_uport, msm_uport->rx.ipc_rx_ctxt,
"Rx Inject",
&msm_uport->wakeup.rx_to_inject, 0, 1);
MSM_HS_INFO("Wakeup ISR.Ignore%d\n",
msm_uport->wakeup.ignore);
}
}
spin_unlock_irqrestore(&uport->lock, flags);
if (wakeup && msm_uport->wakeup.inject_rx)
tty_flip_buffer_push(tty->port);
return IRQ_HANDLED;
}
static const char *msm_hs_type(struct uart_port *port)
{
return "MSM HS UART";
}
/**
* msm_hs_unconfig_uart_gpios: Unconfigures UART GPIOs
* @uport: uart port
*/
static void msm_hs_unconfig_uart_gpios(struct uart_port *uport)
{
struct platform_device *pdev = to_platform_device(uport->dev);
const struct msm_serial_hs_platform_data *pdata =
pdev->dev.platform_data;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
int ret;
if (msm_uport->use_pinctrl) {
ret = pinctrl_select_state(msm_uport->pinctrl,
msm_uport->gpio_state_suspend);
if (ret)
MSM_HS_ERR("%s():Failed to pinctrl set_state",
__func__);
} else if (pdata) {
if (gpio_is_valid(pdata->uart_tx_gpio))
gpio_free(pdata->uart_tx_gpio);
if (gpio_is_valid(pdata->uart_rx_gpio))
gpio_free(pdata->uart_rx_gpio);
if (gpio_is_valid(pdata->uart_cts_gpio))
gpio_free(pdata->uart_cts_gpio);
if (gpio_is_valid(pdata->uart_rfr_gpio))
gpio_free(pdata->uart_rfr_gpio);
} else
MSM_HS_ERR("Error:Pdata is NULL.\n");
}
/**
* msm_hs_config_uart_gpios - Configures UART GPIOs
* @uport: uart port
*/
static int msm_hs_config_uart_gpios(struct uart_port *uport)
{
struct platform_device *pdev = to_platform_device(uport->dev);
const struct msm_serial_hs_platform_data *pdata =
pdev->dev.platform_data;
int ret = 0;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (!IS_ERR_OR_NULL(msm_uport->pinctrl)) {
MSM_HS_DBG("%s(): Using Pinctrl", __func__);
msm_uport->use_pinctrl = true;
ret = pinctrl_select_state(msm_uport->pinctrl,
msm_uport->gpio_state_active);
if (ret)
MSM_HS_ERR("%s(): Failed to pinctrl set_state",
__func__);
return ret;
} else if (pdata) {
/* Fall back to using gpio lib */
if (gpio_is_valid(pdata->uart_tx_gpio)) {
ret = gpio_request(pdata->uart_tx_gpio,
"UART_TX_GPIO");
if (unlikely(ret)) {
MSM_HS_ERR("gpio request failed for:%d\n",
pdata->uart_tx_gpio);
goto exit_uart_config;
}
}
if (gpio_is_valid(pdata->uart_rx_gpio)) {
ret = gpio_request(pdata->uart_rx_gpio,
"UART_RX_GPIO");
if (unlikely(ret)) {
MSM_HS_ERR("gpio request failed for:%d\n",
pdata->uart_rx_gpio);
goto uart_tx_unconfig;
}
}
if (gpio_is_valid(pdata->uart_cts_gpio)) {
ret = gpio_request(pdata->uart_cts_gpio,
"UART_CTS_GPIO");
if (unlikely(ret)) {
MSM_HS_ERR("gpio request failed for:%d\n",
pdata->uart_cts_gpio);
goto uart_rx_unconfig;
}
}
if (gpio_is_valid(pdata->uart_rfr_gpio)) {
ret = gpio_request(pdata->uart_rfr_gpio,
"UART_RFR_GPIO");
if (unlikely(ret)) {
MSM_HS_ERR("gpio request failed for:%d\n",
pdata->uart_rfr_gpio);
goto uart_cts_unconfig;
}
}
} else {
MSM_HS_ERR("Pdata is NULL.\n");
ret = -EINVAL;
}
return ret;
uart_cts_unconfig:
if (gpio_is_valid(pdata->uart_cts_gpio))
gpio_free(pdata->uart_cts_gpio);
uart_rx_unconfig:
if (gpio_is_valid(pdata->uart_rx_gpio))
gpio_free(pdata->uart_rx_gpio);
uart_tx_unconfig:
if (gpio_is_valid(pdata->uart_tx_gpio))
gpio_free(pdata->uart_tx_gpio);
exit_uart_config:
return ret;
}
static void msm_hs_get_pinctrl_configs(struct uart_port *uport)
{
struct pinctrl_state *set_state;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
msm_uport->pinctrl = devm_pinctrl_get(uport->dev);
if (IS_ERR_OR_NULL(msm_uport->pinctrl)) {
MSM_HS_DBG("%s(): Pinctrl not defined", __func__);
} else {
MSM_HS_DBG("%s(): Using Pinctrl", __func__);
msm_uport->use_pinctrl = true;
set_state = pinctrl_lookup_state(msm_uport->pinctrl,
PINCTRL_STATE_DEFAULT);
if (IS_ERR_OR_NULL(set_state)) {
dev_err(uport->dev,
"pinctrl lookup failed for default state");
goto pinctrl_fail;
}
MSM_HS_DBG("%s(): Pinctrl state active %p\n", __func__,
set_state);
msm_uport->gpio_state_active = set_state;
set_state = pinctrl_lookup_state(msm_uport->pinctrl,
PINCTRL_STATE_SLEEP);
if (IS_ERR_OR_NULL(set_state)) {
dev_err(uport->dev,
"pinctrl lookup failed for sleep state");
goto pinctrl_fail;
}
MSM_HS_DBG("%s(): Pinctrl state sleep %p\n", __func__,
set_state);
msm_uport->gpio_state_suspend = set_state;
return;
}
pinctrl_fail:
msm_uport->pinctrl = NULL;
}
/* Called when port is opened */
static int msm_hs_startup(struct uart_port *uport)
{
int ret;
int rfr_level;
unsigned long flags;
unsigned int data;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct circ_buf *tx_buf = &uport->state->xmit;
struct msm_hs_tx *tx = &msm_uport->tx;
struct msm_hs_rx *rx = &msm_uport->rx;
struct sps_pipe *sps_pipe_handle_tx = tx->cons.pipe_handle;
struct sps_pipe *sps_pipe_handle_rx = rx->prod.pipe_handle;
rfr_level = uport->fifosize;
if (rfr_level > 16)
rfr_level -= 16;
tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE,
DMA_TO_DEVICE);
/* turn on uart clk */
msm_hs_resource_vote(msm_uport);
/* Set up Uart Receive */
msm_hs_write(uport, UART_DM_RFWR, 32);
/* Write to BADR explicitly to set up FIFO sizes */
msm_hs_write(uport, UARTDM_BADR_ADDR, 64);
/* configure the CR Protection to Enable */
msm_hs_write(uport, UART_DM_CR, CR_PROTECTION_EN);
/*
* Enable Command register protection before going ahead as this hw
* configuration makes sure that issued cmd to CR register gets complete
* before next issued cmd start. Hence mb() requires here.
*/
mb();
/*
* Set RX_BREAK_ZERO_CHAR_OFF and RX_ERROR_CHAR_OFF
* so any rx_break and character having parity of framing
* error don't enter inside UART RX FIFO.
*/
data = msm_hs_read(uport, UART_DM_MR2);
data |= (UARTDM_MR2_RX_BREAK_ZERO_CHAR_OFF |
UARTDM_MR2_RX_ERROR_CHAR_OFF);
msm_hs_write(uport, UART_DM_MR2, data);
/* Ensure register IO completion */
mb();
if (is_use_low_power_wakeup(msm_uport)) {
ret = request_threaded_irq(msm_uport->wakeup.irq, NULL,
msm_hs_wakeup_isr,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"msm_hs_wakeup", msm_uport);
if (unlikely(ret)) {
MSM_HS_ERR("%s():Err getting uart wakeup_irq %d\n",
__func__, ret);
goto unvote_exit;
}
msm_uport->wakeup.freed = false;
disable_irq(msm_uport->wakeup.irq);
msm_uport->wakeup.enabled = false;
ret = irq_set_irq_wake(msm_uport->wakeup.irq, 1);
if (unlikely(ret)) {
MSM_HS_ERR("%s():Err setting wakeup irq\n", __func__);
goto free_uart_irq;
}
}
ret = msm_hs_config_uart_gpios(uport);
if (ret) {
MSM_HS_ERR("Uart GPIO request failed\n");
goto free_uart_irq;
}
msm_hs_write(uport, UART_DM_DMEN, 0);
/* Connect TX */
sps_tx_disconnect(msm_uport);
ret = msm_hs_spsconnect_tx(msm_uport);
if (ret) {
MSM_HS_ERR("msm_serial_hs: SPS connect failed for TX");
goto unconfig_uart_gpios;
}
/* Connect RX */
kthread_flush_worker(&msm_uport->rx.kworker);
if (rx->flush != FLUSH_SHUTDOWN)
disconnect_rx_endpoint(msm_uport);
ret = msm_hs_spsconnect_rx(uport);
if (ret) {
MSM_HS_ERR("msm_serial_hs: SPS connect failed for RX");
goto sps_disconnect_tx;
}
data = (UARTDM_BCR_TX_BREAK_DISABLE | UARTDM_BCR_STALE_IRQ_EMPTY |
UARTDM_BCR_RX_DMRX_LOW_EN | UARTDM_BCR_RX_STAL_IRQ_DMRX_EQL |
UARTDM_BCR_RX_DMRX_1BYTE_RES_EN);
msm_hs_write(uport, UART_DM_BCR, data);
/* Set auto RFR Level */
data = msm_hs_read(uport, UART_DM_MR1);
data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK;
data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK;
data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2));
data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level);
msm_hs_write(uport, UART_DM_MR1, data);
/* Make sure RXSTALE count is non-zero */
data = msm_hs_read(uport, UART_DM_IPR);
if (!data) {
data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK;
msm_hs_write(uport, UART_DM_IPR, data);
}
/* Assume no flow control, unless termios sets it */
msm_uport->flow_control = false;
msm_hs_disable_flow_control(uport, true);
/* Reset TX */
msm_hs_write(uport, UART_DM_CR, RESET_TX);
msm_hs_write(uport, UART_DM_CR, RESET_RX);
msm_hs_write(uport, UART_DM_CR, RESET_ERROR_STATUS);
msm_hs_write(uport, UART_DM_CR, RESET_BREAK_INT);
msm_hs_write(uport, UART_DM_CR, RESET_STALE_INT);
msm_hs_write(uport, UART_DM_CR, RESET_CTS);
msm_hs_write(uport, UART_DM_CR, RFR_LOW);
/* Turn on Uart Receiver */
msm_hs_write(uport, UART_DM_CR, UARTDM_CR_RX_EN_BMSK);
/* Turn on Uart Transmitter */
msm_hs_write(uport, UART_DM_CR, UARTDM_CR_TX_EN_BMSK);
tx->dma_in_flight = false;
MSM_HS_DBG("%s():desc usage flag 0x%lx", __func__, rx->queued_flag);
setup_timer(&(tx->tx_timeout_timer),
tx_timeout_handler,
(unsigned long) msm_uport);
/* Enable reading the current CTS, no harm even if CTS is ignored */
msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK;
/* TXLEV on empty TX fifo */
msm_hs_write(uport, UART_DM_TFWR, 4);
/*
* Complete all device write related configuration before
* queuing RX request. Hence mb() requires here.
*/
mb();
ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH,
"msm_hs_uart", msm_uport);
if (unlikely(ret)) {
MSM_HS_ERR("%s():Error %d getting uart irq\n", __func__, ret);
goto sps_disconnect_rx;
}
spin_lock_irqsave(&uport->lock, flags);
atomic_set(&msm_uport->client_count, 0);
atomic_set(&msm_uport->client_req_state, 0);
LOG_USR_MSG(msm_uport->ipc_msm_hs_pwr_ctxt,
"%s: Client_Count 0\n", __func__);
msm_hs_start_rx_locked(uport);
spin_unlock_irqrestore(&uport->lock, flags);
msm_hs_resource_unvote(msm_uport);
return 0;
sps_disconnect_rx:
sps_disconnect(sps_pipe_handle_rx);
sps_disconnect_tx:
sps_disconnect(sps_pipe_handle_tx);
unconfig_uart_gpios:
msm_hs_unconfig_uart_gpios(uport);
free_uart_irq:
free_irq(uport->irq, msm_uport);
unvote_exit:
msm_hs_resource_unvote(msm_uport);
MSM_HS_ERR("%s(): Error return\n", __func__);
return ret;
}
/* Initialize tx and rx data structures */
static int uartdm_init_port(struct uart_port *uport)
{
int ret = 0;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_tx *tx = &msm_uport->tx;
struct msm_hs_rx *rx = &msm_uport->rx;
init_waitqueue_head(&rx->wait);
init_waitqueue_head(&tx->wait);
init_waitqueue_head(&msm_uport->bam_disconnect_wait);
/* Init kernel threads for tx and rx */
kthread_init_worker(&rx->kworker);
rx->task = kthread_run(kthread_worker_fn,
&rx->kworker, "msm_serial_hs_%d_rx_work", uport->line);
if (IS_ERR(rx->task)) {
MSM_HS_ERR("%s(): error creating task", __func__);
goto exit_lh_init;
}
kthread_init_work(&rx->kwork, msm_serial_hs_rx_work);
kthread_init_worker(&tx->kworker);
tx->task = kthread_run(kthread_worker_fn,
&tx->kworker, "msm_serial_hs_%d_tx_work", uport->line);
if (IS_ERR(rx->task)) {
MSM_HS_ERR("%s(): error creating task", __func__);
goto exit_lh_init;
}
kthread_init_work(&tx->kwork, msm_serial_hs_tx_work);
rx->buffer = dma_alloc_coherent(uport->dev,
UART_DMA_DESC_NR * UARTDM_RX_BUF_SIZE,
&rx->rbuffer, GFP_KERNEL);
if (!rx->buffer) {
MSM_HS_ERR("%s(): cannot allocate rx->buffer", __func__);
ret = -ENOMEM;
goto exit_lh_init;
}
INIT_DELAYED_WORK(&rx->flip_insert_work, flip_insert_work);
return ret;
exit_lh_init:
kthread_stop(rx->task);
rx->task = NULL;
kthread_stop(tx->task);
tx->task = NULL;
return ret;
}
struct msm_serial_hs_platform_data
*msm_hs_dt_to_pdata(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct msm_serial_hs_platform_data *pdata;
u32 rx_to_inject;
int ret;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM);
pdev->id = of_alias_get_id(pdev->dev.of_node, "uart");
/* UART TX GPIO */
pdata->uart_tx_gpio = of_get_named_gpio(node,
"qcom,tx-gpio", 0);
if (pdata->uart_tx_gpio < 0)
pr_err("uart_tx_gpio is not available\n");
/* UART RX GPIO */
pdata->uart_rx_gpio = of_get_named_gpio(node,
"qcom,rx-gpio", 0);
if (pdata->uart_rx_gpio < 0)
pr_err("uart_rx_gpio is not available\n");
/* UART CTS GPIO */
pdata->uart_cts_gpio = of_get_named_gpio(node,
"qcom,cts-gpio", 0);
if (pdata->uart_cts_gpio < 0)
pr_err("uart_cts_gpio is not available\n");
/* UART RFR GPIO */
pdata->uart_rfr_gpio = of_get_named_gpio(node,
"qcom,rfr-gpio", 0);
if (pdata->uart_rfr_gpio < 0)
pr_err("uart_rfr_gpio is not available\n");
pdata->no_suspend_delay = of_property_read_bool(node,
"qcom,no-suspend-delay");
pdata->obs = of_property_read_bool(node,
"qcom,msm-obs");
if (pdata->obs)
pr_err("%s:Out of Band sleep flag is set\n", __func__);
pdata->inject_rx_on_wakeup = of_property_read_bool(node,
"qcom,inject-rx-on-wakeup");
if (pdata->inject_rx_on_wakeup) {
ret = of_property_read_u32(node, "qcom,rx-char-to-inject",
&rx_to_inject);
if (ret < 0) {
pr_err("Error: Rx_char_to_inject not specified.\n");
return ERR_PTR(ret);
}
pdata->rx_to_inject = (u8)rx_to_inject;
}
ret = of_property_read_u32(node, "qcom,bam-tx-ep-pipe-index",
&pdata->bam_tx_ep_pipe_index);
if (ret < 0) {
pr_err("Error: Getting UART BAM TX EP Pipe Index.\n");
return ERR_PTR(ret);
}
if (!(pdata->bam_tx_ep_pipe_index >= BAM_PIPE_MIN &&
pdata->bam_tx_ep_pipe_index <= BAM_PIPE_MAX)) {
pr_err("Error: Invalid UART BAM TX EP Pipe Index.\n");
return ERR_PTR(-EINVAL);
}
ret = of_property_read_u32(node, "qcom,bam-rx-ep-pipe-index",
&pdata->bam_rx_ep_pipe_index);
if (ret < 0) {
pr_err("Error: Getting UART BAM RX EP Pipe Index.\n");
return ERR_PTR(ret);
}
if (!(pdata->bam_rx_ep_pipe_index >= BAM_PIPE_MIN &&
pdata->bam_rx_ep_pipe_index <= BAM_PIPE_MAX)) {
pr_err("Error: Invalid UART BAM RX EP Pipe Index.\n");
return ERR_PTR(-EINVAL);
}
pr_debug("tx_ep_pipe_index:%d rx_ep_pipe_index:%d\n"
"tx_gpio:%d rx_gpio:%d rfr_gpio:%d cts_gpio:%d",
pdata->bam_tx_ep_pipe_index, pdata->bam_rx_ep_pipe_index,
pdata->uart_tx_gpio, pdata->uart_rx_gpio, pdata->uart_cts_gpio,
pdata->uart_rfr_gpio);
return pdata;
}
/**
* Deallocate UART peripheral's SPS endpoint
* @msm_uport - Pointer to msm_hs_port structure
* @ep - Pointer to sps endpoint data structure
*/
static void msm_hs_exit_ep_conn(struct msm_hs_port *msm_uport,
struct msm_hs_sps_ep_conn_data *ep)
{
struct sps_pipe *sps_pipe_handle = ep->pipe_handle;
struct sps_connect *sps_config = &ep->config;
dma_free_coherent(msm_uport->uport.dev,
sps_config->desc.size,
&sps_config->desc.phys_base,
GFP_KERNEL);
sps_free_endpoint(sps_pipe_handle);
}
/**
* Allocate UART peripheral's SPS endpoint
*
* This function allocates endpoint context
* by calling appropriate SPS driver APIs.
*
* @msm_uport - Pointer to msm_hs_port structure
* @ep - Pointer to sps endpoint data structure
* @is_produce - 1 means Producer endpoint
* - 0 means Consumer endpoint
*
* @return - 0 if successful else negative value
*/
static int msm_hs_sps_init_ep_conn(struct msm_hs_port *msm_uport,
struct msm_hs_sps_ep_conn_data *ep,
bool is_producer)
{
int rc = 0;
struct sps_pipe *sps_pipe_handle;
struct sps_connect *sps_config = &ep->config;
struct sps_register_event *sps_event = &ep->event;
/* Allocate endpoint context */
sps_pipe_handle = sps_alloc_endpoint();
if (!sps_pipe_handle) {
MSM_HS_ERR("%s(): sps_alloc_endpoint() failed!!\n"
"is_producer=%d", __func__, is_producer);
rc = -ENOMEM;
goto out;
}
/* Get default connection configuration for an endpoint */
rc = sps_get_config(sps_pipe_handle, sps_config);
if (rc) {
MSM_HS_ERR("%s(): failed! pipe_handle=0x%p rc=%d",
__func__, sps_pipe_handle, rc);
goto get_config_err;
}
/* Modify the default connection configuration */
if (is_producer) {
/* For UART producer transfer, source is UART peripheral
* where as destination is system memory
*/
sps_config->source = msm_uport->bam_handle;
sps_config->destination = SPS_DEV_HANDLE_MEM;
sps_config->mode = SPS_MODE_SRC;
sps_config->src_pipe_index = msm_uport->bam_rx_ep_pipe_index;
sps_config->dest_pipe_index = 0;
sps_event->callback = msm_hs_sps_rx_callback;
} else {
/* For UART consumer transfer, source is system memory
* where as destination is UART peripheral
*/
sps_config->source = SPS_DEV_HANDLE_MEM;
sps_config->destination = msm_uport->bam_handle;
sps_config->mode = SPS_MODE_DEST;
sps_config->src_pipe_index = 0;
sps_config->dest_pipe_index = msm_uport->bam_tx_ep_pipe_index;
sps_event->callback = msm_hs_sps_tx_callback;
}
sps_config->options = SPS_O_EOT | SPS_O_DESC_DONE | SPS_O_AUTO_ENABLE;
sps_config->event_thresh = 0x10;
/* Allocate maximum descriptor fifo size */
sps_config->desc.size =
(1 + UART_DMA_DESC_NR) * sizeof(struct sps_iovec);
sps_config->desc.base = dma_alloc_coherent(msm_uport->uport.dev,
sps_config->desc.size,
&sps_config->desc.phys_base,
GFP_KERNEL);
if (!sps_config->desc.base) {
rc = -ENOMEM;
MSM_HS_ERR("msm_serial_hs: dma_alloc_coherent() failed!!\n");
goto get_config_err;
}
memset(sps_config->desc.base, 0x00, sps_config->desc.size);
sps_event->mode = SPS_TRIGGER_CALLBACK;
sps_event->options = SPS_O_DESC_DONE | SPS_O_EOT;
sps_event->user = (void *)msm_uport;
/* Now save the sps pipe handle */
ep->pipe_handle = sps_pipe_handle;
MSM_HS_DBG("msm_serial_hs: success !! %s: pipe_handle=0x%p\n"
"desc_fifo.phys_base=0x%pa\n",
is_producer ? "READ" : "WRITE",
sps_pipe_handle, &sps_config->desc.phys_base);
return 0;
get_config_err:
sps_free_endpoint(sps_pipe_handle);
out:
return rc;
}
/**
* Initialize SPS HW connected with UART core
*
* This function register BAM HW resources with
* SPS driver and then initialize 2 SPS endpoints
*
* msm_uport - Pointer to msm_hs_port structure
*
* @return - 0 if successful else negative value
*/
static int msm_hs_sps_init(struct msm_hs_port *msm_uport)
{
int rc = 0;
struct sps_bam_props bam = {0};
unsigned long bam_handle;
rc = sps_phy2h(msm_uport->bam_mem, &bam_handle);
if (rc || !bam_handle) {
bam.phys_addr = msm_uport->bam_mem;
bam.virt_addr = msm_uport->bam_base;
/*
* This event thresold value is only significant for BAM-to-BAM
* transfer. It's ignored for BAM-to-System mode transfer.
*/
bam.event_threshold = 0x10; /* Pipe event threshold */
bam.summing_threshold = 1; /* BAM event threshold */
/* SPS driver wll handle the UART BAM IRQ */
bam.irq = (u32)msm_uport->bam_irq;
bam.manage = SPS_BAM_MGR_DEVICE_REMOTE;
MSM_HS_DBG("msm_serial_hs: bam physical base=0x%pa\n",
&bam.phys_addr);
MSM_HS_DBG("msm_serial_hs: bam virtual base=0x%p\n",
bam.virt_addr);
/* Register UART Peripheral BAM device to SPS driver */
rc = sps_register_bam_device(&bam, &bam_handle);
if (rc) {
MSM_HS_ERR("%s: BAM device register failed\n",
__func__);
return rc;
}
MSM_HS_DBG("%s:BAM device registered. bam_handle=0x%lx",
__func__, msm_uport->bam_handle);
}
msm_uport->bam_handle = bam_handle;
rc = msm_hs_sps_init_ep_conn(msm_uport, &msm_uport->rx.prod,
UART_SPS_PROD_PERIPHERAL);
if (rc) {
MSM_HS_ERR("%s: Failed to Init Producer BAM-pipe", __func__);
goto deregister_bam;
}
rc = msm_hs_sps_init_ep_conn(msm_uport, &msm_uport->tx.cons,
UART_SPS_CONS_PERIPHERAL);
if (rc) {
MSM_HS_ERR("%s: Failed to Init Consumer BAM-pipe", __func__);
goto deinit_ep_conn_prod;
}
return 0;
deinit_ep_conn_prod:
msm_hs_exit_ep_conn(msm_uport, &msm_uport->rx.prod);
deregister_bam:
sps_deregister_bam_device(msm_uport->bam_handle);
return rc;
}
static bool deviceid[UARTDM_NR] = {0};
/*
* The mutex synchronizes grabbing next free device number
* both in case of an alias being used or not. When alias is
* used, the msm_hs_dt_to_pdata gets it and the boolean array
* is accordingly updated with device_id_set_used. If no alias
* is used, then device_id_grab_next_free sets that array.
*/
static DEFINE_MUTEX(mutex_next_device_id);
static int device_id_grab_next_free(void)
{
int i;
int ret = -ENODEV;
mutex_lock(&mutex_next_device_id);
for (i = 0; i < UARTDM_NR; i++)
if (!deviceid[i]) {
ret = i;
deviceid[i] = true;
break;
}
mutex_unlock(&mutex_next_device_id);
return ret;
}
static int device_id_set_used(int index)
{
int ret = 0;
mutex_lock(&mutex_next_device_id);
if (deviceid[index])
ret = -ENODEV;
else
deviceid[index] = true;
mutex_unlock(&mutex_next_device_id);
return ret;
}
static void obs_manage_irq(struct msm_hs_port *msm_uport, bool en)
{
struct uart_port *uport = &(msm_uport->uport);
if (msm_uport->obs) {
if (en)
enable_irq(uport->irq);
else
disable_irq(uport->irq);
}
}
static void msm_hs_pm_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_hs_port *msm_uport = get_matching_hs_port(pdev);
int ret;
int client_count = 0;
if (!msm_uport)
goto err_suspend;
mutex_lock(&msm_uport->mtx);
client_count = atomic_read(&msm_uport->client_count);
msm_uport->pm_state = MSM_HS_PM_SUSPENDED;
msm_hs_resource_off(msm_uport);
obs_manage_irq(msm_uport, false);
msm_hs_clk_bus_unvote(msm_uport);
/* For OBS, don't use wakeup interrupt, set gpio to suspended state */
if (msm_uport->obs) {
ret = pinctrl_select_state(msm_uport->pinctrl,
msm_uport->gpio_state_suspend);
if (ret)
MSM_HS_ERR("%s():Error selecting pinctrl suspend state",
__func__);
}
if (!atomic_read(&msm_uport->client_req_state))
enable_wakeup_interrupt(msm_uport);
LOG_USR_MSG(msm_uport->ipc_msm_hs_pwr_ctxt,
"%s: PM State Suspended client_count %d\n", __func__,
client_count);
mutex_unlock(&msm_uport->mtx);
return;
err_suspend:
pr_err("%s(): invalid uport", __func__);
}
static int msm_hs_pm_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_hs_port *msm_uport = get_matching_hs_port(pdev);
int ret = 0;
int client_count = 0;
if (!msm_uport) {
dev_err(dev, "%s:Invalid uport\n", __func__);
return -ENODEV;
}
mutex_lock(&msm_uport->mtx);
client_count = atomic_read(&msm_uport->client_count);
if (msm_uport->pm_state == MSM_HS_PM_ACTIVE)
goto exit_pm_resume;
if (!atomic_read(&msm_uport->client_req_state))
disable_wakeup_interrupt(msm_uport);
/* For OBS, don't use wakeup interrupt, set gpio to active state */
if (msm_uport->obs) {
ret = pinctrl_select_state(msm_uport->pinctrl,
msm_uport->gpio_state_active);
if (ret)
MSM_HS_ERR("%s():Error selecting active state",
__func__);
}
ret = msm_hs_clk_bus_vote(msm_uport);
if (ret) {
MSM_HS_ERR("%s:Failed clock vote %d\n", __func__, ret);
dev_err(dev, "%s:Failed clock vote %d\n", __func__, ret);
goto exit_pm_resume;
}
obs_manage_irq(msm_uport, true);
msm_uport->pm_state = MSM_HS_PM_ACTIVE;
msm_hs_resource_on(msm_uport);
LOG_USR_MSG(msm_uport->ipc_msm_hs_pwr_ctxt,
"%s:PM State:Active client_count %d\n", __func__, client_count);
exit_pm_resume:
mutex_unlock(&msm_uport->mtx);
return ret;
}
#ifdef CONFIG_PM
static int msm_hs_pm_sys_suspend_noirq(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_hs_port *msm_uport = get_matching_hs_port(pdev);
enum msm_hs_pm_state prev_pwr_state;
int clk_cnt, client_count, ret = 0;
if (IS_ERR_OR_NULL(msm_uport))
return -ENODEV;
mutex_lock(&msm_uport->mtx);
/*
* If there is an active clk request or an impending userspace request
* fail the suspend callback.
*/
clk_cnt = atomic_read(&msm_uport->resource_count);
client_count = atomic_read(&msm_uport->client_count);
if (msm_uport->pm_state == MSM_HS_PM_ACTIVE) {
MSM_HS_WARN("%s:Fail Suspend.clk_cnt:%d,clnt_count:%d\n",
__func__, clk_cnt, client_count);
ret = -EBUSY;
goto exit_suspend_noirq;
}
prev_pwr_state = msm_uport->pm_state;
msm_uport->pm_state = MSM_HS_PM_SYS_SUSPENDED;
LOG_USR_MSG(msm_uport->ipc_msm_hs_pwr_ctxt,
"%s:PM State:Sys-Suspended client_count %d\n", __func__,
client_count);
exit_suspend_noirq:
mutex_unlock(&msm_uport->mtx);
return ret;
};
static int msm_hs_pm_sys_resume_noirq(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_hs_port *msm_uport = get_matching_hs_port(pdev);
if (IS_ERR_OR_NULL(msm_uport))
return -ENODEV;
/*
* Note system-pm resume and update the state
* variable. Resource activation will be done
* when transfer is requested.
*/
mutex_lock(&msm_uport->mtx);
if (msm_uport->pm_state == MSM_HS_PM_SYS_SUSPENDED)
msm_uport->pm_state = MSM_HS_PM_SUSPENDED;
LOG_USR_MSG(msm_uport->ipc_msm_hs_pwr_ctxt,
"%s:PM State: Suspended\n", __func__);
mutex_unlock(&msm_uport->mtx);
return 0;
}
#endif
#ifdef CONFIG_PM
static void msm_serial_hs_rt_init(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
MSM_HS_INFO("%s(): Enabling runtime pm", __func__);
pm_runtime_set_suspended(uport->dev);
pm_runtime_set_autosuspend_delay(uport->dev, 100);
pm_runtime_use_autosuspend(uport->dev);
mutex_lock(&msm_uport->mtx);
msm_uport->pm_state = MSM_HS_PM_SUSPENDED;
mutex_unlock(&msm_uport->mtx);
pm_runtime_enable(uport->dev);
}
static int msm_hs_runtime_suspend(struct device *dev)
{
msm_hs_pm_suspend(dev);
return 0;
}
static int msm_hs_runtime_resume(struct device *dev)
{
return msm_hs_pm_resume(dev);
}
#else
static void msm_serial_hs_rt_init(struct uart_port *uport) {}
static int msm_hs_runtime_suspend(struct device *dev) {}
static int msm_hs_runtime_resume(struct device *dev) {}
#endif
static int msm_hs_probe(struct platform_device *pdev)
{
int ret = 0;
struct uart_port *uport;
struct msm_hs_port *msm_uport;
struct resource *core_resource;
struct resource *bam_resource;
int core_irqres, bam_irqres, wakeup_irqres;
struct msm_serial_hs_platform_data *pdata = pdev->dev.platform_data;
char name[30];
if (pdev->dev.of_node) {
dev_dbg(&pdev->dev, "device tree enabled\n");
pdata = msm_hs_dt_to_pdata(pdev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
if (pdev->id < 0) {
pdev->id = device_id_grab_next_free();
if (pdev->id < 0) {
dev_err(&pdev->dev,
"Error grabbing next free device id");
return pdev->id;
}
} else {
ret = device_id_set_used(pdev->id);
if (ret < 0) {
dev_err(&pdev->dev, "%d alias taken",
pdev->id);
return ret;
}
}
pdev->dev.platform_data = pdata;
}
if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
dev_err(&pdev->dev, "Invalid plaform device ID = %d\n",
pdev->id);
return -EINVAL;
}
msm_uport = devm_kzalloc(&pdev->dev, sizeof(struct msm_hs_port),
GFP_KERNEL);
if (!msm_uport)
return -ENOMEM;
msm_uport->uport.type = PORT_UNKNOWN;
uport = &msm_uport->uport;
uport->dev = &pdev->dev;
if (pdev->dev.of_node)
msm_uport->uart_type = BLSP_HSUART;
msm_hs_get_pinctrl_configs(uport);
/* Get required resources for BAM HSUART */
core_resource = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "core_mem");
if (!core_resource) {
dev_err(&pdev->dev, "Invalid core HSUART Resources.\n");
return -ENXIO;
}
bam_resource = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "bam_mem");
if (!bam_resource) {
dev_err(&pdev->dev, "Invalid BAM HSUART Resources.\n");
return -ENXIO;
}
core_irqres = platform_get_irq_byname(pdev, "core_irq");
if (core_irqres < 0) {
dev_err(&pdev->dev, "Error %d, invalid core irq resources.\n",
core_irqres);
return -ENXIO;
}
bam_irqres = platform_get_irq_byname(pdev, "bam_irq");
if (bam_irqres < 0) {
dev_err(&pdev->dev, "Error %d, invalid bam irq resources.\n",
bam_irqres);
return -ENXIO;
}
wakeup_irqres = platform_get_irq_byname(pdev, "wakeup_irq");
if (wakeup_irqres < 0) {
wakeup_irqres = -1;
pr_info("Wakeup irq not specified.\n");
}
uport->mapbase = core_resource->start;
uport->membase = ioremap(uport->mapbase,
resource_size(core_resource));
if (unlikely(!uport->membase)) {
dev_err(&pdev->dev, "UART Resource ioremap Failed.\n");
return -ENOMEM;
}
msm_uport->bam_mem = bam_resource->start;
msm_uport->bam_base = ioremap(msm_uport->bam_mem,
resource_size(bam_resource));
if (unlikely(!msm_uport->bam_base)) {
dev_err(&pdev->dev, "UART BAM Resource ioremap Failed.\n");
iounmap(uport->membase);
return -ENOMEM;
}
memset(name, 0, sizeof(name));
scnprintf(name, sizeof(name), "%s%s", dev_name(msm_uport->uport.dev),
"_state");
msm_uport->ipc_msm_hs_log_ctxt =
ipc_log_context_create(IPC_MSM_HS_LOG_STATE_PAGES,
name, 0);
if (!msm_uport->ipc_msm_hs_log_ctxt) {
dev_err(&pdev->dev, "%s: error creating logging context",
__func__);
} else {
msm_uport->ipc_debug_mask = INFO_LEV;
ret = sysfs_create_file(&pdev->dev.kobj,
&dev_attr_debug_mask.attr);
if (unlikely(ret))
MSM_HS_WARN("%s: Failed to create dev. attr", __func__);
}
uport->irq = core_irqres;
msm_uport->bam_irq = bam_irqres;
pdata->wakeup_irq = wakeup_irqres;
msm_uport->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (!msm_uport->bus_scale_table) {
MSM_HS_ERR("BLSP UART: Bus scaling is disabled.\n");
} else {
msm_uport->bus_perf_client =
msm_bus_scale_register_client
(msm_uport->bus_scale_table);
if (IS_ERR(&msm_uport->bus_perf_client)) {
MSM_HS_ERR("%s():Bus client register failed\n",
__func__);
ret = -EINVAL;
goto unmap_memory;
}
}
msm_uport->wakeup.irq = pdata->wakeup_irq;
msm_uport->wakeup.ignore = 1;
msm_uport->wakeup.inject_rx = pdata->inject_rx_on_wakeup;
msm_uport->wakeup.rx_to_inject = pdata->rx_to_inject;
msm_uport->obs = pdata->obs;
msm_uport->bam_tx_ep_pipe_index =
pdata->bam_tx_ep_pipe_index;
msm_uport->bam_rx_ep_pipe_index =
pdata->bam_rx_ep_pipe_index;
msm_uport->wakeup.enabled = true;
uport->iotype = UPIO_MEM;
uport->fifosize = 64;
uport->ops = &msm_hs_ops;
uport->flags = UPF_BOOT_AUTOCONF;
uport->uartclk = 7372800;
msm_uport->imr_reg = 0x0;
msm_uport->clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(msm_uport->clk)) {
ret = PTR_ERR(msm_uport->clk);
goto deregister_bus_client;
}
msm_uport->pclk = clk_get(&pdev->dev, "iface_clk");
/*
* Some configurations do not require explicit pclk control so
* do not flag error on pclk get failure.
*/
if (IS_ERR(msm_uport->pclk))
msm_uport->pclk = NULL;
msm_uport->hsuart_wq = alloc_workqueue("k_hsuart",
WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
if (!msm_uport->hsuart_wq) {
MSM_HS_ERR("%s(): Unable to create workqueue hsuart_wq\n",
__func__);
ret = -ENOMEM;
goto put_clk;
}
mutex_init(&msm_uport->mtx);
/* Initialize SPS HW connected with UART core */
ret = msm_hs_sps_init(msm_uport);
if (unlikely(ret)) {
MSM_HS_ERR("SPS Initialization failed ! err=%d", ret);
goto destroy_mutex;
}
msm_uport->tx.flush = FLUSH_SHUTDOWN;
msm_uport->rx.flush = FLUSH_SHUTDOWN;
memset(name, 0, sizeof(name));
scnprintf(name, sizeof(name), "%s%s", dev_name(msm_uport->uport.dev),
"_tx");
msm_uport->tx.ipc_tx_ctxt =
ipc_log_context_create(IPC_MSM_HS_LOG_DATA_PAGES, name, 0);
if (!msm_uport->tx.ipc_tx_ctxt)
dev_err(&pdev->dev, "%s: error creating tx logging context",
__func__);
memset(name, 0, sizeof(name));
scnprintf(name, sizeof(name), "%s%s", dev_name(msm_uport->uport.dev),
"_rx");
msm_uport->rx.ipc_rx_ctxt = ipc_log_context_create(
IPC_MSM_HS_LOG_DATA_PAGES, name, 0);
if (!msm_uport->rx.ipc_rx_ctxt)
dev_err(&pdev->dev, "%s: error creating rx logging context",
__func__);
memset(name, 0, sizeof(name));
scnprintf(name, sizeof(name), "%s%s", dev_name(msm_uport->uport.dev),
"_pwr");
msm_uport->ipc_msm_hs_pwr_ctxt = ipc_log_context_create(
IPC_MSM_HS_LOG_USER_PAGES, name, 0);
if (!msm_uport->ipc_msm_hs_pwr_ctxt)
dev_err(&pdev->dev, "%s: error creating usr logging context",
__func__);
uport->irq = core_irqres;
msm_uport->bam_irq = bam_irqres;
clk_set_rate(msm_uport->clk, msm_uport->uport.uartclk);
msm_hs_clk_bus_vote(msm_uport);
ret = uartdm_init_port(uport);
if (unlikely(ret))
goto err_clock;
ret = sysfs_create_file(&pdev->dev.kobj, &dev_attr_clock.attr);
if (unlikely(ret)) {
MSM_HS_ERR("Probe Failed as sysfs failed\n");
goto err_clock;
}
msm_serial_debugfs_init(msm_uport, pdev->id);
msm_hs_unconfig_uart_gpios(uport);
uport->line = pdev->id;
if (pdata->userid && pdata->userid <= UARTDM_NR)
uport->line = pdata->userid;
ret = uart_add_one_port(&msm_hs_driver, uport);
if (!ret) {
msm_hs_clk_bus_unvote(msm_uport);
msm_serial_hs_rt_init(uport);
return ret;
}
err_clock:
msm_hs_clk_bus_unvote(msm_uport);
destroy_mutex:
mutex_destroy(&msm_uport->mtx);
destroy_workqueue(msm_uport->hsuart_wq);
put_clk:
if (msm_uport->pclk)
clk_put(msm_uport->pclk);
if (msm_uport->clk)
clk_put(msm_uport->clk);
deregister_bus_client:
msm_bus_scale_unregister_client(msm_uport->bus_perf_client);
unmap_memory:
iounmap(uport->membase);
iounmap(msm_uport->bam_base);
return ret;
}
static int __init msm_serial_hs_init(void)
{
int ret;
ret = uart_register_driver(&msm_hs_driver);
if (unlikely(ret)) {
pr_err("%s failed to load\n", __func__);
return ret;
}
debug_base = debugfs_create_dir("msm_serial_hs", NULL);
if (IS_ERR_OR_NULL(debug_base))
pr_err("msm_serial_hs: Cannot create debugfs dir\n");
ret = platform_driver_register(&msm_serial_hs_platform_driver);
if (ret) {
pr_err("%s failed to load\n", __func__);
debugfs_remove_recursive(debug_base);
uart_unregister_driver(&msm_hs_driver);
return ret;
}
pr_info("msm_serial_hs module loaded\n");
return ret;
}
/*
* Called by the upper layer when port is closed.
* - Disables the port
* - Unhook the ISR
*/
static void msm_hs_shutdown(struct uart_port *uport)
{
int ret, rc;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct circ_buf *tx_buf = &uport->state->xmit;
int data;
unsigned long flags;
if (is_use_low_power_wakeup(msm_uport))
irq_set_irq_wake(msm_uport->wakeup.irq, 0);
if (msm_uport->wakeup.enabled)
disable_irq(msm_uport->wakeup.irq);
else
disable_irq(uport->irq);
spin_lock_irqsave(&uport->lock, flags);
msm_uport->wakeup.enabled = false;
msm_uport->wakeup.ignore = 1;
spin_unlock_irqrestore(&uport->lock, flags);
/* Free the interrupt */
free_irq(uport->irq, msm_uport);
if (is_use_low_power_wakeup(msm_uport)) {
free_irq(msm_uport->wakeup.irq, msm_uport);
MSM_HS_DBG("%s(): wakeup irq freed", __func__);
}
msm_uport->wakeup.freed = true;
/* make sure tx lh finishes */
kthread_flush_worker(&msm_uport->tx.kworker);
ret = wait_event_timeout(msm_uport->tx.wait,
uart_circ_empty(tx_buf), 500);
if (!ret)
MSM_HS_WARN("Shutdown called when tx buff not empty");
msm_hs_resource_vote(msm_uport);
/* Stop remote side from sending data */
msm_hs_disable_flow_control(uport, false);
/* make sure rx lh finishes */
kthread_flush_worker(&msm_uport->rx.kworker);
if (msm_uport->rx.flush != FLUSH_SHUTDOWN) {
/* disable and disconnect rx */
ret = wait_event_timeout(msm_uport->rx.wait,
!msm_uport->rx.pending_flag, 500);
if (!ret)
MSM_HS_WARN("%s(): rx disconnect not complete",
__func__);
msm_hs_disconnect_rx(uport);
}
cancel_delayed_work_sync(&msm_uport->rx.flip_insert_work);
flush_workqueue(msm_uport->hsuart_wq);
/* BAM Disconnect for TX */
data = msm_hs_read(uport, UART_DM_DMEN);
data &= ~UARTDM_TX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
ret = sps_tx_disconnect(msm_uport);
if (ret)
MSM_HS_ERR("%s(): sps_disconnect failed\n",
__func__);
msm_uport->tx.flush = FLUSH_SHUTDOWN;
/* Disable the transmitter */
msm_hs_write(uport, UART_DM_CR, UARTDM_CR_TX_DISABLE_BMSK);
/* Disable the receiver */
msm_hs_write(uport, UART_DM_CR, UARTDM_CR_RX_DISABLE_BMSK);
msm_uport->imr_reg = 0;
msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg);
/*
* Complete all device write before actually disabling uartclk.
* Hence mb() requires here.
*/
mb();
msm_uport->rx.buffer_pending = NONE_PENDING;
MSM_HS_DBG("%s(): tx, rx events complete", __func__);
dma_unmap_single(uport->dev, msm_uport->tx.dma_base,
UART_XMIT_SIZE, DMA_TO_DEVICE);
msm_hs_resource_unvote(msm_uport);
rc = atomic_read(&msm_uport->resource_count);
if (rc) {
atomic_set(&msm_uport->resource_count, 1);
MSM_HS_WARN("%s(): removing extra vote\n", __func__);
msm_hs_resource_unvote(msm_uport);
}
if (atomic_read(&msm_uport->client_req_state)) {
MSM_HS_WARN("%s: Client clock vote imbalance\n", __func__);
atomic_set(&msm_uport->client_req_state, 0);
}
if (atomic_read(&msm_uport->client_count)) {
MSM_HS_WARN("%s: Client vote on, forcing to 0\n", __func__);
atomic_set(&msm_uport->client_count, 0);
LOG_USR_MSG(msm_uport->ipc_msm_hs_pwr_ctxt,
"%s: Client_Count 0\n", __func__);
}
msm_hs_unconfig_uart_gpios(uport);
MSM_HS_INFO("%s:UART port closed successfully\n", __func__);
}
static void __exit msm_serial_hs_exit(void)
{
pr_info("msm_serial_hs module removed\n");
debugfs_remove_recursive(debug_base);
platform_driver_unregister(&msm_serial_hs_platform_driver);
uart_unregister_driver(&msm_hs_driver);
}
static const struct dev_pm_ops msm_hs_dev_pm_ops = {
.runtime_suspend = msm_hs_runtime_suspend,
.runtime_resume = msm_hs_runtime_resume,
.runtime_idle = NULL,
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(msm_hs_pm_sys_suspend_noirq,
msm_hs_pm_sys_resume_noirq)
};
static struct platform_driver msm_serial_hs_platform_driver = {
.probe = msm_hs_probe,
.remove = msm_hs_remove,
.driver = {
.name = "msm_serial_hs",
.pm = &msm_hs_dev_pm_ops,
.of_match_table = msm_hs_match_table,
},
};
static struct uart_driver msm_hs_driver = {
.owner = THIS_MODULE,
.driver_name = "msm_serial_hs",
.dev_name = "ttyHS",
.nr = UARTDM_NR,
.cons = 0,
};
static const struct uart_ops msm_hs_ops = {
.tx_empty = msm_hs_tx_empty,
.set_mctrl = msm_hs_set_mctrl_locked,
.get_mctrl = msm_hs_get_mctrl_locked,
.stop_tx = msm_hs_stop_tx_locked,
.start_tx = msm_hs_start_tx_locked,
.stop_rx = msm_hs_stop_rx_locked,
.enable_ms = msm_hs_enable_ms_locked,
.break_ctl = msm_hs_break_ctl,
.startup = msm_hs_startup,
.shutdown = msm_hs_shutdown,
.set_termios = msm_hs_set_termios,
.type = msm_hs_type,
.config_port = msm_hs_config_port,
.flush_buffer = NULL,
.ioctl = msm_hs_ioctl,
};
module_init(msm_serial_hs_init);
module_exit(msm_serial_hs_exit);
MODULE_DESCRIPTION("High Speed UART Driver for the MSM chipset");
MODULE_LICENSE("GPL v2");