Maciej W. Rozycki | 8b4a408 | 2007-07-18 00:49:11 -0700 | [diff] [blame] | 1 | /* |
| 2 | * zs.c: Serial port driver for IOASIC DECstations. |
| 3 | * |
| 4 | * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras. |
| 5 | * Derived from drivers/macintosh/macserial.c by Harald Koerfgen. |
| 6 | * |
| 7 | * DECstation changes |
| 8 | * Copyright (C) 1998-2000 Harald Koerfgen |
| 9 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki |
| 10 | * |
| 11 | * For the rest of the code the original Copyright applies: |
| 12 | * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au) |
| 13 | * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| 14 | * |
| 15 | * |
| 16 | * Note: for IOASIC systems the wiring is as follows: |
| 17 | * |
| 18 | * mouse/keyboard: |
| 19 | * DIN-7 MJ-4 signal SCC |
| 20 | * 2 1 TxD <- A.TxD |
| 21 | * 3 4 RxD -> A.RxD |
| 22 | * |
| 23 | * EIA-232/EIA-423: |
| 24 | * DB-25 MMJ-6 signal SCC |
| 25 | * 2 2 TxD <- B.TxD |
| 26 | * 3 5 RxD -> B.RxD |
| 27 | * 4 RTS <- ~A.RTS |
| 28 | * 5 CTS -> ~B.CTS |
| 29 | * 6 6 DSR -> ~A.SYNC |
| 30 | * 8 CD -> ~B.DCD |
| 31 | * 12 DSRS(DCE) -> ~A.CTS (*) |
| 32 | * 15 TxC -> B.TxC |
| 33 | * 17 RxC -> B.RxC |
| 34 | * 20 1 DTR <- ~A.DTR |
| 35 | * 22 RI -> ~A.DCD |
| 36 | * 23 DSRS(DTE) <- ~B.RTS |
| 37 | * |
| 38 | * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE) |
| 39 | * is shared with DSRS(DTE) at pin 23. |
| 40 | * |
| 41 | * As you can immediately notice the wiring of the RTS, DTR and DSR signals |
| 42 | * is a bit odd. This makes the handling of port B unnecessarily |
| 43 | * complicated and prevents the use of some automatic modes of operation. |
| 44 | */ |
| 45 | |
| 46 | #if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) |
| 47 | #define SUPPORT_SYSRQ |
| 48 | #endif |
| 49 | |
| 50 | #include <linux/bug.h> |
| 51 | #include <linux/console.h> |
| 52 | #include <linux/delay.h> |
| 53 | #include <linux/errno.h> |
| 54 | #include <linux/init.h> |
| 55 | #include <linux/interrupt.h> |
| 56 | #include <linux/io.h> |
| 57 | #include <linux/ioport.h> |
| 58 | #include <linux/irqflags.h> |
| 59 | #include <linux/kernel.h> |
| 60 | #include <linux/major.h> |
| 61 | #include <linux/serial.h> |
| 62 | #include <linux/serial_core.h> |
| 63 | #include <linux/spinlock.h> |
| 64 | #include <linux/sysrq.h> |
| 65 | #include <linux/tty.h> |
| 66 | #include <linux/types.h> |
| 67 | |
| 68 | #include <asm/atomic.h> |
| 69 | #include <asm/system.h> |
| 70 | |
| 71 | #include <asm/dec/interrupts.h> |
| 72 | #include <asm/dec/ioasic_addrs.h> |
| 73 | #include <asm/dec/system.h> |
| 74 | |
| 75 | #include "zs.h" |
| 76 | |
| 77 | |
| 78 | MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>"); |
| 79 | MODULE_DESCRIPTION("DECstation Z85C30 serial driver"); |
| 80 | MODULE_LICENSE("GPL"); |
| 81 | |
| 82 | |
| 83 | static char zs_name[] __initdata = "DECstation Z85C30 serial driver version "; |
| 84 | static char zs_version[] __initdata = "0.10"; |
| 85 | |
| 86 | /* |
| 87 | * It would be nice to dynamically allocate everything that |
| 88 | * depends on ZS_NUM_SCCS, so we could support any number of |
| 89 | * Z85C30s, but for now... |
| 90 | */ |
| 91 | #define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */ |
| 92 | #define ZS_NUM_CHAN 2 /* 2 channels per chip. */ |
| 93 | #define ZS_CHAN_A 0 /* Index of the channel A. */ |
| 94 | #define ZS_CHAN_B 1 /* Index of the channel B. */ |
| 95 | #define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */ |
| 96 | #define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */ |
| 97 | #define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte |
| 98 | of the 16-bit IOBUS. */ |
| 99 | #define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */ |
| 100 | |
| 101 | #define to_zport(uport) container_of(uport, struct zs_port, port) |
| 102 | |
| 103 | struct zs_parms { |
| 104 | resource_size_t scc[ZS_NUM_SCCS]; |
| 105 | int irq[ZS_NUM_SCCS]; |
| 106 | }; |
| 107 | |
| 108 | static struct zs_scc zs_sccs[ZS_NUM_SCCS]; |
| 109 | |
| 110 | static u8 zs_init_regs[ZS_NUM_REGS] __initdata = { |
| 111 | 0, /* write 0 */ |
| 112 | PAR_SPEC, /* write 1 */ |
| 113 | 0, /* write 2 */ |
| 114 | 0, /* write 3 */ |
| 115 | X16CLK | SB1, /* write 4 */ |
| 116 | 0, /* write 5 */ |
| 117 | 0, 0, 0, /* write 6, 7, 8 */ |
| 118 | MIE | DLC | NV, /* write 9 */ |
| 119 | NRZ, /* write 10 */ |
| 120 | TCBR | RCBR, /* write 11 */ |
| 121 | 0, 0, /* BRG time constant, write 12 + 13 */ |
| 122 | BRSRC | BRENABL, /* write 14 */ |
| 123 | 0, /* write 15 */ |
| 124 | }; |
| 125 | |
| 126 | /* |
| 127 | * Debugging. |
| 128 | */ |
| 129 | #undef ZS_DEBUG_REGS |
| 130 | |
| 131 | |
| 132 | /* |
| 133 | * Reading and writing Z85C30 registers. |
| 134 | */ |
| 135 | static void recovery_delay(void) |
| 136 | { |
| 137 | udelay(2); |
| 138 | } |
| 139 | |
| 140 | static u8 read_zsreg(struct zs_port *zport, int reg) |
| 141 | { |
| 142 | void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET; |
| 143 | u8 retval; |
| 144 | |
| 145 | if (reg != 0) { |
| 146 | writeb(reg & 0xf, control); |
| 147 | fast_iob(); |
| 148 | recovery_delay(); |
| 149 | } |
| 150 | retval = readb(control); |
| 151 | recovery_delay(); |
| 152 | return retval; |
| 153 | } |
| 154 | |
| 155 | static void write_zsreg(struct zs_port *zport, int reg, u8 value) |
| 156 | { |
| 157 | void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET; |
| 158 | |
| 159 | if (reg != 0) { |
| 160 | writeb(reg & 0xf, control); |
| 161 | fast_iob(); recovery_delay(); |
| 162 | } |
| 163 | writeb(value, control); |
| 164 | fast_iob(); |
| 165 | recovery_delay(); |
| 166 | return; |
| 167 | } |
| 168 | |
| 169 | static u8 read_zsdata(struct zs_port *zport) |
| 170 | { |
| 171 | void __iomem *data = zport->port.membase + |
| 172 | ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET; |
| 173 | u8 retval; |
| 174 | |
| 175 | retval = readb(data); |
| 176 | recovery_delay(); |
| 177 | return retval; |
| 178 | } |
| 179 | |
| 180 | static void write_zsdata(struct zs_port *zport, u8 value) |
| 181 | { |
| 182 | void __iomem *data = zport->port.membase + |
| 183 | ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET; |
| 184 | |
| 185 | writeb(value, data); |
| 186 | fast_iob(); |
| 187 | recovery_delay(); |
| 188 | return; |
| 189 | } |
| 190 | |
| 191 | #ifdef ZS_DEBUG_REGS |
| 192 | void zs_dump(void) |
| 193 | { |
| 194 | struct zs_port *zport; |
| 195 | int i, j; |
| 196 | |
| 197 | for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) { |
| 198 | zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN]; |
| 199 | |
| 200 | if (!zport->scc) |
| 201 | continue; |
| 202 | |
| 203 | for (j = 0; j < 16; j++) |
| 204 | printk("W%-2d = 0x%02x\t", j, zport->regs[j]); |
| 205 | printk("\n"); |
| 206 | for (j = 0; j < 16; j++) |
| 207 | printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j)); |
| 208 | printk("\n\n"); |
| 209 | } |
| 210 | } |
| 211 | #endif |
| 212 | |
| 213 | |
| 214 | static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq) |
| 215 | { |
| 216 | if (irq) |
| 217 | spin_lock_irq(lock); |
| 218 | else |
| 219 | spin_lock(lock); |
| 220 | } |
| 221 | |
| 222 | static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq) |
| 223 | { |
| 224 | if (irq) |
| 225 | spin_unlock_irq(lock); |
| 226 | else |
| 227 | spin_unlock(lock); |
| 228 | } |
| 229 | |
| 230 | static int zs_receive_drain(struct zs_port *zport) |
| 231 | { |
| 232 | int loops = 10000; |
| 233 | |
| 234 | while ((read_zsreg(zport, R0) & Rx_CH_AV) && loops--) |
| 235 | read_zsdata(zport); |
| 236 | return loops; |
| 237 | } |
| 238 | |
| 239 | static int zs_transmit_drain(struct zs_port *zport, int irq) |
| 240 | { |
| 241 | struct zs_scc *scc = zport->scc; |
| 242 | int loops = 10000; |
| 243 | |
| 244 | while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && loops--) { |
| 245 | zs_spin_unlock_cond_irq(&scc->zlock, irq); |
| 246 | udelay(2); |
| 247 | zs_spin_lock_cond_irq(&scc->zlock, irq); |
| 248 | } |
| 249 | return loops; |
| 250 | } |
| 251 | |
| 252 | static int zs_line_drain(struct zs_port *zport, int irq) |
| 253 | { |
| 254 | struct zs_scc *scc = zport->scc; |
| 255 | int loops = 10000; |
| 256 | |
| 257 | while (!(read_zsreg(zport, R1) & ALL_SNT) && loops--) { |
| 258 | zs_spin_unlock_cond_irq(&scc->zlock, irq); |
| 259 | udelay(2); |
| 260 | zs_spin_lock_cond_irq(&scc->zlock, irq); |
| 261 | } |
| 262 | return loops; |
| 263 | } |
| 264 | |
| 265 | |
| 266 | static void load_zsregs(struct zs_port *zport, u8 *regs, int irq) |
| 267 | { |
| 268 | /* Let the current transmission finish. */ |
| 269 | zs_line_drain(zport, irq); |
| 270 | /* Load 'em up. */ |
| 271 | write_zsreg(zport, R3, regs[3] & ~RxENABLE); |
| 272 | write_zsreg(zport, R5, regs[5] & ~TxENAB); |
| 273 | write_zsreg(zport, R4, regs[4]); |
| 274 | write_zsreg(zport, R9, regs[9]); |
| 275 | write_zsreg(zport, R1, regs[1]); |
| 276 | write_zsreg(zport, R2, regs[2]); |
| 277 | write_zsreg(zport, R10, regs[10]); |
| 278 | write_zsreg(zport, R14, regs[14] & ~BRENABL); |
| 279 | write_zsreg(zport, R11, regs[11]); |
| 280 | write_zsreg(zport, R12, regs[12]); |
| 281 | write_zsreg(zport, R13, regs[13]); |
| 282 | write_zsreg(zport, R14, regs[14]); |
| 283 | write_zsreg(zport, R15, regs[15]); |
| 284 | if (regs[3] & RxENABLE) |
| 285 | write_zsreg(zport, R3, regs[3]); |
| 286 | if (regs[5] & TxENAB) |
| 287 | write_zsreg(zport, R5, regs[5]); |
| 288 | return; |
| 289 | } |
| 290 | |
| 291 | |
| 292 | /* |
| 293 | * Status handling routines. |
| 294 | */ |
| 295 | |
| 296 | /* |
| 297 | * zs_tx_empty() -- get the transmitter empty status |
| 298 | * |
| 299 | * Purpose: Let user call ioctl() to get info when the UART physically |
| 300 | * is emptied. On bus types like RS485, the transmitter must |
| 301 | * release the bus after transmitting. This must be done when |
| 302 | * the transmit shift register is empty, not be done when the |
| 303 | * transmit holding register is empty. This functionality |
| 304 | * allows an RS485 driver to be written in user space. |
| 305 | */ |
| 306 | static unsigned int zs_tx_empty(struct uart_port *uport) |
| 307 | { |
| 308 | struct zs_port *zport = to_zport(uport); |
| 309 | struct zs_scc *scc = zport->scc; |
| 310 | unsigned long flags; |
| 311 | u8 status; |
| 312 | |
| 313 | spin_lock_irqsave(&scc->zlock, flags); |
| 314 | status = read_zsreg(zport, R1); |
| 315 | spin_unlock_irqrestore(&scc->zlock, flags); |
| 316 | |
| 317 | return status & ALL_SNT ? TIOCSER_TEMT : 0; |
| 318 | } |
| 319 | |
| 320 | static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a, |
| 321 | struct zs_port *zport_b) |
| 322 | { |
| 323 | u8 status_a, status_b; |
| 324 | unsigned int mctrl; |
| 325 | |
| 326 | status_a = read_zsreg(zport_a, R0); |
| 327 | status_b = read_zsreg(zport_b, R0); |
| 328 | |
| 329 | mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) | |
| 330 | ((status_b & DCD) ? TIOCM_CAR : 0) | |
| 331 | ((status_a & DCD) ? TIOCM_RNG : 0) | |
| 332 | ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0); |
| 333 | |
| 334 | return mctrl; |
| 335 | } |
| 336 | |
| 337 | static unsigned int zs_raw_get_mctrl(struct zs_port *zport) |
| 338 | { |
| 339 | struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A]; |
| 340 | |
| 341 | return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0; |
| 342 | } |
| 343 | |
| 344 | static unsigned int zs_raw_xor_mctrl(struct zs_port *zport) |
| 345 | { |
| 346 | struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A]; |
| 347 | unsigned int mmask, mctrl, delta; |
| 348 | u8 mask_a, mask_b; |
| 349 | |
| 350 | if (zport == zport_a) |
| 351 | return 0; |
| 352 | |
| 353 | mask_a = zport_a->regs[15]; |
| 354 | mask_b = zport->regs[15]; |
| 355 | |
| 356 | mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) | |
| 357 | ((mask_b & DCDIE) ? TIOCM_CAR : 0) | |
| 358 | ((mask_a & DCDIE) ? TIOCM_RNG : 0) | |
| 359 | ((mask_a & SYNCIE) ? TIOCM_DSR : 0); |
| 360 | |
| 361 | mctrl = zport->mctrl; |
| 362 | if (mmask) { |
| 363 | mctrl &= ~mmask; |
| 364 | mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask; |
| 365 | } |
| 366 | |
| 367 | delta = mctrl ^ zport->mctrl; |
| 368 | if (delta) |
| 369 | zport->mctrl = mctrl; |
| 370 | |
| 371 | return delta; |
| 372 | } |
| 373 | |
| 374 | static unsigned int zs_get_mctrl(struct uart_port *uport) |
| 375 | { |
| 376 | struct zs_port *zport = to_zport(uport); |
| 377 | struct zs_scc *scc = zport->scc; |
| 378 | unsigned int mctrl; |
| 379 | |
| 380 | spin_lock(&scc->zlock); |
| 381 | mctrl = zs_raw_get_mctrl(zport); |
| 382 | spin_unlock(&scc->zlock); |
| 383 | |
| 384 | return mctrl; |
| 385 | } |
| 386 | |
| 387 | static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl) |
| 388 | { |
| 389 | struct zs_port *zport = to_zport(uport); |
| 390 | struct zs_scc *scc = zport->scc; |
| 391 | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; |
| 392 | u8 oldloop, newloop; |
| 393 | |
| 394 | spin_lock(&scc->zlock); |
| 395 | if (zport != zport_a) { |
| 396 | if (mctrl & TIOCM_DTR) |
| 397 | zport_a->regs[5] |= DTR; |
| 398 | else |
| 399 | zport_a->regs[5] &= ~DTR; |
| 400 | if (mctrl & TIOCM_RTS) |
| 401 | zport_a->regs[5] |= RTS; |
| 402 | else |
| 403 | zport_a->regs[5] &= ~RTS; |
| 404 | write_zsreg(zport_a, R5, zport_a->regs[5]); |
| 405 | } |
| 406 | |
| 407 | /* Rarely modified, so don't poke at hardware unless necessary. */ |
| 408 | oldloop = zport->regs[14]; |
| 409 | newloop = oldloop; |
| 410 | if (mctrl & TIOCM_LOOP) |
| 411 | newloop |= LOOPBAK; |
| 412 | else |
| 413 | newloop &= ~LOOPBAK; |
| 414 | if (newloop != oldloop) { |
| 415 | zport->regs[14] = newloop; |
| 416 | write_zsreg(zport, R14, zport->regs[14]); |
| 417 | } |
| 418 | spin_unlock(&scc->zlock); |
| 419 | } |
| 420 | |
| 421 | static void zs_raw_stop_tx(struct zs_port *zport) |
| 422 | { |
| 423 | write_zsreg(zport, R0, RES_Tx_P); |
| 424 | zport->tx_stopped = 1; |
| 425 | } |
| 426 | |
| 427 | static void zs_stop_tx(struct uart_port *uport) |
| 428 | { |
| 429 | struct zs_port *zport = to_zport(uport); |
| 430 | struct zs_scc *scc = zport->scc; |
| 431 | |
| 432 | spin_lock(&scc->zlock); |
| 433 | zs_raw_stop_tx(zport); |
| 434 | spin_unlock(&scc->zlock); |
| 435 | } |
| 436 | |
| 437 | static void zs_raw_transmit_chars(struct zs_port *); |
| 438 | |
| 439 | static void zs_start_tx(struct uart_port *uport) |
| 440 | { |
| 441 | struct zs_port *zport = to_zport(uport); |
| 442 | struct zs_scc *scc = zport->scc; |
| 443 | |
| 444 | spin_lock(&scc->zlock); |
| 445 | if (zport->tx_stopped) { |
| 446 | zs_transmit_drain(zport, 0); |
| 447 | zport->tx_stopped = 0; |
| 448 | zs_raw_transmit_chars(zport); |
| 449 | } |
| 450 | spin_unlock(&scc->zlock); |
| 451 | } |
| 452 | |
| 453 | static void zs_stop_rx(struct uart_port *uport) |
| 454 | { |
| 455 | struct zs_port *zport = to_zport(uport); |
| 456 | struct zs_scc *scc = zport->scc; |
| 457 | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; |
| 458 | |
| 459 | spin_lock(&scc->zlock); |
| 460 | zport->regs[15] &= ~BRKIE; |
| 461 | zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB); |
| 462 | zport->regs[1] |= RxINT_DISAB; |
| 463 | |
| 464 | if (zport != zport_a) { |
| 465 | /* A-side DCD tracks RI and SYNC tracks DSR. */ |
| 466 | zport_a->regs[15] &= ~(DCDIE | SYNCIE); |
| 467 | write_zsreg(zport_a, R15, zport_a->regs[15]); |
| 468 | if (!(zport_a->regs[15] & BRKIE)) { |
| 469 | zport_a->regs[1] &= ~EXT_INT_ENAB; |
| 470 | write_zsreg(zport_a, R1, zport_a->regs[1]); |
| 471 | } |
| 472 | |
| 473 | /* This-side DCD tracks DCD and CTS tracks CTS. */ |
| 474 | zport->regs[15] &= ~(DCDIE | CTSIE); |
| 475 | zport->regs[1] &= ~EXT_INT_ENAB; |
| 476 | } else { |
| 477 | /* DCD tracks RI and SYNC tracks DSR for the B side. */ |
| 478 | if (!(zport->regs[15] & (DCDIE | SYNCIE))) |
| 479 | zport->regs[1] &= ~EXT_INT_ENAB; |
| 480 | } |
| 481 | |
| 482 | write_zsreg(zport, R15, zport->regs[15]); |
| 483 | write_zsreg(zport, R1, zport->regs[1]); |
| 484 | spin_unlock(&scc->zlock); |
| 485 | } |
| 486 | |
| 487 | static void zs_enable_ms(struct uart_port *uport) |
| 488 | { |
| 489 | struct zs_port *zport = to_zport(uport); |
| 490 | struct zs_scc *scc = zport->scc; |
| 491 | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; |
| 492 | |
| 493 | if (zport == zport_a) |
| 494 | return; |
| 495 | |
| 496 | spin_lock(&scc->zlock); |
| 497 | |
| 498 | /* Clear Ext interrupts if not being handled already. */ |
| 499 | if (!(zport_a->regs[1] & EXT_INT_ENAB)) |
| 500 | write_zsreg(zport_a, R0, RES_EXT_INT); |
| 501 | |
| 502 | /* A-side DCD tracks RI and SYNC tracks DSR. */ |
| 503 | zport_a->regs[1] |= EXT_INT_ENAB; |
| 504 | zport_a->regs[15] |= DCDIE | SYNCIE; |
| 505 | |
| 506 | /* This-side DCD tracks DCD and CTS tracks CTS. */ |
| 507 | zport->regs[15] |= DCDIE | CTSIE; |
| 508 | |
| 509 | zs_raw_xor_mctrl(zport); |
| 510 | |
| 511 | write_zsreg(zport_a, R1, zport_a->regs[1]); |
| 512 | write_zsreg(zport_a, R15, zport_a->regs[15]); |
| 513 | write_zsreg(zport, R15, zport->regs[15]); |
| 514 | spin_unlock(&scc->zlock); |
| 515 | } |
| 516 | |
| 517 | static void zs_break_ctl(struct uart_port *uport, int break_state) |
| 518 | { |
| 519 | struct zs_port *zport = to_zport(uport); |
| 520 | struct zs_scc *scc = zport->scc; |
| 521 | unsigned long flags; |
| 522 | |
| 523 | spin_lock_irqsave(&scc->zlock, flags); |
| 524 | if (break_state == -1) |
| 525 | zport->regs[5] |= SND_BRK; |
| 526 | else |
| 527 | zport->regs[5] &= ~SND_BRK; |
| 528 | write_zsreg(zport, R5, zport->regs[5]); |
| 529 | spin_unlock_irqrestore(&scc->zlock, flags); |
| 530 | } |
| 531 | |
| 532 | |
| 533 | /* |
| 534 | * Interrupt handling routines. |
| 535 | */ |
| 536 | #define Rx_BRK 0x0100 /* BREAK event software flag. */ |
| 537 | #define Rx_SYS 0x0200 /* SysRq event software flag. */ |
| 538 | |
| 539 | static void zs_receive_chars(struct zs_port *zport) |
| 540 | { |
| 541 | struct uart_port *uport = &zport->port; |
| 542 | struct zs_scc *scc = zport->scc; |
| 543 | struct uart_icount *icount; |
| 544 | unsigned int avail, status, ch, flag; |
| 545 | int count; |
| 546 | |
| 547 | for (count = 16; count; count--) { |
| 548 | spin_lock(&scc->zlock); |
| 549 | avail = read_zsreg(zport, R0) & Rx_CH_AV; |
| 550 | spin_unlock(&scc->zlock); |
| 551 | if (!avail) |
| 552 | break; |
| 553 | |
| 554 | spin_lock(&scc->zlock); |
| 555 | status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR); |
| 556 | ch = read_zsdata(zport); |
| 557 | spin_unlock(&scc->zlock); |
| 558 | |
| 559 | flag = TTY_NORMAL; |
| 560 | |
| 561 | icount = &uport->icount; |
| 562 | icount->rx++; |
| 563 | |
| 564 | /* Handle the null char got when BREAK is removed. */ |
| 565 | if (!ch) |
| 566 | status |= zport->tty_break; |
| 567 | if (unlikely(status & |
| 568 | (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) { |
| 569 | zport->tty_break = 0; |
| 570 | |
| 571 | /* Reset the error indication. */ |
| 572 | if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) { |
| 573 | spin_lock(&scc->zlock); |
| 574 | write_zsreg(zport, R0, ERR_RES); |
| 575 | spin_unlock(&scc->zlock); |
| 576 | } |
| 577 | |
| 578 | if (status & (Rx_SYS | Rx_BRK)) { |
| 579 | icount->brk++; |
| 580 | /* SysRq discards the null char. */ |
| 581 | if (status & Rx_SYS) |
| 582 | continue; |
| 583 | } else if (status & FRM_ERR) |
| 584 | icount->frame++; |
| 585 | else if (status & PAR_ERR) |
| 586 | icount->parity++; |
| 587 | if (status & Rx_OVR) |
| 588 | icount->overrun++; |
| 589 | |
| 590 | status &= uport->read_status_mask; |
| 591 | if (status & Rx_BRK) |
| 592 | flag = TTY_BREAK; |
| 593 | else if (status & FRM_ERR) |
| 594 | flag = TTY_FRAME; |
| 595 | else if (status & PAR_ERR) |
| 596 | flag = TTY_PARITY; |
| 597 | } |
| 598 | |
| 599 | if (uart_handle_sysrq_char(uport, ch)) |
| 600 | continue; |
| 601 | |
| 602 | uart_insert_char(uport, status, Rx_OVR, ch, flag); |
| 603 | } |
| 604 | |
| 605 | tty_flip_buffer_push(uport->info->tty); |
| 606 | } |
| 607 | |
| 608 | static void zs_raw_transmit_chars(struct zs_port *zport) |
| 609 | { |
| 610 | struct circ_buf *xmit = &zport->port.info->xmit; |
| 611 | |
| 612 | /* XON/XOFF chars. */ |
| 613 | if (zport->port.x_char) { |
| 614 | write_zsdata(zport, zport->port.x_char); |
| 615 | zport->port.icount.tx++; |
| 616 | zport->port.x_char = 0; |
| 617 | return; |
| 618 | } |
| 619 | |
| 620 | /* If nothing to do or stopped or hardware stopped. */ |
| 621 | if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) { |
| 622 | zs_raw_stop_tx(zport); |
| 623 | return; |
| 624 | } |
| 625 | |
| 626 | /* Send char. */ |
| 627 | write_zsdata(zport, xmit->buf[xmit->tail]); |
| 628 | xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); |
| 629 | zport->port.icount.tx++; |
| 630 | |
| 631 | if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) |
| 632 | uart_write_wakeup(&zport->port); |
| 633 | |
| 634 | /* Are we are done? */ |
| 635 | if (uart_circ_empty(xmit)) |
| 636 | zs_raw_stop_tx(zport); |
| 637 | } |
| 638 | |
| 639 | static void zs_transmit_chars(struct zs_port *zport) |
| 640 | { |
| 641 | struct zs_scc *scc = zport->scc; |
| 642 | |
| 643 | spin_lock(&scc->zlock); |
| 644 | zs_raw_transmit_chars(zport); |
| 645 | spin_unlock(&scc->zlock); |
| 646 | } |
| 647 | |
| 648 | static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a) |
| 649 | { |
| 650 | struct uart_port *uport = &zport->port; |
| 651 | struct zs_scc *scc = zport->scc; |
| 652 | unsigned int delta; |
| 653 | u8 status, brk; |
| 654 | |
| 655 | spin_lock(&scc->zlock); |
| 656 | |
| 657 | /* Get status from Read Register 0. */ |
| 658 | status = read_zsreg(zport, R0); |
| 659 | |
| 660 | if (zport->regs[15] & BRKIE) { |
| 661 | brk = status & BRK_ABRT; |
| 662 | if (brk && !zport->brk) { |
| 663 | spin_unlock(&scc->zlock); |
| 664 | if (uart_handle_break(uport)) |
| 665 | zport->tty_break = Rx_SYS; |
| 666 | else |
| 667 | zport->tty_break = Rx_BRK; |
| 668 | spin_lock(&scc->zlock); |
| 669 | } |
| 670 | zport->brk = brk; |
| 671 | } |
| 672 | |
| 673 | if (zport != zport_a) { |
| 674 | delta = zs_raw_xor_mctrl(zport); |
| 675 | spin_unlock(&scc->zlock); |
| 676 | |
| 677 | if (delta & TIOCM_CTS) |
| 678 | uart_handle_cts_change(uport, |
| 679 | zport->mctrl & TIOCM_CTS); |
| 680 | if (delta & TIOCM_CAR) |
| 681 | uart_handle_dcd_change(uport, |
| 682 | zport->mctrl & TIOCM_CAR); |
| 683 | if (delta & TIOCM_RNG) |
| 684 | uport->icount.dsr++; |
| 685 | if (delta & TIOCM_DSR) |
| 686 | uport->icount.rng++; |
| 687 | |
| 688 | if (delta) |
| 689 | wake_up_interruptible(&uport->info->delta_msr_wait); |
| 690 | |
| 691 | spin_lock(&scc->zlock); |
| 692 | } |
| 693 | |
| 694 | /* Clear the status condition... */ |
| 695 | write_zsreg(zport, R0, RES_EXT_INT); |
| 696 | |
| 697 | spin_unlock(&scc->zlock); |
| 698 | } |
| 699 | |
| 700 | /* |
| 701 | * This is the Z85C30 driver's generic interrupt routine. |
| 702 | */ |
| 703 | static irqreturn_t zs_interrupt(int irq, void *dev_id) |
| 704 | { |
| 705 | struct zs_scc *scc = dev_id; |
| 706 | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; |
| 707 | struct zs_port *zport_b = &scc->zport[ZS_CHAN_B]; |
| 708 | irqreturn_t status = IRQ_NONE; |
| 709 | u8 zs_intreg; |
| 710 | int count; |
| 711 | |
| 712 | /* |
| 713 | * NOTE: The read register 3, which holds the irq status, |
| 714 | * does so for both channels on each chip. Although |
| 715 | * the status value itself must be read from the A |
| 716 | * channel and is only valid when read from channel A. |
| 717 | * Yes... broken hardware... |
| 718 | */ |
| 719 | for (count = 16; count; count--) { |
| 720 | spin_lock(&scc->zlock); |
| 721 | zs_intreg = read_zsreg(zport_a, R3); |
| 722 | spin_unlock(&scc->zlock); |
| 723 | if (!zs_intreg) |
| 724 | break; |
| 725 | |
| 726 | /* |
| 727 | * We do not like losing characters, so we prioritise |
| 728 | * interrupt sources a little bit differently than |
| 729 | * the SCC would, was it allowed to. |
| 730 | */ |
| 731 | if (zs_intreg & CHBRxIP) |
| 732 | zs_receive_chars(zport_b); |
| 733 | if (zs_intreg & CHARxIP) |
| 734 | zs_receive_chars(zport_a); |
| 735 | if (zs_intreg & CHBEXT) |
| 736 | zs_status_handle(zport_b, zport_a); |
| 737 | if (zs_intreg & CHAEXT) |
| 738 | zs_status_handle(zport_a, zport_a); |
| 739 | if (zs_intreg & CHBTxIP) |
| 740 | zs_transmit_chars(zport_b); |
| 741 | if (zs_intreg & CHATxIP) |
| 742 | zs_transmit_chars(zport_a); |
| 743 | |
| 744 | status = IRQ_HANDLED; |
| 745 | } |
| 746 | |
| 747 | return status; |
| 748 | } |
| 749 | |
| 750 | |
| 751 | /* |
| 752 | * Finally, routines used to initialize the serial port. |
| 753 | */ |
| 754 | static int zs_startup(struct uart_port *uport) |
| 755 | { |
| 756 | struct zs_port *zport = to_zport(uport); |
| 757 | struct zs_scc *scc = zport->scc; |
| 758 | unsigned long flags; |
| 759 | int irq_guard; |
| 760 | int ret; |
| 761 | |
| 762 | irq_guard = atomic_add_return(1, &scc->irq_guard); |
| 763 | if (irq_guard == 1) { |
| 764 | ret = request_irq(zport->port.irq, zs_interrupt, |
| 765 | IRQF_SHARED, "scc", scc); |
| 766 | if (ret) { |
| 767 | atomic_add(-1, &scc->irq_guard); |
| 768 | printk(KERN_ERR "zs: can't get irq %d\n", |
| 769 | zport->port.irq); |
| 770 | return ret; |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | spin_lock_irqsave(&scc->zlock, flags); |
| 775 | |
| 776 | /* Clear the receive FIFO. */ |
| 777 | zs_receive_drain(zport); |
| 778 | |
| 779 | /* Clear the interrupt registers. */ |
| 780 | write_zsreg(zport, R0, ERR_RES); |
| 781 | write_zsreg(zport, R0, RES_Tx_P); |
| 782 | /* But Ext only if not being handled already. */ |
| 783 | if (!(zport->regs[1] & EXT_INT_ENAB)) |
| 784 | write_zsreg(zport, R0, RES_EXT_INT); |
| 785 | |
| 786 | /* Finally, enable sequencing and interrupts. */ |
| 787 | zport->regs[1] &= ~RxINT_MASK; |
| 788 | zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB; |
| 789 | zport->regs[3] |= RxENABLE; |
| 790 | zport->regs[5] |= TxENAB; |
| 791 | zport->regs[15] |= BRKIE; |
| 792 | write_zsreg(zport, R1, zport->regs[1]); |
| 793 | write_zsreg(zport, R3, zport->regs[3]); |
| 794 | write_zsreg(zport, R5, zport->regs[5]); |
| 795 | write_zsreg(zport, R15, zport->regs[15]); |
| 796 | |
| 797 | /* Record the current state of RR0. */ |
| 798 | zport->mctrl = zs_raw_get_mctrl(zport); |
| 799 | zport->brk = read_zsreg(zport, R0) & BRK_ABRT; |
| 800 | |
| 801 | zport->tx_stopped = 1; |
| 802 | |
| 803 | spin_unlock_irqrestore(&scc->zlock, flags); |
| 804 | |
| 805 | return 0; |
| 806 | } |
| 807 | |
| 808 | static void zs_shutdown(struct uart_port *uport) |
| 809 | { |
| 810 | struct zs_port *zport = to_zport(uport); |
| 811 | struct zs_scc *scc = zport->scc; |
| 812 | unsigned long flags; |
| 813 | int irq_guard; |
| 814 | |
| 815 | spin_lock_irqsave(&scc->zlock, flags); |
| 816 | |
| 817 | zport->regs[5] &= ~TxENAB; |
| 818 | zport->regs[3] &= ~RxENABLE; |
| 819 | write_zsreg(zport, R5, zport->regs[5]); |
| 820 | write_zsreg(zport, R3, zport->regs[3]); |
| 821 | |
| 822 | spin_unlock_irqrestore(&scc->zlock, flags); |
| 823 | |
| 824 | irq_guard = atomic_add_return(-1, &scc->irq_guard); |
| 825 | if (!irq_guard) |
| 826 | free_irq(zport->port.irq, scc); |
| 827 | } |
| 828 | |
| 829 | |
| 830 | static void zs_reset(struct zs_port *zport) |
| 831 | { |
| 832 | struct zs_scc *scc = zport->scc; |
| 833 | int irq; |
| 834 | unsigned long flags; |
| 835 | |
| 836 | spin_lock_irqsave(&scc->zlock, flags); |
| 837 | irq = !irqs_disabled_flags(flags); |
| 838 | if (!scc->initialised) { |
| 839 | /* Reset the pointer first, just in case... */ |
| 840 | read_zsreg(zport, R0); |
| 841 | /* And let the current transmission finish. */ |
| 842 | zs_line_drain(zport, irq); |
| 843 | write_zsreg(zport, R9, FHWRES); |
| 844 | udelay(10); |
| 845 | write_zsreg(zport, R9, 0); |
| 846 | scc->initialised = 1; |
| 847 | } |
| 848 | load_zsregs(zport, zport->regs, irq); |
| 849 | spin_unlock_irqrestore(&scc->zlock, flags); |
| 850 | } |
| 851 | |
| 852 | static void zs_set_termios(struct uart_port *uport, struct ktermios *termios, |
| 853 | struct ktermios *old_termios) |
| 854 | { |
| 855 | struct zs_port *zport = to_zport(uport); |
| 856 | struct zs_scc *scc = zport->scc; |
| 857 | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; |
| 858 | int irq; |
| 859 | unsigned int baud, brg; |
| 860 | unsigned long flags; |
| 861 | |
| 862 | spin_lock_irqsave(&scc->zlock, flags); |
| 863 | irq = !irqs_disabled_flags(flags); |
| 864 | |
| 865 | /* Byte size. */ |
| 866 | zport->regs[3] &= ~RxNBITS_MASK; |
| 867 | zport->regs[5] &= ~TxNBITS_MASK; |
| 868 | switch (termios->c_cflag & CSIZE) { |
| 869 | case CS5: |
| 870 | zport->regs[3] |= Rx5; |
| 871 | zport->regs[5] |= Tx5; |
| 872 | break; |
| 873 | case CS6: |
| 874 | zport->regs[3] |= Rx6; |
| 875 | zport->regs[5] |= Tx6; |
| 876 | break; |
| 877 | case CS7: |
| 878 | zport->regs[3] |= Rx7; |
| 879 | zport->regs[5] |= Tx7; |
| 880 | break; |
| 881 | case CS8: |
| 882 | default: |
| 883 | zport->regs[3] |= Rx8; |
| 884 | zport->regs[5] |= Tx8; |
| 885 | break; |
| 886 | } |
| 887 | |
| 888 | /* Parity and stop bits. */ |
| 889 | zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN); |
| 890 | if (termios->c_cflag & CSTOPB) |
| 891 | zport->regs[4] |= SB2; |
| 892 | else |
| 893 | zport->regs[4] |= SB1; |
| 894 | if (termios->c_cflag & PARENB) |
| 895 | zport->regs[4] |= PAR_ENA; |
| 896 | if (!(termios->c_cflag & PARODD)) |
| 897 | zport->regs[4] |= PAR_EVEN; |
| 898 | switch (zport->clk_mode) { |
| 899 | case 64: |
| 900 | zport->regs[4] |= X64CLK; |
| 901 | break; |
| 902 | case 32: |
| 903 | zport->regs[4] |= X32CLK; |
| 904 | break; |
| 905 | case 16: |
| 906 | zport->regs[4] |= X16CLK; |
| 907 | break; |
| 908 | case 1: |
| 909 | zport->regs[4] |= X1CLK; |
| 910 | break; |
| 911 | default: |
| 912 | BUG(); |
| 913 | } |
| 914 | |
| 915 | baud = uart_get_baud_rate(uport, termios, old_termios, 0, |
| 916 | uport->uartclk / zport->clk_mode / 4); |
| 917 | |
| 918 | brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode); |
| 919 | zport->regs[12] = brg & 0xff; |
| 920 | zport->regs[13] = (brg >> 8) & 0xff; |
| 921 | |
| 922 | uart_update_timeout(uport, termios->c_cflag, baud); |
| 923 | |
| 924 | uport->read_status_mask = Rx_OVR; |
| 925 | if (termios->c_iflag & INPCK) |
| 926 | uport->read_status_mask |= FRM_ERR | PAR_ERR; |
| 927 | if (termios->c_iflag & (BRKINT | PARMRK)) |
| 928 | uport->read_status_mask |= Rx_BRK; |
| 929 | |
| 930 | uport->ignore_status_mask = 0; |
| 931 | if (termios->c_iflag & IGNPAR) |
| 932 | uport->ignore_status_mask |= FRM_ERR | PAR_ERR; |
| 933 | if (termios->c_iflag & IGNBRK) { |
| 934 | uport->ignore_status_mask |= Rx_BRK; |
| 935 | if (termios->c_iflag & IGNPAR) |
| 936 | uport->ignore_status_mask |= Rx_OVR; |
| 937 | } |
| 938 | |
| 939 | if (termios->c_cflag & CREAD) |
| 940 | zport->regs[3] |= RxENABLE; |
| 941 | else |
| 942 | zport->regs[3] &= ~RxENABLE; |
| 943 | |
| 944 | if (zport != zport_a) { |
| 945 | if (!(termios->c_cflag & CLOCAL)) { |
| 946 | zport->regs[15] |= DCDIE; |
| 947 | } else |
| 948 | zport->regs[15] &= ~DCDIE; |
| 949 | if (termios->c_cflag & CRTSCTS) { |
| 950 | zport->regs[15] |= CTSIE; |
| 951 | } else |
| 952 | zport->regs[15] &= ~CTSIE; |
| 953 | zs_raw_xor_mctrl(zport); |
| 954 | } |
| 955 | |
| 956 | /* Load up the new values. */ |
| 957 | load_zsregs(zport, zport->regs, irq); |
| 958 | |
| 959 | spin_unlock_irqrestore(&scc->zlock, flags); |
| 960 | } |
| 961 | |
| 962 | |
| 963 | static const char *zs_type(struct uart_port *uport) |
| 964 | { |
| 965 | return "Z85C30 SCC"; |
| 966 | } |
| 967 | |
| 968 | static void zs_release_port(struct uart_port *uport) |
| 969 | { |
| 970 | iounmap(uport->membase); |
| 971 | uport->membase = 0; |
| 972 | release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE); |
| 973 | } |
| 974 | |
| 975 | static int zs_map_port(struct uart_port *uport) |
| 976 | { |
| 977 | if (!uport->membase) |
| 978 | uport->membase = ioremap_nocache(uport->mapbase, |
| 979 | ZS_CHAN_IO_SIZE); |
| 980 | if (!uport->membase) { |
| 981 | printk(KERN_ERR "zs: Cannot map MMIO\n"); |
| 982 | return -ENOMEM; |
| 983 | } |
| 984 | return 0; |
| 985 | } |
| 986 | |
| 987 | static int zs_request_port(struct uart_port *uport) |
| 988 | { |
| 989 | int ret; |
| 990 | |
| 991 | if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) { |
| 992 | printk(KERN_ERR "zs: Unable to reserve MMIO resource\n"); |
| 993 | return -EBUSY; |
| 994 | } |
| 995 | ret = zs_map_port(uport); |
| 996 | if (ret) { |
| 997 | release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE); |
| 998 | return ret; |
| 999 | } |
| 1000 | return 0; |
| 1001 | } |
| 1002 | |
| 1003 | static void zs_config_port(struct uart_port *uport, int flags) |
| 1004 | { |
| 1005 | struct zs_port *zport = to_zport(uport); |
| 1006 | |
| 1007 | if (flags & UART_CONFIG_TYPE) { |
| 1008 | if (zs_request_port(uport)) |
| 1009 | return; |
| 1010 | |
| 1011 | uport->type = PORT_ZS; |
| 1012 | |
| 1013 | zs_reset(zport); |
| 1014 | } |
| 1015 | } |
| 1016 | |
| 1017 | static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser) |
| 1018 | { |
| 1019 | struct zs_port *zport = to_zport(uport); |
| 1020 | int ret = 0; |
| 1021 | |
| 1022 | if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS) |
| 1023 | ret = -EINVAL; |
| 1024 | if (ser->irq != uport->irq) |
| 1025 | ret = -EINVAL; |
| 1026 | if (ser->baud_base != uport->uartclk / zport->clk_mode / 4) |
| 1027 | ret = -EINVAL; |
| 1028 | return ret; |
| 1029 | } |
| 1030 | |
| 1031 | |
| 1032 | static struct uart_ops zs_ops = { |
| 1033 | .tx_empty = zs_tx_empty, |
| 1034 | .set_mctrl = zs_set_mctrl, |
| 1035 | .get_mctrl = zs_get_mctrl, |
| 1036 | .stop_tx = zs_stop_tx, |
| 1037 | .start_tx = zs_start_tx, |
| 1038 | .stop_rx = zs_stop_rx, |
| 1039 | .enable_ms = zs_enable_ms, |
| 1040 | .break_ctl = zs_break_ctl, |
| 1041 | .startup = zs_startup, |
| 1042 | .shutdown = zs_shutdown, |
| 1043 | .set_termios = zs_set_termios, |
| 1044 | .type = zs_type, |
| 1045 | .release_port = zs_release_port, |
| 1046 | .request_port = zs_request_port, |
| 1047 | .config_port = zs_config_port, |
| 1048 | .verify_port = zs_verify_port, |
| 1049 | }; |
| 1050 | |
| 1051 | /* |
| 1052 | * Initialize Z85C30 port structures. |
| 1053 | */ |
| 1054 | static int __init zs_probe_sccs(void) |
| 1055 | { |
| 1056 | static int probed; |
| 1057 | struct zs_parms zs_parms; |
| 1058 | int chip, side, irq; |
| 1059 | int n_chips = 0; |
| 1060 | int i; |
| 1061 | |
| 1062 | if (probed) |
| 1063 | return 0; |
| 1064 | |
| 1065 | irq = dec_interrupt[DEC_IRQ_SCC0]; |
| 1066 | if (irq >= 0) { |
| 1067 | zs_parms.scc[n_chips] = IOASIC_SCC0; |
| 1068 | zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0]; |
| 1069 | n_chips++; |
| 1070 | } |
| 1071 | irq = dec_interrupt[DEC_IRQ_SCC1]; |
| 1072 | if (irq >= 0) { |
| 1073 | zs_parms.scc[n_chips] = IOASIC_SCC1; |
| 1074 | zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1]; |
| 1075 | n_chips++; |
| 1076 | } |
| 1077 | if (!n_chips) |
| 1078 | return -ENXIO; |
| 1079 | |
| 1080 | probed = 1; |
| 1081 | |
| 1082 | for (chip = 0; chip < n_chips; chip++) { |
| 1083 | spin_lock_init(&zs_sccs[chip].zlock); |
| 1084 | for (side = 0; side < ZS_NUM_CHAN; side++) { |
| 1085 | struct zs_port *zport = &zs_sccs[chip].zport[side]; |
| 1086 | struct uart_port *uport = &zport->port; |
| 1087 | |
| 1088 | zport->scc = &zs_sccs[chip]; |
| 1089 | zport->clk_mode = 16; |
| 1090 | |
| 1091 | uport->irq = zs_parms.irq[chip]; |
| 1092 | uport->uartclk = ZS_CLOCK; |
| 1093 | uport->fifosize = 1; |
| 1094 | uport->iotype = UPIO_MEM; |
| 1095 | uport->flags = UPF_BOOT_AUTOCONF; |
| 1096 | uport->ops = &zs_ops; |
| 1097 | uport->line = chip * ZS_NUM_CHAN + side; |
| 1098 | uport->mapbase = dec_kn_slot_base + |
| 1099 | zs_parms.scc[chip] + |
| 1100 | (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE; |
| 1101 | |
| 1102 | for (i = 0; i < ZS_NUM_REGS; i++) |
| 1103 | zport->regs[i] = zs_init_regs[i]; |
| 1104 | } |
| 1105 | } |
| 1106 | |
| 1107 | return 0; |
| 1108 | } |
| 1109 | |
| 1110 | |
| 1111 | #ifdef CONFIG_SERIAL_ZS_CONSOLE |
| 1112 | static void zs_console_putchar(struct uart_port *uport, int ch) |
| 1113 | { |
| 1114 | struct zs_port *zport = to_zport(uport); |
| 1115 | struct zs_scc *scc = zport->scc; |
| 1116 | int irq; |
| 1117 | unsigned long flags; |
| 1118 | |
| 1119 | spin_lock_irqsave(&scc->zlock, flags); |
| 1120 | irq = !irqs_disabled_flags(flags); |
| 1121 | if (zs_transmit_drain(zport, irq)) |
| 1122 | write_zsdata(zport, ch); |
| 1123 | spin_unlock_irqrestore(&scc->zlock, flags); |
| 1124 | } |
| 1125 | |
| 1126 | /* |
| 1127 | * Print a string to the serial port trying not to disturb |
| 1128 | * any possible real use of the port... |
| 1129 | */ |
| 1130 | static void zs_console_write(struct console *co, const char *s, |
| 1131 | unsigned int count) |
| 1132 | { |
| 1133 | int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN; |
| 1134 | struct zs_port *zport = &zs_sccs[chip].zport[side]; |
| 1135 | struct zs_scc *scc = zport->scc; |
| 1136 | unsigned long flags; |
| 1137 | u8 txint, txenb; |
| 1138 | int irq; |
| 1139 | |
| 1140 | /* Disable transmit interrupts and enable the transmitter. */ |
| 1141 | spin_lock_irqsave(&scc->zlock, flags); |
| 1142 | txint = zport->regs[1]; |
| 1143 | txenb = zport->regs[5]; |
| 1144 | if (txint & TxINT_ENAB) { |
| 1145 | zport->regs[1] = txint & ~TxINT_ENAB; |
| 1146 | write_zsreg(zport, R1, zport->regs[1]); |
| 1147 | } |
| 1148 | if (!(txenb & TxENAB)) { |
| 1149 | zport->regs[5] = txenb | TxENAB; |
| 1150 | write_zsreg(zport, R5, zport->regs[5]); |
| 1151 | } |
| 1152 | spin_unlock_irqrestore(&scc->zlock, flags); |
| 1153 | |
| 1154 | uart_console_write(&zport->port, s, count, zs_console_putchar); |
| 1155 | |
| 1156 | /* Restore transmit interrupts and the transmitter enable. */ |
| 1157 | spin_lock_irqsave(&scc->zlock, flags); |
| 1158 | irq = !irqs_disabled_flags(flags); |
| 1159 | zs_line_drain(zport, irq); |
| 1160 | if (!(txenb & TxENAB)) { |
| 1161 | zport->regs[5] &= ~TxENAB; |
| 1162 | write_zsreg(zport, R5, zport->regs[5]); |
| 1163 | } |
| 1164 | if (txint & TxINT_ENAB) { |
| 1165 | zport->regs[1] |= TxINT_ENAB; |
| 1166 | write_zsreg(zport, R1, zport->regs[1]); |
| 1167 | } |
| 1168 | spin_unlock_irqrestore(&scc->zlock, flags); |
| 1169 | } |
| 1170 | |
| 1171 | /* |
| 1172 | * Setup serial console baud/bits/parity. We do two things here: |
| 1173 | * - construct a cflag setting for the first uart_open() |
| 1174 | * - initialise the serial port |
| 1175 | * Return non-zero if we didn't find a serial port. |
| 1176 | */ |
| 1177 | static int __init zs_console_setup(struct console *co, char *options) |
| 1178 | { |
| 1179 | int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN; |
| 1180 | struct zs_port *zport = &zs_sccs[chip].zport[side]; |
| 1181 | struct uart_port *uport = &zport->port; |
| 1182 | int baud = 9600; |
| 1183 | int bits = 8; |
| 1184 | int parity = 'n'; |
| 1185 | int flow = 'n'; |
| 1186 | int ret; |
| 1187 | |
| 1188 | ret = zs_map_port(uport); |
| 1189 | if (ret) |
| 1190 | return ret; |
| 1191 | |
| 1192 | zs_reset(zport); |
| 1193 | |
| 1194 | if (options) |
| 1195 | uart_parse_options(options, &baud, &parity, &bits, &flow); |
| 1196 | return uart_set_options(uport, co, baud, parity, bits, flow); |
| 1197 | } |
| 1198 | |
| 1199 | static struct uart_driver zs_reg; |
| 1200 | static struct console zs_console = { |
| 1201 | .name = "ttyS", |
| 1202 | .write = zs_console_write, |
| 1203 | .device = uart_console_device, |
| 1204 | .setup = zs_console_setup, |
| 1205 | .flags = CON_PRINTBUFFER, |
| 1206 | .index = -1, |
| 1207 | .data = &zs_reg, |
| 1208 | }; |
| 1209 | |
| 1210 | /* |
| 1211 | * Register console. |
| 1212 | */ |
| 1213 | static int __init zs_serial_console_init(void) |
| 1214 | { |
| 1215 | int ret; |
| 1216 | |
| 1217 | ret = zs_probe_sccs(); |
| 1218 | if (ret) |
| 1219 | return ret; |
| 1220 | register_console(&zs_console); |
| 1221 | |
| 1222 | return 0; |
| 1223 | } |
| 1224 | |
| 1225 | console_initcall(zs_serial_console_init); |
| 1226 | |
| 1227 | #define SERIAL_ZS_CONSOLE &zs_console |
| 1228 | #else |
| 1229 | #define SERIAL_ZS_CONSOLE NULL |
| 1230 | #endif /* CONFIG_SERIAL_ZS_CONSOLE */ |
| 1231 | |
| 1232 | static struct uart_driver zs_reg = { |
| 1233 | .owner = THIS_MODULE, |
| 1234 | .driver_name = "serial", |
| 1235 | .dev_name = "ttyS", |
| 1236 | .major = TTY_MAJOR, |
| 1237 | .minor = 64, |
| 1238 | .nr = ZS_NUM_SCCS * ZS_NUM_CHAN, |
| 1239 | .cons = SERIAL_ZS_CONSOLE, |
| 1240 | }; |
| 1241 | |
| 1242 | /* zs_init inits the driver. */ |
| 1243 | static int __init zs_init(void) |
| 1244 | { |
| 1245 | int i, ret; |
| 1246 | |
| 1247 | pr_info("%s%s\n", zs_name, zs_version); |
| 1248 | |
| 1249 | /* Find out how many Z85C30 SCCs we have. */ |
| 1250 | ret = zs_probe_sccs(); |
| 1251 | if (ret) |
| 1252 | return ret; |
| 1253 | |
| 1254 | ret = uart_register_driver(&zs_reg); |
| 1255 | if (ret) |
| 1256 | return ret; |
| 1257 | |
| 1258 | for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) { |
| 1259 | struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN]; |
| 1260 | struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN]; |
| 1261 | struct uart_port *uport = &zport->port; |
| 1262 | |
| 1263 | if (zport->scc) |
| 1264 | uart_add_one_port(&zs_reg, uport); |
| 1265 | } |
| 1266 | |
| 1267 | return 0; |
| 1268 | } |
| 1269 | |
| 1270 | static void __exit zs_exit(void) |
| 1271 | { |
| 1272 | int i; |
| 1273 | |
| 1274 | for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) { |
| 1275 | struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN]; |
| 1276 | struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN]; |
| 1277 | struct uart_port *uport = &zport->port; |
| 1278 | |
| 1279 | if (zport->scc) |
| 1280 | uart_remove_one_port(&zs_reg, uport); |
| 1281 | } |
| 1282 | |
| 1283 | uart_unregister_driver(&zs_reg); |
| 1284 | } |
| 1285 | |
| 1286 | module_init(zs_init); |
| 1287 | module_exit(zs_exit); |