Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller. |
| 2 | * |
| 3 | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) |
| 4 | * |
| 5 | * This driver is based on the CyberStorm driver, hence the occasional |
| 6 | * reference to CyberStorm. |
| 7 | */ |
| 8 | |
| 9 | /* TODO: |
| 10 | * |
| 11 | * 1) Figure out how to make a cleaner merge with the sparc driver with regard |
| 12 | * to the caches and the Sparc MMU mapping. |
| 13 | * 2) Make as few routines required outside the generic driver. A lot of the |
| 14 | * routines in this file used to be inline! |
| 15 | */ |
| 16 | |
| 17 | #include <linux/module.h> |
| 18 | |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/kernel.h> |
| 21 | #include <linux/delay.h> |
| 22 | #include <linux/types.h> |
| 23 | #include <linux/string.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/blkdev.h> |
| 26 | #include <linux/proc_fs.h> |
| 27 | #include <linux/stat.h> |
| 28 | #include <linux/interrupt.h> |
| 29 | |
| 30 | #include "scsi.h" |
| 31 | #include <scsi/scsi_host.h> |
| 32 | #include "NCR53C9x.h" |
| 33 | |
| 34 | #include <linux/zorro.h> |
| 35 | #include <asm/irq.h> |
| 36 | #include <asm/amigaints.h> |
| 37 | #include <asm/amigahw.h> |
| 38 | |
| 39 | #include <asm/pgtable.h> |
| 40 | |
| 41 | #define MKIV 1 |
| 42 | |
| 43 | /* The controller registers can be found in the Z2 config area at these |
| 44 | * offsets: |
| 45 | */ |
| 46 | #define BLZ1230_ESP_ADDR 0x8000 |
| 47 | #define BLZ1230_DMA_ADDR 0x10000 |
| 48 | #define BLZ1230II_ESP_ADDR 0x10000 |
| 49 | #define BLZ1230II_DMA_ADDR 0x10021 |
| 50 | |
| 51 | |
| 52 | /* The Blizzard 1230 DMA interface |
| 53 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 54 | * Only two things can be programmed in the Blizzard DMA: |
| 55 | * 1) The data direction is controlled by the status of bit 31 (1 = write) |
| 56 | * 2) The source/dest address (word aligned, shifted one right) in bits 30-0 |
| 57 | * |
| 58 | * Program DMA by first latching the highest byte of the address/direction |
| 59 | * (i.e. bits 31-24 of the long word constructed as described in steps 1+2 |
| 60 | * above). Then write each byte of the address/direction (starting with the |
| 61 | * top byte, working down) to the DMA address register. |
| 62 | * |
| 63 | * Figure out interrupt status by reading the ESP status byte. |
| 64 | */ |
| 65 | struct blz1230_dma_registers { |
| 66 | volatile unsigned char dma_addr; /* DMA address [0x0000] */ |
| 67 | unsigned char dmapad2[0x7fff]; |
| 68 | volatile unsigned char dma_latch; /* DMA latch [0x8000] */ |
| 69 | }; |
| 70 | |
| 71 | struct blz1230II_dma_registers { |
| 72 | volatile unsigned char dma_addr; /* DMA address [0x0000] */ |
| 73 | unsigned char dmapad2[0xf]; |
| 74 | volatile unsigned char dma_latch; /* DMA latch [0x0010] */ |
| 75 | }; |
| 76 | |
| 77 | #define BLZ1230_DMA_WRITE 0x80000000 |
| 78 | |
| 79 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); |
| 80 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); |
| 81 | static void dma_dump_state(struct NCR_ESP *esp); |
| 82 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); |
| 83 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); |
| 84 | static void dma_ints_off(struct NCR_ESP *esp); |
| 85 | static void dma_ints_on(struct NCR_ESP *esp); |
| 86 | static int dma_irq_p(struct NCR_ESP *esp); |
| 87 | static int dma_ports_p(struct NCR_ESP *esp); |
| 88 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); |
| 89 | |
| 90 | static volatile unsigned char cmd_buffer[16]; |
| 91 | /* This is where all commands are put |
| 92 | * before they are transferred to the ESP chip |
| 93 | * via PIO. |
| 94 | */ |
| 95 | |
| 96 | /***************************************************************** Detection */ |
Christoph Hellwig | d0be4a7d | 2005-10-31 18:31:40 +0100 | [diff] [blame] | 97 | int __init blz1230_esp_detect(struct scsi_host_template *tpnt) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 98 | { |
| 99 | struct NCR_ESP *esp; |
| 100 | struct zorro_dev *z = NULL; |
| 101 | unsigned long address; |
| 102 | struct ESP_regs *eregs; |
| 103 | unsigned long board; |
| 104 | |
| 105 | #if MKIV |
| 106 | #define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260 |
| 107 | #define REAL_BLZ1230_ESP_ADDR BLZ1230_ESP_ADDR |
| 108 | #define REAL_BLZ1230_DMA_ADDR BLZ1230_DMA_ADDR |
| 109 | #else |
| 110 | #define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060 |
| 111 | #define REAL_BLZ1230_ESP_ADDR BLZ1230II_ESP_ADDR |
| 112 | #define REAL_BLZ1230_DMA_ADDR BLZ1230II_DMA_ADDR |
| 113 | #endif |
| 114 | |
| 115 | if ((z = zorro_find_device(REAL_BLZ1230_ID, z))) { |
| 116 | board = z->resource.start; |
| 117 | if (request_mem_region(board+REAL_BLZ1230_ESP_ADDR, |
| 118 | sizeof(struct ESP_regs), "NCR53C9x")) { |
| 119 | /* Do some magic to figure out if the blizzard is |
| 120 | * equipped with a SCSI controller |
| 121 | */ |
| 122 | address = ZTWO_VADDR(board); |
| 123 | eregs = (struct ESP_regs *)(address + REAL_BLZ1230_ESP_ADDR); |
Maciej W. Rozycki | 4df4db5 | 2007-02-05 16:28:29 -0800 | [diff] [blame] | 124 | esp = esp_allocate(tpnt, (void *)board + REAL_BLZ1230_ESP_ADDR, |
| 125 | 0); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 126 | |
| 127 | esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7)); |
| 128 | udelay(5); |
| 129 | if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7)) |
| 130 | goto err_out; |
| 131 | |
| 132 | /* Do command transfer with programmed I/O */ |
| 133 | esp->do_pio_cmds = 1; |
| 134 | |
| 135 | /* Required functions */ |
| 136 | esp->dma_bytes_sent = &dma_bytes_sent; |
| 137 | esp->dma_can_transfer = &dma_can_transfer; |
| 138 | esp->dma_dump_state = &dma_dump_state; |
| 139 | esp->dma_init_read = &dma_init_read; |
| 140 | esp->dma_init_write = &dma_init_write; |
| 141 | esp->dma_ints_off = &dma_ints_off; |
| 142 | esp->dma_ints_on = &dma_ints_on; |
| 143 | esp->dma_irq_p = &dma_irq_p; |
| 144 | esp->dma_ports_p = &dma_ports_p; |
| 145 | esp->dma_setup = &dma_setup; |
| 146 | |
| 147 | /* Optional functions */ |
| 148 | esp->dma_barrier = 0; |
| 149 | esp->dma_drain = 0; |
| 150 | esp->dma_invalidate = 0; |
| 151 | esp->dma_irq_entry = 0; |
| 152 | esp->dma_irq_exit = 0; |
| 153 | esp->dma_led_on = 0; |
| 154 | esp->dma_led_off = 0; |
| 155 | esp->dma_poll = 0; |
| 156 | esp->dma_reset = 0; |
| 157 | |
| 158 | /* SCSI chip speed */ |
| 159 | esp->cfreq = 40000000; |
| 160 | |
| 161 | /* The DMA registers on the Blizzard are mapped |
| 162 | * relative to the device (i.e. in the same Zorro |
| 163 | * I/O block). |
| 164 | */ |
| 165 | esp->dregs = (void *)(address + REAL_BLZ1230_DMA_ADDR); |
| 166 | |
| 167 | /* ESP register base */ |
| 168 | esp->eregs = eregs; |
| 169 | |
| 170 | /* Set the command buffer */ |
| 171 | esp->esp_command = cmd_buffer; |
| 172 | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); |
| 173 | |
| 174 | esp->irq = IRQ_AMIGA_PORTS; |
| 175 | esp->slot = board+REAL_BLZ1230_ESP_ADDR; |
Thomas Gleixner | 1d6f359 | 2006-07-01 19:29:42 -0700 | [diff] [blame] | 176 | if (request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 177 | "Blizzard 1230 SCSI IV", esp->ehost)) |
| 178 | goto err_out; |
| 179 | |
| 180 | /* Figure out our scsi ID on the bus */ |
| 181 | esp->scsi_id = 7; |
| 182 | |
| 183 | /* We don't have a differential SCSI-bus. */ |
| 184 | esp->diff = 0; |
| 185 | |
| 186 | esp_initialize(esp); |
| 187 | |
| 188 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); |
| 189 | esps_running = esps_in_use; |
| 190 | return esps_in_use; |
| 191 | } |
| 192 | } |
| 193 | return 0; |
| 194 | |
| 195 | err_out: |
| 196 | scsi_unregister(esp->ehost); |
| 197 | esp_deallocate(esp); |
| 198 | release_mem_region(board+REAL_BLZ1230_ESP_ADDR, |
| 199 | sizeof(struct ESP_regs)); |
| 200 | return 0; |
| 201 | } |
| 202 | |
| 203 | /************************************************************* DMA Functions */ |
| 204 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) |
| 205 | { |
| 206 | /* Since the Blizzard DMA is fully dedicated to the ESP chip, |
| 207 | * the number of bytes sent (to the ESP chip) equals the number |
| 208 | * of bytes in the FIFO - there is no buffering in the DMA controller. |
| 209 | * XXXX Do I read this right? It is from host to ESP, right? |
| 210 | */ |
| 211 | return fifo_count; |
| 212 | } |
| 213 | |
| 214 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) |
| 215 | { |
| 216 | /* I don't think there's any limit on the Blizzard DMA. So we use what |
| 217 | * the ESP chip can handle (24 bit). |
| 218 | */ |
| 219 | unsigned long sz = sp->SCp.this_residual; |
| 220 | if(sz > 0x1000000) |
| 221 | sz = 0x1000000; |
| 222 | return sz; |
| 223 | } |
| 224 | |
| 225 | static void dma_dump_state(struct NCR_ESP *esp) |
| 226 | { |
| 227 | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", |
Al Viro | b4290a2 | 2006-01-12 01:06:12 -0800 | [diff] [blame] | 228 | amiga_custom.intreqr, amiga_custom.intenar)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 229 | } |
| 230 | |
| 231 | void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) |
| 232 | { |
| 233 | #if MKIV |
| 234 | struct blz1230_dma_registers *dregs = |
| 235 | (struct blz1230_dma_registers *) (esp->dregs); |
| 236 | #else |
| 237 | struct blz1230II_dma_registers *dregs = |
| 238 | (struct blz1230II_dma_registers *) (esp->dregs); |
| 239 | #endif |
| 240 | |
| 241 | cache_clear(addr, length); |
| 242 | |
| 243 | addr >>= 1; |
| 244 | addr &= ~(BLZ1230_DMA_WRITE); |
| 245 | |
| 246 | /* First set latch */ |
| 247 | dregs->dma_latch = (addr >> 24) & 0xff; |
| 248 | |
| 249 | /* Then pump the address to the DMA address register */ |
| 250 | #if MKIV |
| 251 | dregs->dma_addr = (addr >> 24) & 0xff; |
| 252 | #endif |
| 253 | dregs->dma_addr = (addr >> 16) & 0xff; |
| 254 | dregs->dma_addr = (addr >> 8) & 0xff; |
| 255 | dregs->dma_addr = (addr ) & 0xff; |
| 256 | } |
| 257 | |
| 258 | void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) |
| 259 | { |
| 260 | #if MKIV |
| 261 | struct blz1230_dma_registers *dregs = |
| 262 | (struct blz1230_dma_registers *) (esp->dregs); |
| 263 | #else |
| 264 | struct blz1230II_dma_registers *dregs = |
| 265 | (struct blz1230II_dma_registers *) (esp->dregs); |
| 266 | #endif |
| 267 | |
| 268 | cache_push(addr, length); |
| 269 | |
| 270 | addr >>= 1; |
| 271 | addr |= BLZ1230_DMA_WRITE; |
| 272 | |
| 273 | /* First set latch */ |
| 274 | dregs->dma_latch = (addr >> 24) & 0xff; |
| 275 | |
| 276 | /* Then pump the address to the DMA address register */ |
| 277 | #if MKIV |
| 278 | dregs->dma_addr = (addr >> 24) & 0xff; |
| 279 | #endif |
| 280 | dregs->dma_addr = (addr >> 16) & 0xff; |
| 281 | dregs->dma_addr = (addr >> 8) & 0xff; |
| 282 | dregs->dma_addr = (addr ) & 0xff; |
| 283 | } |
| 284 | |
| 285 | static void dma_ints_off(struct NCR_ESP *esp) |
| 286 | { |
| 287 | disable_irq(esp->irq); |
| 288 | } |
| 289 | |
| 290 | static void dma_ints_on(struct NCR_ESP *esp) |
| 291 | { |
| 292 | enable_irq(esp->irq); |
| 293 | } |
| 294 | |
| 295 | static int dma_irq_p(struct NCR_ESP *esp) |
| 296 | { |
| 297 | return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); |
| 298 | } |
| 299 | |
| 300 | static int dma_ports_p(struct NCR_ESP *esp) |
| 301 | { |
Al Viro | b4290a2 | 2006-01-12 01:06:12 -0800 | [diff] [blame] | 302 | return ((amiga_custom.intenar) & IF_PORTS); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 303 | } |
| 304 | |
| 305 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) |
| 306 | { |
| 307 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" |
| 308 | * so when (write) is true, it actually means READ! |
| 309 | */ |
| 310 | if(write){ |
| 311 | dma_init_read(esp, addr, count); |
| 312 | } else { |
| 313 | dma_init_write(esp, addr, count); |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | #define HOSTS_C |
| 318 | |
| 319 | int blz1230_esp_release(struct Scsi_Host *instance) |
| 320 | { |
| 321 | #ifdef MODULE |
| 322 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; |
| 323 | esp_deallocate((struct NCR_ESP *)instance->hostdata); |
| 324 | esp_release(); |
| 325 | release_mem_region(address, sizeof(struct ESP_regs)); |
| 326 | free_irq(IRQ_AMIGA_PORTS, esp_intr); |
| 327 | #endif |
| 328 | return 1; |
| 329 | } |
| 330 | |
| 331 | |
Christoph Hellwig | d0be4a7d | 2005-10-31 18:31:40 +0100 | [diff] [blame] | 332 | static struct scsi_host_template driver_template = { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 333 | .proc_name = "esp-blz1230", |
| 334 | .proc_info = esp_proc_info, |
| 335 | .name = "Blizzard1230 SCSI IV", |
| 336 | .detect = blz1230_esp_detect, |
| 337 | .slave_alloc = esp_slave_alloc, |
| 338 | .slave_destroy = esp_slave_destroy, |
| 339 | .release = blz1230_esp_release, |
| 340 | .queuecommand = esp_queue, |
| 341 | .eh_abort_handler = esp_abort, |
| 342 | .eh_bus_reset_handler = esp_reset, |
| 343 | .can_queue = 7, |
| 344 | .this_id = 7, |
| 345 | .sg_tablesize = SG_ALL, |
| 346 | .cmd_per_lun = 1, |
| 347 | .use_clustering = ENABLE_CLUSTERING |
| 348 | }; |
| 349 | |
| 350 | |
| 351 | #include "scsi_module.c" |
| 352 | |
| 353 | MODULE_LICENSE("GPL"); |