blob: 150ce2abf6c8f193b4e3b5c9fa66001cd709f39e [file] [log] [blame]
Timur Tabi6db71992011-06-09 15:52:06 -05001/*
2 * Freescale Hypervisor Management Driver
3
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Author: Timur Tabi <timur@freescale.com>
6 *
7 * This file is licensed under the terms of the GNU General Public License
8 * version 2. This program is licensed "as is" without any warranty of any
9 * kind, whether express or implied.
10 *
11 * The Freescale hypervisor management driver provides several services to
12 * drivers and applications related to the Freescale hypervisor:
13 *
14 * 1. An ioctl interface for querying and managing partitions.
15 *
16 * 2. A file interface to reading incoming doorbells.
17 *
18 * 3. An interrupt handler for shutting down the partition upon receiving the
19 * shutdown doorbell from a manager partition.
20 *
21 * 4. A kernel interface for receiving callbacks when a managed partition
22 * shuts down.
23 */
24
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/types.h>
29#include <linux/err.h>
30#include <linux/fs.h>
31#include <linux/miscdevice.h>
32#include <linux/mm.h>
33#include <linux/pagemap.h>
34#include <linux/slab.h>
35#include <linux/poll.h>
36#include <linux/of.h>
Rob Herring5af50732013-09-17 14:28:33 -050037#include <linux/of_irq.h>
Timur Tabi6db71992011-06-09 15:52:06 -050038#include <linux/reboot.h>
39#include <linux/uaccess.h>
40#include <linux/notifier.h>
Timur Tabif1f4ee02011-07-19 15:45:51 -050041#include <linux/interrupt.h>
Timur Tabi6db71992011-06-09 15:52:06 -050042
43#include <linux/io.h>
44#include <asm/fsl_hcalls.h>
45
46#include <linux/fsl_hypervisor.h>
47
48static BLOCKING_NOTIFIER_HEAD(failover_subscribers);
49
50/*
51 * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART
52 *
53 * Restart a running partition
54 */
55static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p)
56{
57 struct fsl_hv_ioctl_restart param;
58
59 /* Get the parameters from the user */
60 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_restart)))
61 return -EFAULT;
62
63 param.ret = fh_partition_restart(param.partition);
64
65 if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
66 return -EFAULT;
67
68 return 0;
69}
70
71/*
72 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS
73 *
74 * Query the status of a partition
75 */
76static long ioctl_status(struct fsl_hv_ioctl_status __user *p)
77{
78 struct fsl_hv_ioctl_status param;
79 u32 status;
80
81 /* Get the parameters from the user */
82 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_status)))
83 return -EFAULT;
84
85 param.ret = fh_partition_get_status(param.partition, &status);
86 if (!param.ret)
87 param.status = status;
88
89 if (copy_to_user(p, &param, sizeof(struct fsl_hv_ioctl_status)))
90 return -EFAULT;
91
92 return 0;
93}
94
95/*
96 * Ioctl interface for FSL_HV_IOCTL_PARTITION_START
97 *
98 * Start a stopped partition.
99 */
100static long ioctl_start(struct fsl_hv_ioctl_start __user *p)
101{
102 struct fsl_hv_ioctl_start param;
103
104 /* Get the parameters from the user */
105 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_start)))
106 return -EFAULT;
107
108 param.ret = fh_partition_start(param.partition, param.entry_point,
109 param.load);
110
111 if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
112 return -EFAULT;
113
114 return 0;
115}
116
117/*
118 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP
119 *
120 * Stop a running partition
121 */
122static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p)
123{
124 struct fsl_hv_ioctl_stop param;
125
126 /* Get the parameters from the user */
127 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_stop)))
128 return -EFAULT;
129
130 param.ret = fh_partition_stop(param.partition);
131
132 if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
133 return -EFAULT;
134
135 return 0;
136}
137
138/*
139 * Ioctl interface for FSL_HV_IOCTL_MEMCPY
140 *
141 * The FH_MEMCPY hypercall takes an array of address/address/size structures
142 * to represent the data being copied. As a convenience to the user, this
143 * ioctl takes a user-create buffer and a pointer to a guest physically
144 * contiguous buffer in the remote partition, and creates the
145 * address/address/size array for the hypercall.
146 */
147static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p)
148{
149 struct fsl_hv_ioctl_memcpy param;
150
151 struct page **pages = NULL;
152 void *sg_list_unaligned = NULL;
153 struct fh_sg_list *sg_list = NULL;
154
155 unsigned int num_pages;
156 unsigned long lb_offset; /* Offset within a page of the local buffer */
157
158 unsigned int i;
159 long ret = 0;
160 int num_pinned; /* return value from get_user_pages() */
161 phys_addr_t remote_paddr; /* The next address in the remote buffer */
162 uint32_t count; /* The number of bytes left to copy */
163
164 /* Get the parameters from the user */
165 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_memcpy)))
166 return -EFAULT;
167
168 /*
169 * One partition must be local, the other must be remote. In other
170 * words, if source and target are both -1, or are both not -1, then
171 * return an error.
172 */
173 if ((param.source == -1) == (param.target == -1))
174 return -EINVAL;
175
176 /*
177 * The array of pages returned by get_user_pages() covers only
178 * page-aligned memory. Since the user buffer is probably not
179 * page-aligned, we need to handle the discrepancy.
180 *
181 * We calculate the offset within a page of the S/G list, and make
182 * adjustments accordingly. This will result in a page list that looks
183 * like this:
184 *
185 * ---- <-- first page starts before the buffer
186 * | |
187 * |////|-> ----
188 * |////| | |
189 * ---- | |
190 * | |
191 * ---- | |
192 * |////| | |
193 * |////| | |
194 * |////| | |
195 * ---- | |
196 * | |
197 * ---- | |
198 * |////| | |
199 * |////| | |
200 * |////| | |
201 * ---- | |
202 * | |
203 * ---- | |
204 * |////| | |
205 * |////|-> ----
206 * | | <-- last page ends after the buffer
207 * ----
208 *
209 * The distance between the start of the first page and the start of the
210 * buffer is lb_offset. The hashed (///) areas are the parts of the
211 * page list that contain the actual buffer.
212 *
213 * The advantage of this approach is that the number of pages is
214 * equal to the number of entries in the S/G list that we give to the
215 * hypervisor.
216 */
217 lb_offset = param.local_vaddr & (PAGE_SIZE - 1);
218 num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
219
220 /* Allocate the buffers we need */
221
222 /*
223 * 'pages' is an array of struct page pointers that's initialized by
224 * get_user_pages().
225 */
226 pages = kzalloc(num_pages * sizeof(struct page *), GFP_KERNEL);
227 if (!pages) {
228 pr_debug("fsl-hv: could not allocate page list\n");
229 return -ENOMEM;
230 }
231
232 /*
233 * sg_list is the list of fh_sg_list objects that we pass to the
234 * hypervisor.
235 */
236 sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) +
237 sizeof(struct fh_sg_list) - 1, GFP_KERNEL);
238 if (!sg_list_unaligned) {
239 pr_debug("fsl-hv: could not allocate S/G list\n");
240 ret = -ENOMEM;
241 goto exit;
242 }
243 sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list));
244
245 /* Get the physical addresses of the source buffer */
246 down_read(&current->mm->mmap_sem);
Dave Hansend4edcf02016-02-12 13:01:56 -0800247 num_pinned = get_user_pages(param.local_vaddr - lb_offset,
Lorenzo Stoakes768ae302016-10-13 01:20:16 +0100248 num_pages, (param.source == -1) ? 0 : FOLL_WRITE,
249 pages, NULL);
Timur Tabi6db71992011-06-09 15:52:06 -0500250 up_read(&current->mm->mmap_sem);
251
252 if (num_pinned != num_pages) {
253 /* get_user_pages() failed */
254 pr_debug("fsl-hv: could not lock source buffer\n");
255 ret = (num_pinned < 0) ? num_pinned : -EFAULT;
256 goto exit;
257 }
258
259 /*
260 * Build the fh_sg_list[] array. The first page is special
261 * because it's misaligned.
262 */
263 if (param.source == -1) {
264 sg_list[0].source = page_to_phys(pages[0]) + lb_offset;
265 sg_list[0].target = param.remote_paddr;
266 } else {
267 sg_list[0].source = param.remote_paddr;
268 sg_list[0].target = page_to_phys(pages[0]) + lb_offset;
269 }
270 sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset);
271
272 remote_paddr = param.remote_paddr + sg_list[0].size;
273 count = param.count - sg_list[0].size;
274
275 for (i = 1; i < num_pages; i++) {
276 if (param.source == -1) {
277 /* local to remote */
278 sg_list[i].source = page_to_phys(pages[i]);
279 sg_list[i].target = remote_paddr;
280 } else {
281 /* remote to local */
282 sg_list[i].source = remote_paddr;
283 sg_list[i].target = page_to_phys(pages[i]);
284 }
285 sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE);
286
287 remote_paddr += sg_list[i].size;
288 count -= sg_list[i].size;
289 }
290
291 param.ret = fh_partition_memcpy(param.source, param.target,
292 virt_to_phys(sg_list), num_pages);
293
294exit:
295 if (pages) {
296 for (i = 0; i < num_pages; i++)
297 if (pages[i])
298 put_page(pages[i]);
299 }
300
301 kfree(sg_list_unaligned);
302 kfree(pages);
303
304 if (!ret)
305 if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
306 return -EFAULT;
307
308 return ret;
309}
310
311/*
312 * Ioctl interface for FSL_HV_IOCTL_DOORBELL
313 *
314 * Ring a doorbell
315 */
316static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p)
317{
318 struct fsl_hv_ioctl_doorbell param;
319
320 /* Get the parameters from the user. */
321 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_doorbell)))
322 return -EFAULT;
323
324 param.ret = ev_doorbell_send(param.doorbell);
325
326 if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
327 return -EFAULT;
328
329 return 0;
330}
331
332static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set)
333{
334 struct fsl_hv_ioctl_prop param;
335 char __user *upath, *upropname;
336 void __user *upropval;
337 char *path = NULL, *propname = NULL;
338 void *propval = NULL;
339 int ret = 0;
340
341 /* Get the parameters from the user. */
342 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_prop)))
343 return -EFAULT;
344
345 upath = (char __user *)(uintptr_t)param.path;
346 upropname = (char __user *)(uintptr_t)param.propname;
347 upropval = (void __user *)(uintptr_t)param.propval;
348
349 path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN);
350 if (IS_ERR(path)) {
351 ret = PTR_ERR(path);
352 goto out;
353 }
354
355 propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN);
356 if (IS_ERR(propname)) {
357 ret = PTR_ERR(propname);
358 goto out;
359 }
360
361 if (param.proplen > FH_DTPROP_MAX_PROPLEN) {
362 ret = -EINVAL;
363 goto out;
364 }
365
366 propval = kmalloc(param.proplen, GFP_KERNEL);
367 if (!propval) {
368 ret = -ENOMEM;
369 goto out;
370 }
371
372 if (set) {
373 if (copy_from_user(propval, upropval, param.proplen)) {
374 ret = -EFAULT;
375 goto out;
376 }
377
378 param.ret = fh_partition_set_dtprop(param.handle,
379 virt_to_phys(path),
380 virt_to_phys(propname),
381 virt_to_phys(propval),
382 param.proplen);
383 } else {
384 param.ret = fh_partition_get_dtprop(param.handle,
385 virt_to_phys(path),
386 virt_to_phys(propname),
387 virt_to_phys(propval),
388 &param.proplen);
389
390 if (param.ret == 0) {
391 if (copy_to_user(upropval, propval, param.proplen) ||
392 put_user(param.proplen, &p->proplen)) {
393 ret = -EFAULT;
394 goto out;
395 }
396 }
397 }
398
399 if (put_user(param.ret, &p->ret))
400 ret = -EFAULT;
401
402out:
403 kfree(path);
404 kfree(propval);
405 kfree(propname);
406
407 return ret;
408}
409
410/*
411 * Ioctl main entry point
412 */
413static long fsl_hv_ioctl(struct file *file, unsigned int cmd,
414 unsigned long argaddr)
415{
416 void __user *arg = (void __user *)argaddr;
417 long ret;
418
419 switch (cmd) {
420 case FSL_HV_IOCTL_PARTITION_RESTART:
421 ret = ioctl_restart(arg);
422 break;
423 case FSL_HV_IOCTL_PARTITION_GET_STATUS:
424 ret = ioctl_status(arg);
425 break;
426 case FSL_HV_IOCTL_PARTITION_START:
427 ret = ioctl_start(arg);
428 break;
429 case FSL_HV_IOCTL_PARTITION_STOP:
430 ret = ioctl_stop(arg);
431 break;
432 case FSL_HV_IOCTL_MEMCPY:
433 ret = ioctl_memcpy(arg);
434 break;
435 case FSL_HV_IOCTL_DOORBELL:
436 ret = ioctl_doorbell(arg);
437 break;
438 case FSL_HV_IOCTL_GETPROP:
439 ret = ioctl_dtprop(arg, 0);
440 break;
441 case FSL_HV_IOCTL_SETPROP:
442 ret = ioctl_dtprop(arg, 1);
443 break;
444 default:
445 pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n",
446 _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd),
447 _IOC_SIZE(cmd));
448 return -ENOTTY;
449 }
450
451 return ret;
452}
453
454/* Linked list of processes that have us open */
455static struct list_head db_list;
456
457/* spinlock for db_list */
458static DEFINE_SPINLOCK(db_list_lock);
459
460/* The size of the doorbell event queue. This must be a power of two. */
461#define QSIZE 16
462
463/* Returns the next head/tail pointer, wrapping around the queue if necessary */
464#define nextp(x) (((x) + 1) & (QSIZE - 1))
465
466/* Per-open data structure */
467struct doorbell_queue {
468 struct list_head list;
469 spinlock_t lock;
470 wait_queue_head_t wait;
471 unsigned int head;
472 unsigned int tail;
473 uint32_t q[QSIZE];
474};
475
476/* Linked list of ISRs that we registered */
477struct list_head isr_list;
478
479/* Per-ISR data structure */
480struct doorbell_isr {
481 struct list_head list;
482 unsigned int irq;
483 uint32_t doorbell; /* The doorbell handle */
484 uint32_t partition; /* The partition handle, if used */
485};
486
487/*
488 * Add a doorbell to all of the doorbell queues
489 */
490static void fsl_hv_queue_doorbell(uint32_t doorbell)
491{
492 struct doorbell_queue *dbq;
493 unsigned long flags;
494
495 /* Prevent another core from modifying db_list */
496 spin_lock_irqsave(&db_list_lock, flags);
497
498 list_for_each_entry(dbq, &db_list, list) {
499 if (dbq->head != nextp(dbq->tail)) {
500 dbq->q[dbq->tail] = doorbell;
501 /*
502 * This memory barrier eliminates the need to grab
503 * the spinlock for dbq.
504 */
505 smp_wmb();
506 dbq->tail = nextp(dbq->tail);
507 wake_up_interruptible(&dbq->wait);
508 }
509 }
510
511 spin_unlock_irqrestore(&db_list_lock, flags);
512}
513
514/*
515 * Interrupt handler for all doorbells
516 *
517 * We use the same interrupt handler for all doorbells. Whenever a doorbell
518 * is rung, and we receive an interrupt, we just put the handle for that
519 * doorbell (passed to us as *data) into all of the queues.
520 */
521static irqreturn_t fsl_hv_isr(int irq, void *data)
522{
523 fsl_hv_queue_doorbell((uintptr_t) data);
524
525 return IRQ_HANDLED;
526}
527
528/*
529 * State change thread function
530 *
531 * The state change notification arrives in an interrupt, but we can't call
532 * blocking_notifier_call_chain() in an interrupt handler. We could call
533 * atomic_notifier_call_chain(), but that would require the clients' call-back
534 * function to run in interrupt context. Since we don't want to impose that
535 * restriction on the clients, we use a threaded IRQ to process the
536 * notification in kernel context.
537 */
538static irqreturn_t fsl_hv_state_change_thread(int irq, void *data)
539{
540 struct doorbell_isr *dbisr = data;
541
542 blocking_notifier_call_chain(&failover_subscribers, dbisr->partition,
543 NULL);
544
545 return IRQ_HANDLED;
546}
547
548/*
549 * Interrupt handler for state-change doorbells
550 */
551static irqreturn_t fsl_hv_state_change_isr(int irq, void *data)
552{
553 unsigned int status;
554 struct doorbell_isr *dbisr = data;
555 int ret;
556
557 /* It's still a doorbell, so add it to all the queues. */
558 fsl_hv_queue_doorbell(dbisr->doorbell);
559
560 /* Determine the new state, and if it's stopped, notify the clients. */
561 ret = fh_partition_get_status(dbisr->partition, &status);
562 if (!ret && (status == FH_PARTITION_STOPPED))
563 return IRQ_WAKE_THREAD;
564
565 return IRQ_HANDLED;
566}
567
568/*
569 * Returns a bitmask indicating whether a read will block
570 */
571static unsigned int fsl_hv_poll(struct file *filp, struct poll_table_struct *p)
572{
573 struct doorbell_queue *dbq = filp->private_data;
574 unsigned long flags;
575 unsigned int mask;
576
577 spin_lock_irqsave(&dbq->lock, flags);
578
579 poll_wait(filp, &dbq->wait, p);
580 mask = (dbq->head == dbq->tail) ? 0 : (POLLIN | POLLRDNORM);
581
582 spin_unlock_irqrestore(&dbq->lock, flags);
583
584 return mask;
585}
586
587/*
588 * Return the handles for any incoming doorbells
589 *
590 * If there are doorbell handles in the queue for this open instance, then
591 * return them to the caller as an array of 32-bit integers. Otherwise,
592 * block until there is at least one handle to return.
593 */
594static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len,
595 loff_t *off)
596{
597 struct doorbell_queue *dbq = filp->private_data;
598 uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */
599 unsigned long flags;
600 ssize_t count = 0;
601
602 /* Make sure we stop when the user buffer is full. */
603 while (len >= sizeof(uint32_t)) {
604 uint32_t dbell; /* Local copy of doorbell queue data */
605
606 spin_lock_irqsave(&dbq->lock, flags);
607
608 /*
609 * If the queue is empty, then either we're done or we need
610 * to block. If the application specified O_NONBLOCK, then
611 * we return the appropriate error code.
612 */
613 if (dbq->head == dbq->tail) {
614 spin_unlock_irqrestore(&dbq->lock, flags);
615 if (count)
616 break;
617 if (filp->f_flags & O_NONBLOCK)
618 return -EAGAIN;
619 if (wait_event_interruptible(dbq->wait,
620 dbq->head != dbq->tail))
621 return -ERESTARTSYS;
622 continue;
623 }
624
625 /*
626 * Even though we have an smp_wmb() in the ISR, the core
627 * might speculatively execute the "dbell = ..." below while
628 * it's evaluating the if-statement above. In that case, the
629 * value put into dbell could be stale if the core accepts the
630 * speculation. To prevent that, we need a read memory barrier
631 * here as well.
632 */
633 smp_rmb();
634
635 /* Copy the data to a temporary local buffer, because
636 * we can't call copy_to_user() from inside a spinlock
637 */
638 dbell = dbq->q[dbq->head];
639 dbq->head = nextp(dbq->head);
640
641 spin_unlock_irqrestore(&dbq->lock, flags);
642
643 if (put_user(dbell, p))
644 return -EFAULT;
645 p++;
646 count += sizeof(uint32_t);
647 len -= sizeof(uint32_t);
648 }
649
650 return count;
651}
652
653/*
654 * Open the driver and prepare for reading doorbells.
655 *
656 * Every time an application opens the driver, we create a doorbell queue
657 * for that file handle. This queue is used for any incoming doorbells.
658 */
659static int fsl_hv_open(struct inode *inode, struct file *filp)
660{
661 struct doorbell_queue *dbq;
662 unsigned long flags;
663 int ret = 0;
664
665 dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL);
666 if (!dbq) {
667 pr_err("fsl-hv: out of memory\n");
668 return -ENOMEM;
669 }
670
671 spin_lock_init(&dbq->lock);
672 init_waitqueue_head(&dbq->wait);
673
674 spin_lock_irqsave(&db_list_lock, flags);
675 list_add(&dbq->list, &db_list);
676 spin_unlock_irqrestore(&db_list_lock, flags);
677
678 filp->private_data = dbq;
679
680 return ret;
681}
682
683/*
684 * Close the driver
685 */
686static int fsl_hv_close(struct inode *inode, struct file *filp)
687{
688 struct doorbell_queue *dbq = filp->private_data;
689 unsigned long flags;
690
691 int ret = 0;
692
693 spin_lock_irqsave(&db_list_lock, flags);
694 list_del(&dbq->list);
695 spin_unlock_irqrestore(&db_list_lock, flags);
696
697 kfree(dbq);
698
699 return ret;
700}
701
702static const struct file_operations fsl_hv_fops = {
703 .owner = THIS_MODULE,
704 .open = fsl_hv_open,
705 .release = fsl_hv_close,
706 .poll = fsl_hv_poll,
707 .read = fsl_hv_read,
708 .unlocked_ioctl = fsl_hv_ioctl,
Mihai Caramanc031ab12011-10-13 18:05:21 +0300709 .compat_ioctl = fsl_hv_ioctl,
Timur Tabi6db71992011-06-09 15:52:06 -0500710};
711
712static struct miscdevice fsl_hv_misc_dev = {
713 MISC_DYNAMIC_MINOR,
714 "fsl-hv",
715 &fsl_hv_fops
716};
717
718static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data)
719{
720 orderly_poweroff(false);
721
722 return IRQ_HANDLED;
723}
724
725/*
726 * Returns the handle of the parent of the given node
727 *
728 * The handle is the value of the 'hv-handle' property
729 */
730static int get_parent_handle(struct device_node *np)
731{
732 struct device_node *parent;
733 const uint32_t *prop;
734 uint32_t handle;
735 int len;
736
737 parent = of_get_parent(np);
738 if (!parent)
739 /* It's not really possible for this to fail */
740 return -ENODEV;
741
742 /*
743 * The proper name for the handle property is "hv-handle", but some
744 * older versions of the hypervisor used "reg".
745 */
746 prop = of_get_property(parent, "hv-handle", &len);
747 if (!prop)
748 prop = of_get_property(parent, "reg", &len);
749
750 if (!prop || (len != sizeof(uint32_t))) {
751 /* This can happen only if the node is malformed */
752 of_node_put(parent);
753 return -ENODEV;
754 }
755
756 handle = be32_to_cpup(prop);
757 of_node_put(parent);
758
759 return handle;
760}
761
762/*
763 * Register a callback for failover events
764 *
765 * This function is called by device drivers to register their callback
766 * functions for fail-over events.
767 */
768int fsl_hv_failover_register(struct notifier_block *nb)
769{
770 return blocking_notifier_chain_register(&failover_subscribers, nb);
771}
772EXPORT_SYMBOL(fsl_hv_failover_register);
773
774/*
775 * Unregister a callback for failover events
776 */
777int fsl_hv_failover_unregister(struct notifier_block *nb)
778{
779 return blocking_notifier_chain_unregister(&failover_subscribers, nb);
780}
781EXPORT_SYMBOL(fsl_hv_failover_unregister);
782
783/*
784 * Return TRUE if we're running under FSL hypervisor
785 *
786 * This function checks to see if we're running under the Freescale
787 * hypervisor, and returns zero if we're not, or non-zero if we are.
788 *
789 * First, it checks if MSR[GS]==1, which means we're running under some
790 * hypervisor. Then it checks if there is a hypervisor node in the device
791 * tree. Currently, that means there needs to be a node in the root called
792 * "hypervisor" and which has a property named "fsl,hv-version".
793 */
794static int has_fsl_hypervisor(void)
795{
796 struct device_node *node;
797 int ret;
798
Timur Tabi6db71992011-06-09 15:52:06 -0500799 node = of_find_node_by_path("/hypervisor");
800 if (!node)
801 return 0;
802
803 ret = of_find_property(node, "fsl,hv-version", NULL) != NULL;
804
805 of_node_put(node);
806
807 return ret;
808}
809
810/*
811 * Freescale hypervisor management driver init
812 *
813 * This function is called when this module is loaded.
814 *
815 * Register ourselves as a miscellaneous driver. This will register the
816 * fops structure and create the right sysfs entries for udev.
817 */
818static int __init fsl_hypervisor_init(void)
819{
820 struct device_node *np;
821 struct doorbell_isr *dbisr, *n;
822 int ret;
823
824 pr_info("Freescale hypervisor management driver\n");
825
826 if (!has_fsl_hypervisor()) {
827 pr_info("fsl-hv: no hypervisor found\n");
828 return -ENODEV;
829 }
830
831 ret = misc_register(&fsl_hv_misc_dev);
832 if (ret) {
833 pr_err("fsl-hv: cannot register device\n");
834 return ret;
835 }
836
837 INIT_LIST_HEAD(&db_list);
838 INIT_LIST_HEAD(&isr_list);
839
840 for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") {
841 unsigned int irq;
842 const uint32_t *handle;
843
844 handle = of_get_property(np, "interrupts", NULL);
845 irq = irq_of_parse_and_map(np, 0);
846 if (!handle || (irq == NO_IRQ)) {
847 pr_err("fsl-hv: no 'interrupts' property in %s node\n",
848 np->full_name);
849 continue;
850 }
851
852 dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL);
853 if (!dbisr)
854 goto out_of_memory;
855
856 dbisr->irq = irq;
857 dbisr->doorbell = be32_to_cpup(handle);
858
859 if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) {
860 /* The shutdown doorbell gets its own ISR */
861 ret = request_irq(irq, fsl_hv_shutdown_isr, 0,
862 np->name, NULL);
863 } else if (of_device_is_compatible(np,
864 "fsl,hv-state-change-doorbell")) {
865 /*
866 * The state change doorbell triggers a notification if
867 * the state of the managed partition changes to
868 * "stopped". We need a separate interrupt handler for
869 * that, and we also need to know the handle of the
870 * target partition, not just the handle of the
871 * doorbell.
872 */
873 dbisr->partition = ret = get_parent_handle(np);
874 if (ret < 0) {
875 pr_err("fsl-hv: node %s has missing or "
876 "malformed parent\n", np->full_name);
877 kfree(dbisr);
878 continue;
879 }
880 ret = request_threaded_irq(irq, fsl_hv_state_change_isr,
881 fsl_hv_state_change_thread,
882 0, np->name, dbisr);
883 } else
884 ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr);
885
886 if (ret < 0) {
887 pr_err("fsl-hv: could not request irq %u for node %s\n",
888 irq, np->full_name);
889 kfree(dbisr);
890 continue;
891 }
892
893 list_add(&dbisr->list, &isr_list);
894
895 pr_info("fsl-hv: registered handler for doorbell %u\n",
896 dbisr->doorbell);
897 }
898
899 return 0;
900
901out_of_memory:
902 list_for_each_entry_safe(dbisr, n, &isr_list, list) {
903 free_irq(dbisr->irq, dbisr);
904 list_del(&dbisr->list);
905 kfree(dbisr);
906 }
907
908 misc_deregister(&fsl_hv_misc_dev);
909
910 return -ENOMEM;
911}
912
913/*
914 * Freescale hypervisor management driver termination
915 *
916 * This function is called when this driver is unloaded.
917 */
918static void __exit fsl_hypervisor_exit(void)
919{
920 struct doorbell_isr *dbisr, *n;
921
922 list_for_each_entry_safe(dbisr, n, &isr_list, list) {
923 free_irq(dbisr->irq, dbisr);
924 list_del(&dbisr->list);
925 kfree(dbisr);
926 }
927
928 misc_deregister(&fsl_hv_misc_dev);
929}
930
931module_init(fsl_hypervisor_init);
932module_exit(fsl_hypervisor_exit);
933
934MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
935MODULE_DESCRIPTION("Freescale hypervisor management driver");
936MODULE_LICENSE("GPL v2");