blob: a53212793809c9146d508cb6be849a71ab32173e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/**
2 * aops.c - NTFS kernel address space operations and page cache handling.
3 * Part of the Linux-NTFS project.
4 *
5 * Copyright (c) 2001-2004 Anton Altaparmakov
6 * Copyright (c) 2002 Richard Russon
7 *
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/pagemap.h>
27#include <linux/swap.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30
31#include "aops.h"
32#include "attrib.h"
33#include "debug.h"
34#include "inode.h"
35#include "mft.h"
36#include "runlist.h"
37#include "types.h"
38#include "ntfs.h"
39
40/**
41 * ntfs_end_buffer_async_read - async io completion for reading attributes
42 * @bh: buffer head on which io is completed
43 * @uptodate: whether @bh is now uptodate or not
44 *
45 * Asynchronous I/O completion handler for reading pages belonging to the
46 * attribute address space of an inode. The inodes can either be files or
47 * directories or they can be fake inodes describing some attribute.
48 *
49 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
50 * page has been completed and mark the page uptodate or set the error bit on
51 * the page. To determine the size of the records that need fixing up, we
52 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
53 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
54 * record size.
55 */
56static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
57{
58 static DEFINE_SPINLOCK(page_uptodate_lock);
59 unsigned long flags;
60 struct buffer_head *tmp;
61 struct page *page;
62 ntfs_inode *ni;
63 int page_uptodate = 1;
64
65 page = bh->b_page;
66 ni = NTFS_I(page->mapping->host);
67
68 if (likely(uptodate)) {
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +000069 s64 file_ofs, initialized_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -070070
71 set_buffer_uptodate(bh);
72
73 file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
74 bh_offset(bh);
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +000075 read_lock_irqsave(&ni->size_lock, flags);
76 initialized_size = ni->initialized_size;
77 read_unlock_irqrestore(&ni->size_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -070078 /* Check for the current buffer head overflowing. */
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +000079 if (file_ofs + bh->b_size > initialized_size) {
Linus Torvalds1da177e2005-04-16 15:20:36 -070080 char *addr;
81 int ofs = 0;
82
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +000083 if (file_ofs < initialized_size)
84 ofs = initialized_size - file_ofs;
Linus Torvalds1da177e2005-04-16 15:20:36 -070085 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
86 memset(addr + bh_offset(bh) + ofs, 0, bh->b_size - ofs);
87 flush_dcache_page(page);
88 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
89 }
90 } else {
91 clear_buffer_uptodate(bh);
92 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block %llu.",
93 (unsigned long long)bh->b_blocknr);
94 SetPageError(page);
95 }
96 spin_lock_irqsave(&page_uptodate_lock, flags);
97 clear_buffer_async_read(bh);
98 unlock_buffer(bh);
99 tmp = bh;
100 do {
101 if (!buffer_uptodate(tmp))
102 page_uptodate = 0;
103 if (buffer_async_read(tmp)) {
104 if (likely(buffer_locked(tmp)))
105 goto still_busy;
106 /* Async buffers must be locked. */
107 BUG();
108 }
109 tmp = tmp->b_this_page;
110 } while (tmp != bh);
111 spin_unlock_irqrestore(&page_uptodate_lock, flags);
112 /*
113 * If none of the buffers had errors then we can set the page uptodate,
114 * but we first have to perform the post read mst fixups, if the
115 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
116 * Note we ignore fixup errors as those are detected when
117 * map_mft_record() is called which gives us per record granularity
118 * rather than per page granularity.
119 */
120 if (!NInoMstProtected(ni)) {
121 if (likely(page_uptodate && !PageError(page)))
122 SetPageUptodate(page);
123 } else {
124 char *addr;
125 unsigned int i, recs;
126 u32 rec_size;
127
128 rec_size = ni->itype.index.block_size;
129 recs = PAGE_CACHE_SIZE / rec_size;
130 /* Should have been verified before we got here... */
131 BUG_ON(!recs);
132 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
133 for (i = 0; i < recs; i++)
134 post_read_mst_fixup((NTFS_RECORD*)(addr +
135 i * rec_size), rec_size);
136 flush_dcache_page(page);
137 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
138 if (likely(!PageError(page) && page_uptodate))
139 SetPageUptodate(page);
140 }
141 unlock_page(page);
142 return;
143still_busy:
144 spin_unlock_irqrestore(&page_uptodate_lock, flags);
145 return;
146}
147
148/**
149 * ntfs_read_block - fill a @page of an address space with data
150 * @page: page cache page to fill with data
151 *
152 * Fill the page @page of the address space belonging to the @page->host inode.
153 * We read each buffer asynchronously and when all buffers are read in, our io
154 * completion handler ntfs_end_buffer_read_async(), if required, automatically
155 * applies the mst fixups to the page before finally marking it uptodate and
156 * unlocking it.
157 *
158 * We only enforce allocated_size limit because i_size is checked for in
159 * generic_file_read().
160 *
161 * Return 0 on success and -errno on error.
162 *
163 * Contains an adapted version of fs/buffer.c::block_read_full_page().
164 */
165static int ntfs_read_block(struct page *page)
166{
167 VCN vcn;
168 LCN lcn;
169 ntfs_inode *ni;
170 ntfs_volume *vol;
171 runlist_element *rl;
172 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
173 sector_t iblock, lblock, zblock;
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +0000174 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700175 unsigned int blocksize, vcn_ofs;
176 int i, nr;
177 unsigned char blocksize_bits;
178
179 ni = NTFS_I(page->mapping->host);
180 vol = ni->vol;
181
182 /* $MFT/$DATA must have its complete runlist in memory at all times. */
183 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
184
185 blocksize_bits = VFS_I(ni)->i_blkbits;
186 blocksize = 1 << blocksize_bits;
187
188 if (!page_has_buffers(page))
189 create_empty_buffers(page, blocksize, 0);
190 bh = head = page_buffers(page);
191 if (unlikely(!bh)) {
192 unlock_page(page);
193 return -ENOMEM;
194 }
195
196 iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +0000197 read_lock_irqsave(&ni->size_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700198 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
199 zblock = (ni->initialized_size + blocksize - 1) >> blocksize_bits;
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +0000200 read_unlock_irqrestore(&ni->size_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700201
202 /* Loop through all the buffers in the page. */
203 rl = NULL;
204 nr = i = 0;
205 do {
206 u8 *kaddr;
207
208 if (unlikely(buffer_uptodate(bh)))
209 continue;
210 if (unlikely(buffer_mapped(bh))) {
211 arr[nr++] = bh;
212 continue;
213 }
214 bh->b_bdev = vol->sb->s_bdev;
215 /* Is the block within the allowed limits? */
216 if (iblock < lblock) {
217 BOOL is_retry = FALSE;
218
219 /* Convert iblock into corresponding vcn and offset. */
220 vcn = (VCN)iblock << blocksize_bits >>
221 vol->cluster_size_bits;
222 vcn_ofs = ((VCN)iblock << blocksize_bits) &
223 vol->cluster_size_mask;
224 if (!rl) {
225lock_retry_remap:
226 down_read(&ni->runlist.lock);
227 rl = ni->runlist.rl;
228 }
229 if (likely(rl != NULL)) {
230 /* Seek to element containing target vcn. */
231 while (rl->length && rl[1].vcn <= vcn)
232 rl++;
233 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
234 } else
235 lcn = LCN_RL_NOT_MAPPED;
236 /* Successful remap. */
237 if (lcn >= 0) {
238 /* Setup buffer head to correct block. */
239 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
240 + vcn_ofs) >> blocksize_bits;
241 set_buffer_mapped(bh);
242 /* Only read initialized data blocks. */
243 if (iblock < zblock) {
244 arr[nr++] = bh;
245 continue;
246 }
247 /* Fully non-initialized data block, zero it. */
248 goto handle_zblock;
249 }
250 /* It is a hole, need to zero it. */
251 if (lcn == LCN_HOLE)
252 goto handle_hole;
253 /* If first try and runlist unmapped, map and retry. */
254 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
255 int err;
256 is_retry = TRUE;
257 /*
258 * Attempt to map runlist, dropping lock for
259 * the duration.
260 */
261 up_read(&ni->runlist.lock);
262 err = ntfs_map_runlist(ni, vcn);
263 if (likely(!err))
264 goto lock_retry_remap;
265 rl = NULL;
266 lcn = err;
267 }
268 /* Hard error, zero out region. */
269 bh->b_blocknr = -1;
270 SetPageError(page);
271 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
272 "attribute type 0x%x, vcn 0x%llx, "
273 "offset 0x%x because its location on "
274 "disk could not be determined%s "
275 "(error code %lli).", ni->mft_no,
276 ni->type, (unsigned long long)vcn,
277 vcn_ofs, is_retry ? " even after "
278 "retrying" : "", (long long)lcn);
279 }
280 /*
281 * Either iblock was outside lblock limits or
282 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
283 * of the page and set the buffer uptodate.
284 */
285handle_hole:
286 bh->b_blocknr = -1UL;
287 clear_buffer_mapped(bh);
288handle_zblock:
289 kaddr = kmap_atomic(page, KM_USER0);
290 memset(kaddr + i * blocksize, 0, blocksize);
291 flush_dcache_page(page);
292 kunmap_atomic(kaddr, KM_USER0);
293 set_buffer_uptodate(bh);
294 } while (i++, iblock++, (bh = bh->b_this_page) != head);
295
296 /* Release the lock if we took it. */
297 if (rl)
298 up_read(&ni->runlist.lock);
299
300 /* Check we have at least one buffer ready for i/o. */
301 if (nr) {
302 struct buffer_head *tbh;
303
304 /* Lock the buffers. */
305 for (i = 0; i < nr; i++) {
306 tbh = arr[i];
307 lock_buffer(tbh);
308 tbh->b_end_io = ntfs_end_buffer_async_read;
309 set_buffer_async_read(tbh);
310 }
311 /* Finally, start i/o on the buffers. */
312 for (i = 0; i < nr; i++) {
313 tbh = arr[i];
314 if (likely(!buffer_uptodate(tbh)))
315 submit_bh(READ, tbh);
316 else
317 ntfs_end_buffer_async_read(tbh, 1);
318 }
319 return 0;
320 }
321 /* No i/o was scheduled on any of the buffers. */
322 if (likely(!PageError(page)))
323 SetPageUptodate(page);
324 else /* Signal synchronous i/o error. */
325 nr = -EIO;
326 unlock_page(page);
327 return nr;
328}
329
330/**
331 * ntfs_readpage - fill a @page of a @file with data from the device
332 * @file: open file to which the page @page belongs or NULL
333 * @page: page cache page to fill with data
334 *
335 * For non-resident attributes, ntfs_readpage() fills the @page of the open
336 * file @file by calling the ntfs version of the generic block_read_full_page()
337 * function, ntfs_read_block(), which in turn creates and reads in the buffers
338 * associated with the page asynchronously.
339 *
340 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
341 * data from the mft record (which at this stage is most likely in memory) and
342 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
343 * even if the mft record is not cached at this point in time, we need to wait
344 * for it to be read in before we can do the copy.
345 *
346 * Return 0 on success and -errno on error.
347 */
348static int ntfs_readpage(struct file *file, struct page *page)
349{
350 loff_t i_size;
351 ntfs_inode *ni, *base_ni;
352 u8 *kaddr;
353 ntfs_attr_search_ctx *ctx;
354 MFT_RECORD *mrec;
355 u32 attr_len;
356 int err = 0;
357
358 BUG_ON(!PageLocked(page));
359 /*
360 * This can potentially happen because we clear PageUptodate() during
361 * ntfs_writepage() of MstProtected() attributes.
362 */
363 if (PageUptodate(page)) {
364 unlock_page(page);
365 return 0;
366 }
367 ni = NTFS_I(page->mapping->host);
368
369 /* NInoNonResident() == NInoIndexAllocPresent() */
370 if (NInoNonResident(ni)) {
371 /*
372 * Only unnamed $DATA attributes can be compressed or
373 * encrypted.
374 */
375 if (ni->type == AT_DATA && !ni->name_len) {
376 /* If file is encrypted, deny access, just like NT4. */
377 if (NInoEncrypted(ni)) {
378 err = -EACCES;
379 goto err_out;
380 }
381 /* Compressed data streams are handled in compress.c. */
382 if (NInoCompressed(ni))
383 return ntfs_read_compressed_block(page);
384 }
385 /* Normal data stream. */
386 return ntfs_read_block(page);
387 }
388 /*
389 * Attribute is resident, implying it is not compressed or encrypted.
390 * This also means the attribute is smaller than an mft record and
391 * hence smaller than a page, so can simply zero out any pages with
392 * index above 0. We can also do this if the file size is 0.
393 */
394 if (unlikely(page->index > 0 || !i_size_read(VFS_I(ni)))) {
395 kaddr = kmap_atomic(page, KM_USER0);
396 memset(kaddr, 0, PAGE_CACHE_SIZE);
397 flush_dcache_page(page);
398 kunmap_atomic(kaddr, KM_USER0);
399 goto done;
400 }
401 if (!NInoAttr(ni))
402 base_ni = ni;
403 else
404 base_ni = ni->ext.base_ntfs_ino;
405 /* Map, pin, and lock the mft record. */
406 mrec = map_mft_record(base_ni);
407 if (IS_ERR(mrec)) {
408 err = PTR_ERR(mrec);
409 goto err_out;
410 }
411 ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
412 if (unlikely(!ctx)) {
413 err = -ENOMEM;
414 goto unm_err_out;
415 }
416 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
417 CASE_SENSITIVE, 0, NULL, 0, ctx);
418 if (unlikely(err))
419 goto put_unm_err_out;
420 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
421 i_size = i_size_read(VFS_I(ni));
422 if (unlikely(attr_len > i_size))
423 attr_len = i_size;
424 kaddr = kmap_atomic(page, KM_USER0);
425 /* Copy the data to the page. */
426 memcpy(kaddr, (u8*)ctx->attr +
427 le16_to_cpu(ctx->attr->data.resident.value_offset),
428 attr_len);
429 /* Zero the remainder of the page. */
430 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
431 flush_dcache_page(page);
432 kunmap_atomic(kaddr, KM_USER0);
433put_unm_err_out:
434 ntfs_attr_put_search_ctx(ctx);
435unm_err_out:
436 unmap_mft_record(base_ni);
437done:
438 SetPageUptodate(page);
439err_out:
440 unlock_page(page);
441 return err;
442}
443
444#ifdef NTFS_RW
445
446/**
447 * ntfs_write_block - write a @page to the backing store
448 * @page: page cache page to write out
449 * @wbc: writeback control structure
450 *
451 * This function is for writing pages belonging to non-resident, non-mst
452 * protected attributes to their backing store.
453 *
454 * For a page with buffers, map and write the dirty buffers asynchronously
455 * under page writeback. For a page without buffers, create buffers for the
456 * page, then proceed as above.
457 *
458 * If a page doesn't have buffers the page dirty state is definitive. If a page
459 * does have buffers, the page dirty state is just a hint, and the buffer dirty
460 * state is definitive. (A hint which has rules: dirty buffers against a clean
461 * page is illegal. Other combinations are legal and need to be handled. In
462 * particular a dirty page containing clean buffers for example.)
463 *
464 * Return 0 on success and -errno on error.
465 *
466 * Based on ntfs_read_block() and __block_write_full_page().
467 */
468static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
469{
470 VCN vcn;
471 LCN lcn;
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +0000472 s64 initialized_size;
473 loff_t i_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700474 sector_t block, dblock, iblock;
475 struct inode *vi;
476 ntfs_inode *ni;
477 ntfs_volume *vol;
478 runlist_element *rl;
479 struct buffer_head *bh, *head;
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +0000480 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481 unsigned int blocksize, vcn_ofs;
482 int err;
483 BOOL need_end_writeback;
484 unsigned char blocksize_bits;
485
486 vi = page->mapping->host;
487 ni = NTFS_I(vi);
488 vol = ni->vol;
489
490 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
491 "0x%lx.", ni->mft_no, ni->type, page->index);
492
493 BUG_ON(!NInoNonResident(ni));
494 BUG_ON(NInoMstProtected(ni));
495
496 blocksize_bits = vi->i_blkbits;
497 blocksize = 1 << blocksize_bits;
498
499 if (!page_has_buffers(page)) {
500 BUG_ON(!PageUptodate(page));
501 create_empty_buffers(page, blocksize,
502 (1 << BH_Uptodate) | (1 << BH_Dirty));
503 }
504 bh = head = page_buffers(page);
505 if (unlikely(!bh)) {
506 ntfs_warning(vol->sb, "Error allocating page buffers. "
507 "Redirtying page so we try again later.");
508 /*
509 * Put the page back on mapping->dirty_pages, but leave its
510 * buffer's dirty state as-is.
511 */
512 redirty_page_for_writepage(wbc, page);
513 unlock_page(page);
514 return 0;
515 }
516
517 /* NOTE: Different naming scheme to ntfs_read_block()! */
518
519 /* The first block in the page. */
520 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
521
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +0000522 read_lock_irqsave(&ni->size_lock, flags);
523 i_size = i_size_read(vi);
524 initialized_size = ni->initialized_size;
525 read_unlock_irqrestore(&ni->size_lock, flags);
526
Linus Torvalds1da177e2005-04-16 15:20:36 -0700527 /* The first out of bounds block for the data size. */
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +0000528 dblock = (i_size + blocksize - 1) >> blocksize_bits;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529
530 /* The last (fully or partially) initialized block. */
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +0000531 iblock = initialized_size >> blocksize_bits;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700532
533 /*
534 * Be very careful. We have no exclusion from __set_page_dirty_buffers
535 * here, and the (potentially unmapped) buffers may become dirty at
536 * any time. If a buffer becomes dirty here after we've inspected it
537 * then we just miss that fact, and the page stays dirty.
538 *
539 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
540 * handle that here by just cleaning them.
541 */
542
543 /*
544 * Loop through all the buffers in the page, mapping all the dirty
545 * buffers to disk addresses and handling any aliases from the
546 * underlying block device's mapping.
547 */
548 rl = NULL;
549 err = 0;
550 do {
551 BOOL is_retry = FALSE;
552
553 if (unlikely(block >= dblock)) {
554 /*
555 * Mapped buffers outside i_size will occur, because
556 * this page can be outside i_size when there is a
557 * truncate in progress. The contents of such buffers
558 * were zeroed by ntfs_writepage().
559 *
560 * FIXME: What about the small race window where
561 * ntfs_writepage() has not done any clearing because
562 * the page was within i_size but before we get here,
563 * vmtruncate() modifies i_size?
564 */
565 clear_buffer_dirty(bh);
566 set_buffer_uptodate(bh);
567 continue;
568 }
569
570 /* Clean buffers are not written out, so no need to map them. */
571 if (!buffer_dirty(bh))
572 continue;
573
574 /* Make sure we have enough initialized size. */
575 if (unlikely((block >= iblock) &&
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +0000576 (initialized_size < i_size))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700577 /*
578 * If this page is fully outside initialized size, zero
579 * out all pages between the current initialized size
580 * and the current page. Just use ntfs_readpage() to do
581 * the zeroing transparently.
582 */
583 if (block > iblock) {
584 // TODO:
585 // For each page do:
586 // - read_cache_page()
587 // Again for each page do:
588 // - wait_on_page_locked()
589 // - Check (PageUptodate(page) &&
590 // !PageError(page))
591 // Update initialized size in the attribute and
592 // in the inode.
593 // Again, for each page do:
594 // __set_page_dirty_buffers();
595 // page_cache_release()
596 // We don't need to wait on the writes.
597 // Update iblock.
598 }
599 /*
600 * The current page straddles initialized size. Zero
601 * all non-uptodate buffers and set them uptodate (and
602 * dirty?). Note, there aren't any non-uptodate buffers
603 * if the page is uptodate.
604 * FIXME: For an uptodate page, the buffers may need to
605 * be written out because they were not initialized on
606 * disk before.
607 */
608 if (!PageUptodate(page)) {
609 // TODO:
610 // Zero any non-uptodate buffers up to i_size.
611 // Set them uptodate and dirty.
612 }
613 // TODO:
614 // Update initialized size in the attribute and in the
615 // inode (up to i_size).
616 // Update iblock.
617 // FIXME: This is inefficient. Try to batch the two
618 // size changes to happen in one go.
619 ntfs_error(vol->sb, "Writing beyond initialized size "
620 "is not supported yet. Sorry.");
621 err = -EOPNOTSUPP;
622 break;
623 // Do NOT set_buffer_new() BUT DO clear buffer range
624 // outside write request range.
625 // set_buffer_uptodate() on complete buffers as well as
626 // set_buffer_dirty().
627 }
628
629 /* No need to map buffers that are already mapped. */
630 if (buffer_mapped(bh))
631 continue;
632
633 /* Unmapped, dirty buffer. Need to map it. */
634 bh->b_bdev = vol->sb->s_bdev;
635
636 /* Convert block into corresponding vcn and offset. */
637 vcn = (VCN)block << blocksize_bits;
638 vcn_ofs = vcn & vol->cluster_size_mask;
639 vcn >>= vol->cluster_size_bits;
640 if (!rl) {
641lock_retry_remap:
642 down_read(&ni->runlist.lock);
643 rl = ni->runlist.rl;
644 }
645 if (likely(rl != NULL)) {
646 /* Seek to element containing target vcn. */
647 while (rl->length && rl[1].vcn <= vcn)
648 rl++;
649 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
650 } else
651 lcn = LCN_RL_NOT_MAPPED;
652 /* Successful remap. */
653 if (lcn >= 0) {
654 /* Setup buffer head to point to correct block. */
655 bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
656 vcn_ofs) >> blocksize_bits;
657 set_buffer_mapped(bh);
658 continue;
659 }
660 /* It is a hole, need to instantiate it. */
661 if (lcn == LCN_HOLE) {
662 // TODO: Instantiate the hole.
663 // clear_buffer_new(bh);
664 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
665 ntfs_error(vol->sb, "Writing into sparse regions is "
666 "not supported yet. Sorry.");
667 err = -EOPNOTSUPP;
668 break;
669 }
670 /* If first try and runlist unmapped, map and retry. */
671 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
672 is_retry = TRUE;
673 /*
674 * Attempt to map runlist, dropping lock for
675 * the duration.
676 */
677 up_read(&ni->runlist.lock);
678 err = ntfs_map_runlist(ni, vcn);
679 if (likely(!err))
680 goto lock_retry_remap;
681 rl = NULL;
682 lcn = err;
683 }
684 /* Failed to map the buffer, even after retrying. */
685 bh->b_blocknr = -1;
686 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
687 "attribute type 0x%x, vcn 0x%llx, offset 0x%x "
688 "because its location on disk could not be "
689 "determined%s (error code %lli).", ni->mft_no,
690 ni->type, (unsigned long long)vcn,
691 vcn_ofs, is_retry ? " even after "
692 "retrying" : "", (long long)lcn);
693 if (!err)
694 err = -EIO;
695 break;
696 } while (block++, (bh = bh->b_this_page) != head);
697
698 /* Release the lock if we took it. */
699 if (rl)
700 up_read(&ni->runlist.lock);
701
702 /* For the error case, need to reset bh to the beginning. */
703 bh = head;
704
705 /* Just an optimization, so ->readpage() isn't called later. */
706 if (unlikely(!PageUptodate(page))) {
707 int uptodate = 1;
708 do {
709 if (!buffer_uptodate(bh)) {
710 uptodate = 0;
711 bh = head;
712 break;
713 }
714 } while ((bh = bh->b_this_page) != head);
715 if (uptodate)
716 SetPageUptodate(page);
717 }
718
719 /* Setup all mapped, dirty buffers for async write i/o. */
720 do {
721 get_bh(bh);
722 if (buffer_mapped(bh) && buffer_dirty(bh)) {
723 lock_buffer(bh);
724 if (test_clear_buffer_dirty(bh)) {
725 BUG_ON(!buffer_uptodate(bh));
726 mark_buffer_async_write(bh);
727 } else
728 unlock_buffer(bh);
729 } else if (unlikely(err)) {
730 /*
731 * For the error case. The buffer may have been set
732 * dirty during attachment to a dirty page.
733 */
734 if (err != -ENOMEM)
735 clear_buffer_dirty(bh);
736 }
737 } while ((bh = bh->b_this_page) != head);
738
739 if (unlikely(err)) {
740 // TODO: Remove the -EOPNOTSUPP check later on...
741 if (unlikely(err == -EOPNOTSUPP))
742 err = 0;
743 else if (err == -ENOMEM) {
744 ntfs_warning(vol->sb, "Error allocating memory. "
745 "Redirtying page so we try again "
746 "later.");
747 /*
748 * Put the page back on mapping->dirty_pages, but
749 * leave its buffer's dirty state as-is.
750 */
751 redirty_page_for_writepage(wbc, page);
752 err = 0;
753 } else
754 SetPageError(page);
755 }
756
757 BUG_ON(PageWriteback(page));
758 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */
759 unlock_page(page);
760
761 /*
762 * Submit the prepared buffers for i/o. Note the page is unlocked,
763 * and the async write i/o completion handler can end_page_writeback()
764 * at any time after the *first* submit_bh(). So the buffers can then
765 * disappear...
766 */
767 need_end_writeback = TRUE;
768 do {
769 struct buffer_head *next = bh->b_this_page;
770 if (buffer_async_write(bh)) {
771 submit_bh(WRITE, bh);
772 need_end_writeback = FALSE;
773 }
774 put_bh(bh);
775 bh = next;
776 } while (bh != head);
777
778 /* If no i/o was started, need to end_page_writeback(). */
779 if (unlikely(need_end_writeback))
780 end_page_writeback(page);
781
782 ntfs_debug("Done.");
783 return err;
784}
785
786/**
787 * ntfs_write_mst_block - write a @page to the backing store
788 * @page: page cache page to write out
789 * @wbc: writeback control structure
790 *
791 * This function is for writing pages belonging to non-resident, mst protected
792 * attributes to their backing store. The only supported attributes are index
793 * allocation and $MFT/$DATA. Both directory inodes and index inodes are
794 * supported for the index allocation case.
795 *
796 * The page must remain locked for the duration of the write because we apply
797 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
798 * page before undoing the fixups, any other user of the page will see the
799 * page contents as corrupt.
800 *
801 * We clear the page uptodate flag for the duration of the function to ensure
802 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
803 * are about to apply the mst fixups to.
804 *
805 * Return 0 on success and -errno on error.
806 *
807 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
808 * write_mft_record_nolock().
809 */
810static int ntfs_write_mst_block(struct page *page,
811 struct writeback_control *wbc)
812{
813 sector_t block, dblock, rec_block;
814 struct inode *vi = page->mapping->host;
815 ntfs_inode *ni = NTFS_I(vi);
816 ntfs_volume *vol = ni->vol;
817 u8 *kaddr;
818 unsigned char bh_size_bits = vi->i_blkbits;
819 unsigned int bh_size = 1 << bh_size_bits;
820 unsigned int rec_size = ni->itype.index.block_size;
821 ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
822 struct buffer_head *bh, *head, *tbh, *rec_start_bh;
823 int max_bhs = PAGE_CACHE_SIZE / bh_size;
824 struct buffer_head *bhs[max_bhs];
825 runlist_element *rl;
826 int i, nr_locked_nis, nr_recs, nr_bhs, bhs_per_rec, err, err2;
827 unsigned rec_size_bits;
828 BOOL sync, is_mft, page_is_dirty, rec_is_dirty;
829
830 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
831 "0x%lx.", vi->i_ino, ni->type, page->index);
832 BUG_ON(!NInoNonResident(ni));
833 BUG_ON(!NInoMstProtected(ni));
834 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
835 /*
836 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
837 * in its page cache were to be marked dirty. However this should
838 * never happen with the current driver and considering we do not
839 * handle this case here we do want to BUG(), at least for now.
840 */
841 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
842 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
843 BUG_ON(!max_bhs);
844
845 /* Were we called for sync purposes? */
846 sync = (wbc->sync_mode == WB_SYNC_ALL);
847
848 /* Make sure we have mapped buffers. */
849 BUG_ON(!page_has_buffers(page));
850 bh = head = page_buffers(page);
851 BUG_ON(!bh);
852
853 rec_size_bits = ni->itype.index.block_size_bits;
854 BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
855 bhs_per_rec = rec_size >> bh_size_bits;
856 BUG_ON(!bhs_per_rec);
857
858 /* The first block in the page. */
859 rec_block = block = (sector_t)page->index <<
860 (PAGE_CACHE_SHIFT - bh_size_bits);
861
862 /* The first out of bounds block for the data size. */
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +0000863 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700864
865 rl = NULL;
866 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
867 page_is_dirty = rec_is_dirty = FALSE;
868 rec_start_bh = NULL;
869 do {
870 BOOL is_retry = FALSE;
871
872 if (likely(block < rec_block)) {
873 if (unlikely(block >= dblock)) {
874 clear_buffer_dirty(bh);
875 continue;
876 }
877 /*
878 * This block is not the first one in the record. We
879 * ignore the buffer's dirty state because we could
880 * have raced with a parallel mark_ntfs_record_dirty().
881 */
882 if (!rec_is_dirty)
883 continue;
884 if (unlikely(err2)) {
885 if (err2 != -ENOMEM)
886 clear_buffer_dirty(bh);
887 continue;
888 }
889 } else /* if (block == rec_block) */ {
890 BUG_ON(block > rec_block);
891 /* This block is the first one in the record. */
892 rec_block += bhs_per_rec;
893 err2 = 0;
894 if (unlikely(block >= dblock)) {
895 clear_buffer_dirty(bh);
896 continue;
897 }
898 if (!buffer_dirty(bh)) {
899 /* Clean records are not written out. */
900 rec_is_dirty = FALSE;
901 continue;
902 }
903 rec_is_dirty = TRUE;
904 rec_start_bh = bh;
905 }
906 /* Need to map the buffer if it is not mapped already. */
907 if (unlikely(!buffer_mapped(bh))) {
908 VCN vcn;
909 LCN lcn;
910 unsigned int vcn_ofs;
911
912 /* Obtain the vcn and offset of the current block. */
913 vcn = (VCN)block << bh_size_bits;
914 vcn_ofs = vcn & vol->cluster_size_mask;
915 vcn >>= vol->cluster_size_bits;
916 if (!rl) {
917lock_retry_remap:
918 down_read(&ni->runlist.lock);
919 rl = ni->runlist.rl;
920 }
921 if (likely(rl != NULL)) {
922 /* Seek to element containing target vcn. */
923 while (rl->length && rl[1].vcn <= vcn)
924 rl++;
925 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
926 } else
927 lcn = LCN_RL_NOT_MAPPED;
928 /* Successful remap. */
929 if (likely(lcn >= 0)) {
930 /* Setup buffer head to correct block. */
931 bh->b_blocknr = ((lcn <<
932 vol->cluster_size_bits) +
933 vcn_ofs) >> bh_size_bits;
934 set_buffer_mapped(bh);
935 } else {
936 /*
937 * Remap failed. Retry to map the runlist once
938 * unless we are working on $MFT which always
939 * has the whole of its runlist in memory.
940 */
941 if (!is_mft && !is_retry &&
942 lcn == LCN_RL_NOT_MAPPED) {
943 is_retry = TRUE;
944 /*
945 * Attempt to map runlist, dropping
946 * lock for the duration.
947 */
948 up_read(&ni->runlist.lock);
949 err2 = ntfs_map_runlist(ni, vcn);
950 if (likely(!err2))
951 goto lock_retry_remap;
952 if (err2 == -ENOMEM)
953 page_is_dirty = TRUE;
954 lcn = err2;
955 } else
956 err2 = -EIO;
957 /* Hard error. Abort writing this record. */
958 if (!err || err == -ENOMEM)
959 err = err2;
960 bh->b_blocknr = -1;
961 ntfs_error(vol->sb, "Cannot write ntfs record "
962 "0x%llx (inode 0x%lx, "
963 "attribute type 0x%x) because "
964 "its location on disk could "
965 "not be determined (error "
966 "code %lli).", (s64)block <<
967 bh_size_bits >>
968 vol->mft_record_size_bits,
969 ni->mft_no, ni->type,
970 (long long)lcn);
971 /*
972 * If this is not the first buffer, remove the
973 * buffers in this record from the list of
974 * buffers to write and clear their dirty bit
975 * if not error -ENOMEM.
976 */
977 if (rec_start_bh != bh) {
978 while (bhs[--nr_bhs] != rec_start_bh)
979 ;
980 if (err2 != -ENOMEM) {
981 do {
982 clear_buffer_dirty(
983 rec_start_bh);
984 } while ((rec_start_bh =
985 rec_start_bh->
986 b_this_page) !=
987 bh);
988 }
989 }
990 continue;
991 }
992 }
993 BUG_ON(!buffer_uptodate(bh));
994 BUG_ON(nr_bhs >= max_bhs);
995 bhs[nr_bhs++] = bh;
996 } while (block++, (bh = bh->b_this_page) != head);
997 if (unlikely(rl))
998 up_read(&ni->runlist.lock);
999 /* If there were no dirty buffers, we are done. */
1000 if (!nr_bhs)
1001 goto done;
1002 /* Map the page so we can access its contents. */
1003 kaddr = kmap(page);
1004 /* Clear the page uptodate flag whilst the mst fixups are applied. */
1005 BUG_ON(!PageUptodate(page));
1006 ClearPageUptodate(page);
1007 for (i = 0; i < nr_bhs; i++) {
1008 unsigned int ofs;
1009
1010 /* Skip buffers which are not at the beginning of records. */
1011 if (i % bhs_per_rec)
1012 continue;
1013 tbh = bhs[i];
1014 ofs = bh_offset(tbh);
1015 if (is_mft) {
1016 ntfs_inode *tni;
1017 unsigned long mft_no;
1018
1019 /* Get the mft record number. */
1020 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1021 >> rec_size_bits;
1022 /* Check whether to write this mft record. */
1023 tni = NULL;
1024 if (!ntfs_may_write_mft_record(vol, mft_no,
1025 (MFT_RECORD*)(kaddr + ofs), &tni)) {
1026 /*
1027 * The record should not be written. This
1028 * means we need to redirty the page before
1029 * returning.
1030 */
1031 page_is_dirty = TRUE;
1032 /*
1033 * Remove the buffers in this mft record from
1034 * the list of buffers to write.
1035 */
1036 do {
1037 bhs[i] = NULL;
1038 } while (++i % bhs_per_rec);
1039 continue;
1040 }
1041 /*
1042 * The record should be written. If a locked ntfs
1043 * inode was returned, add it to the array of locked
1044 * ntfs inodes.
1045 */
1046 if (tni)
1047 locked_nis[nr_locked_nis++] = tni;
1048 }
1049 /* Apply the mst protection fixups. */
1050 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1051 rec_size);
1052 if (unlikely(err2)) {
1053 if (!err || err == -ENOMEM)
1054 err = -EIO;
1055 ntfs_error(vol->sb, "Failed to apply mst fixups "
1056 "(inode 0x%lx, attribute type 0x%x, "
1057 "page index 0x%lx, page offset 0x%x)!"
1058 " Unmount and run chkdsk.", vi->i_ino,
1059 ni->type, page->index, ofs);
1060 /*
1061 * Mark all the buffers in this record clean as we do
1062 * not want to write corrupt data to disk.
1063 */
1064 do {
1065 clear_buffer_dirty(bhs[i]);
1066 bhs[i] = NULL;
1067 } while (++i % bhs_per_rec);
1068 continue;
1069 }
1070 nr_recs++;
1071 }
1072 /* If no records are to be written out, we are done. */
1073 if (!nr_recs)
1074 goto unm_done;
1075 flush_dcache_page(page);
1076 /* Lock buffers and start synchronous write i/o on them. */
1077 for (i = 0; i < nr_bhs; i++) {
1078 tbh = bhs[i];
1079 if (!tbh)
1080 continue;
1081 if (unlikely(test_set_buffer_locked(tbh)))
1082 BUG();
1083 /* The buffer dirty state is now irrelevant, just clean it. */
1084 clear_buffer_dirty(tbh);
1085 BUG_ON(!buffer_uptodate(tbh));
1086 BUG_ON(!buffer_mapped(tbh));
1087 get_bh(tbh);
1088 tbh->b_end_io = end_buffer_write_sync;
1089 submit_bh(WRITE, tbh);
1090 }
1091 /* Synchronize the mft mirror now if not @sync. */
1092 if (is_mft && !sync)
1093 goto do_mirror;
1094do_wait:
1095 /* Wait on i/o completion of buffers. */
1096 for (i = 0; i < nr_bhs; i++) {
1097 tbh = bhs[i];
1098 if (!tbh)
1099 continue;
1100 wait_on_buffer(tbh);
1101 if (unlikely(!buffer_uptodate(tbh))) {
1102 ntfs_error(vol->sb, "I/O error while writing ntfs "
1103 "record buffer (inode 0x%lx, "
1104 "attribute type 0x%x, page index "
1105 "0x%lx, page offset 0x%lx)! Unmount "
1106 "and run chkdsk.", vi->i_ino, ni->type,
1107 page->index, bh_offset(tbh));
1108 if (!err || err == -ENOMEM)
1109 err = -EIO;
1110 /*
1111 * Set the buffer uptodate so the page and buffer
1112 * states do not become out of sync.
1113 */
1114 set_buffer_uptodate(tbh);
1115 }
1116 }
1117 /* If @sync, now synchronize the mft mirror. */
1118 if (is_mft && sync) {
1119do_mirror:
1120 for (i = 0; i < nr_bhs; i++) {
1121 unsigned long mft_no;
1122 unsigned int ofs;
1123
1124 /*
1125 * Skip buffers which are not at the beginning of
1126 * records.
1127 */
1128 if (i % bhs_per_rec)
1129 continue;
1130 tbh = bhs[i];
1131 /* Skip removed buffers (and hence records). */
1132 if (!tbh)
1133 continue;
1134 ofs = bh_offset(tbh);
1135 /* Get the mft record number. */
1136 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1137 >> rec_size_bits;
1138 if (mft_no < vol->mftmirr_size)
1139 ntfs_sync_mft_mirror(vol, mft_no,
1140 (MFT_RECORD*)(kaddr + ofs),
1141 sync);
1142 }
1143 if (!sync)
1144 goto do_wait;
1145 }
1146 /* Remove the mst protection fixups again. */
1147 for (i = 0; i < nr_bhs; i++) {
1148 if (!(i % bhs_per_rec)) {
1149 tbh = bhs[i];
1150 if (!tbh)
1151 continue;
1152 post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1153 bh_offset(tbh)));
1154 }
1155 }
1156 flush_dcache_page(page);
1157unm_done:
1158 /* Unlock any locked inodes. */
1159 while (nr_locked_nis-- > 0) {
1160 ntfs_inode *tni, *base_tni;
1161
1162 tni = locked_nis[nr_locked_nis];
1163 /* Get the base inode. */
1164 down(&tni->extent_lock);
1165 if (tni->nr_extents >= 0)
1166 base_tni = tni;
1167 else {
1168 base_tni = tni->ext.base_ntfs_ino;
1169 BUG_ON(!base_tni);
1170 }
1171 up(&tni->extent_lock);
1172 ntfs_debug("Unlocking %s inode 0x%lx.",
1173 tni == base_tni ? "base" : "extent",
1174 tni->mft_no);
1175 up(&tni->mrec_lock);
1176 atomic_dec(&tni->count);
1177 iput(VFS_I(base_tni));
1178 }
1179 SetPageUptodate(page);
1180 kunmap(page);
1181done:
1182 if (unlikely(err && err != -ENOMEM)) {
1183 /*
1184 * Set page error if there is only one ntfs record in the page.
1185 * Otherwise we would loose per-record granularity.
1186 */
1187 if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1188 SetPageError(page);
1189 NVolSetErrors(vol);
1190 }
1191 if (page_is_dirty) {
1192 ntfs_debug("Page still contains one or more dirty ntfs "
1193 "records. Redirtying the page starting at "
1194 "record 0x%lx.", page->index <<
1195 (PAGE_CACHE_SHIFT - rec_size_bits));
1196 redirty_page_for_writepage(wbc, page);
1197 unlock_page(page);
1198 } else {
1199 /*
1200 * Keep the VM happy. This must be done otherwise the
1201 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1202 * the page is clean.
1203 */
1204 BUG_ON(PageWriteback(page));
1205 set_page_writeback(page);
1206 unlock_page(page);
1207 end_page_writeback(page);
1208 }
1209 if (likely(!err))
1210 ntfs_debug("Done.");
1211 return err;
1212}
1213
1214/**
1215 * ntfs_writepage - write a @page to the backing store
1216 * @page: page cache page to write out
1217 * @wbc: writeback control structure
1218 *
1219 * This is called from the VM when it wants to have a dirty ntfs page cache
1220 * page cleaned. The VM has already locked the page and marked it clean.
1221 *
1222 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1223 * the ntfs version of the generic block_write_full_page() function,
1224 * ntfs_write_block(), which in turn if necessary creates and writes the
1225 * buffers associated with the page asynchronously.
1226 *
1227 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1228 * the data to the mft record (which at this stage is most likely in memory).
1229 * The mft record is then marked dirty and written out asynchronously via the
1230 * vfs inode dirty code path for the inode the mft record belongs to or via the
1231 * vm page dirty code path for the page the mft record is in.
1232 *
1233 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1234 *
1235 * Return 0 on success and -errno on error.
1236 */
1237static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1238{
1239 loff_t i_size;
1240 struct inode *vi;
1241 ntfs_inode *ni, *base_ni;
1242 char *kaddr;
1243 ntfs_attr_search_ctx *ctx;
1244 MFT_RECORD *m;
1245 u32 attr_len;
1246 int err;
1247
1248 BUG_ON(!PageLocked(page));
1249
1250 vi = page->mapping->host;
1251 i_size = i_size_read(vi);
1252
1253 /* Is the page fully outside i_size? (truncate in progress) */
1254 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1255 PAGE_CACHE_SHIFT)) {
1256 /*
1257 * The page may have dirty, unmapped buffers. Make them
1258 * freeable here, so the page does not leak.
1259 */
1260 block_invalidatepage(page, 0);
1261 unlock_page(page);
1262 ntfs_debug("Write outside i_size - truncated?");
1263 return 0;
1264 }
1265 ni = NTFS_I(vi);
1266
1267 /* NInoNonResident() == NInoIndexAllocPresent() */
1268 if (NInoNonResident(ni)) {
1269 /*
1270 * Only unnamed $DATA attributes can be compressed, encrypted,
1271 * and/or sparse.
1272 */
1273 if (ni->type == AT_DATA && !ni->name_len) {
1274 /* If file is encrypted, deny access, just like NT4. */
1275 if (NInoEncrypted(ni)) {
1276 unlock_page(page);
1277 ntfs_debug("Denying write access to encrypted "
1278 "file.");
1279 return -EACCES;
1280 }
1281 /* Compressed data streams are handled in compress.c. */
1282 if (NInoCompressed(ni)) {
1283 // TODO: Implement and replace this check with
1284 // return ntfs_write_compressed_block(page);
1285 unlock_page(page);
1286 ntfs_error(vi->i_sb, "Writing to compressed "
1287 "files is not supported yet. "
1288 "Sorry.");
1289 return -EOPNOTSUPP;
1290 }
1291 // TODO: Implement and remove this check.
1292 if (NInoSparse(ni)) {
1293 unlock_page(page);
1294 ntfs_error(vi->i_sb, "Writing to sparse files "
1295 "is not supported yet. Sorry.");
1296 return -EOPNOTSUPP;
1297 }
1298 }
1299 /* We have to zero every time due to mmap-at-end-of-file. */
1300 if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1301 /* The page straddles i_size. */
1302 unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1303 kaddr = kmap_atomic(page, KM_USER0);
1304 memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs);
1305 flush_dcache_page(page);
1306 kunmap_atomic(kaddr, KM_USER0);
1307 }
1308 /* Handle mst protected attributes. */
1309 if (NInoMstProtected(ni))
1310 return ntfs_write_mst_block(page, wbc);
1311 /* Normal data stream. */
1312 return ntfs_write_block(page, wbc);
1313 }
1314 /*
1315 * Attribute is resident, implying it is not compressed, encrypted,
1316 * sparse, or mst protected. This also means the attribute is smaller
1317 * than an mft record and hence smaller than a page, so can simply
1318 * return error on any pages with index above 0.
1319 */
1320 BUG_ON(page_has_buffers(page));
1321 BUG_ON(!PageUptodate(page));
1322 if (unlikely(page->index > 0)) {
1323 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. "
1324 "Aborting write.", page->index);
1325 BUG_ON(PageWriteback(page));
1326 set_page_writeback(page);
1327 unlock_page(page);
1328 end_page_writeback(page);
1329 return -EIO;
1330 }
1331 if (!NInoAttr(ni))
1332 base_ni = ni;
1333 else
1334 base_ni = ni->ext.base_ntfs_ino;
1335 /* Map, pin, and lock the mft record. */
1336 m = map_mft_record(base_ni);
1337 if (IS_ERR(m)) {
1338 err = PTR_ERR(m);
1339 m = NULL;
1340 ctx = NULL;
1341 goto err_out;
1342 }
1343 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1344 if (unlikely(!ctx)) {
1345 err = -ENOMEM;
1346 goto err_out;
1347 }
1348 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1349 CASE_SENSITIVE, 0, NULL, 0, ctx);
1350 if (unlikely(err))
1351 goto err_out;
1352 /*
1353 * Keep the VM happy. This must be done otherwise the radix-tree tag
1354 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1355 */
1356 BUG_ON(PageWriteback(page));
1357 set_page_writeback(page);
1358 unlock_page(page);
1359
1360 /*
1361 * Here, we don't need to zero the out of bounds area everytime because
1362 * the below memcpy() already takes care of the mmap-at-end-of-file
1363 * requirements. If the file is converted to a non-resident one, then
1364 * the code path use is switched to the non-resident one where the
1365 * zeroing happens on each ntfs_writepage() invocation.
1366 *
1367 * The above also applies nicely when i_size is decreased.
1368 *
1369 * When i_size is increased, the memory between the old and new i_size
1370 * _must_ be zeroed (or overwritten with new data). Otherwise we will
1371 * expose data to userspace/disk which should never have been exposed.
1372 *
1373 * FIXME: Ensure that i_size increases do the zeroing/overwriting and
1374 * if we cannot guarantee that, then enable the zeroing below. If the
1375 * zeroing below is enabled, we MUST move the unlock_page() from above
1376 * to after the kunmap_atomic(), i.e. just before the
1377 * end_page_writeback().
1378 * UPDATE: ntfs_prepare/commit_write() do the zeroing on i_size
1379 * increases for resident attributes so those are ok.
1380 * TODO: ntfs_truncate(), others?
1381 */
1382
1383 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +00001384 i_size = i_size_read(vi);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001385 kaddr = kmap_atomic(page, KM_USER0);
1386 if (unlikely(attr_len > i_size)) {
1387 /* Zero out of bounds area in the mft record. */
1388 memset((u8*)ctx->attr + le16_to_cpu(
1389 ctx->attr->data.resident.value_offset) +
1390 i_size, 0, attr_len - i_size);
1391 attr_len = i_size;
1392 }
1393 /* Copy the data from the page to the mft record. */
1394 memcpy((u8*)ctx->attr +
1395 le16_to_cpu(ctx->attr->data.resident.value_offset),
1396 kaddr, attr_len);
1397 flush_dcache_mft_record_page(ctx->ntfs_ino);
1398 /* Zero out of bounds area in the page cache page. */
1399 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1400 flush_dcache_page(page);
1401 kunmap_atomic(kaddr, KM_USER0);
1402
1403 end_page_writeback(page);
1404
1405 /* Mark the mft record dirty, so it gets written back. */
1406 mark_mft_record_dirty(ctx->ntfs_ino);
1407 ntfs_attr_put_search_ctx(ctx);
1408 unmap_mft_record(base_ni);
1409 return 0;
1410err_out:
1411 if (err == -ENOMEM) {
1412 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1413 "page so we try again later.");
1414 /*
1415 * Put the page back on mapping->dirty_pages, but leave its
1416 * buffers' dirty state as-is.
1417 */
1418 redirty_page_for_writepage(wbc, page);
1419 err = 0;
1420 } else {
1421 ntfs_error(vi->i_sb, "Resident attribute write failed with "
1422 "error %i. Setting page error flag.", err);
1423 SetPageError(page);
1424 }
1425 unlock_page(page);
1426 if (ctx)
1427 ntfs_attr_put_search_ctx(ctx);
1428 if (m)
1429 unmap_mft_record(base_ni);
1430 return err;
1431}
1432
1433/**
1434 * ntfs_prepare_nonresident_write -
1435 *
1436 */
1437static int ntfs_prepare_nonresident_write(struct page *page,
1438 unsigned from, unsigned to)
1439{
1440 VCN vcn;
1441 LCN lcn;
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +00001442 s64 initialized_size;
1443 loff_t i_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001444 sector_t block, ablock, iblock;
1445 struct inode *vi;
1446 ntfs_inode *ni;
1447 ntfs_volume *vol;
1448 runlist_element *rl;
1449 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +00001450 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451 unsigned int vcn_ofs, block_start, block_end, blocksize;
1452 int err;
1453 BOOL is_retry;
1454 unsigned char blocksize_bits;
1455
1456 vi = page->mapping->host;
1457 ni = NTFS_I(vi);
1458 vol = ni->vol;
1459
1460 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1461 "0x%lx, from = %u, to = %u.", ni->mft_no, ni->type,
1462 page->index, from, to);
1463
1464 BUG_ON(!NInoNonResident(ni));
1465
1466 blocksize_bits = vi->i_blkbits;
1467 blocksize = 1 << blocksize_bits;
1468
1469 /*
1470 * create_empty_buffers() will create uptodate/dirty buffers if the
1471 * page is uptodate/dirty.
1472 */
1473 if (!page_has_buffers(page))
1474 create_empty_buffers(page, blocksize, 0);
1475 bh = head = page_buffers(page);
1476 if (unlikely(!bh))
1477 return -ENOMEM;
1478
1479 /* The first block in the page. */
1480 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
1481
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +00001482 read_lock_irqsave(&ni->size_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001483 /*
1484 * The first out of bounds block for the allocated size. No need to
1485 * round up as allocated_size is in multiples of cluster size and the
1486 * minimum cluster size is 512 bytes, which is equal to the smallest
1487 * blocksize.
1488 */
1489 ablock = ni->allocated_size >> blocksize_bits;
1490
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +00001491 i_size = i_size_read(vi);
1492 initialized_size = ni->initialized_size;
1493 read_unlock_irqrestore(&ni->size_lock, flags);
1494
Linus Torvalds1da177e2005-04-16 15:20:36 -07001495 /* The last (fully or partially) initialized block. */
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +00001496 iblock = initialized_size >> blocksize_bits;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001497
1498 /* Loop through all the buffers in the page. */
1499 block_start = 0;
1500 rl = NULL;
1501 err = 0;
1502 do {
1503 block_end = block_start + blocksize;
1504 /*
1505 * If buffer @bh is outside the write, just mark it uptodate
1506 * if the page is uptodate and continue with the next buffer.
1507 */
1508 if (block_end <= from || block_start >= to) {
1509 if (PageUptodate(page)) {
1510 if (!buffer_uptodate(bh))
1511 set_buffer_uptodate(bh);
1512 }
1513 continue;
1514 }
1515 /*
1516 * @bh is at least partially being written to.
1517 * Make sure it is not marked as new.
1518 */
1519 //if (buffer_new(bh))
1520 // clear_buffer_new(bh);
1521
1522 if (block >= ablock) {
1523 // TODO: block is above allocated_size, need to
1524 // allocate it. Best done in one go to accommodate not
1525 // only block but all above blocks up to and including:
1526 // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
1527 // - 1) >> blobksize_bits. Obviously will need to round
1528 // up to next cluster boundary, too. This should be
1529 // done with a helper function, so it can be reused.
1530 ntfs_error(vol->sb, "Writing beyond allocated size "
1531 "is not supported yet. Sorry.");
1532 err = -EOPNOTSUPP;
1533 goto err_out;
1534 // Need to update ablock.
1535 // Need to set_buffer_new() on all block bhs that are
1536 // newly allocated.
1537 }
1538 /*
1539 * Now we have enough allocated size to fulfill the whole
1540 * request, i.e. block < ablock is true.
1541 */
1542 if (unlikely((block >= iblock) &&
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +00001543 (initialized_size < i_size))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001544 /*
1545 * If this page is fully outside initialized size, zero
1546 * out all pages between the current initialized size
1547 * and the current page. Just use ntfs_readpage() to do
1548 * the zeroing transparently.
1549 */
1550 if (block > iblock) {
1551 // TODO:
1552 // For each page do:
1553 // - read_cache_page()
1554 // Again for each page do:
1555 // - wait_on_page_locked()
1556 // - Check (PageUptodate(page) &&
1557 // !PageError(page))
1558 // Update initialized size in the attribute and
1559 // in the inode.
1560 // Again, for each page do:
1561 // __set_page_dirty_buffers();
1562 // page_cache_release()
1563 // We don't need to wait on the writes.
1564 // Update iblock.
1565 }
1566 /*
1567 * The current page straddles initialized size. Zero
1568 * all non-uptodate buffers and set them uptodate (and
1569 * dirty?). Note, there aren't any non-uptodate buffers
1570 * if the page is uptodate.
1571 * FIXME: For an uptodate page, the buffers may need to
1572 * be written out because they were not initialized on
1573 * disk before.
1574 */
1575 if (!PageUptodate(page)) {
1576 // TODO:
1577 // Zero any non-uptodate buffers up to i_size.
1578 // Set them uptodate and dirty.
1579 }
1580 // TODO:
1581 // Update initialized size in the attribute and in the
1582 // inode (up to i_size).
1583 // Update iblock.
1584 // FIXME: This is inefficient. Try to batch the two
1585 // size changes to happen in one go.
1586 ntfs_error(vol->sb, "Writing beyond initialized size "
1587 "is not supported yet. Sorry.");
1588 err = -EOPNOTSUPP;
1589 goto err_out;
1590 // Do NOT set_buffer_new() BUT DO clear buffer range
1591 // outside write request range.
1592 // set_buffer_uptodate() on complete buffers as well as
1593 // set_buffer_dirty().
1594 }
1595
1596 /* Need to map unmapped buffers. */
1597 if (!buffer_mapped(bh)) {
1598 /* Unmapped buffer. Need to map it. */
1599 bh->b_bdev = vol->sb->s_bdev;
1600
1601 /* Convert block into corresponding vcn and offset. */
1602 vcn = (VCN)block << blocksize_bits >>
1603 vol->cluster_size_bits;
1604 vcn_ofs = ((VCN)block << blocksize_bits) &
1605 vol->cluster_size_mask;
1606
1607 is_retry = FALSE;
1608 if (!rl) {
1609lock_retry_remap:
1610 down_read(&ni->runlist.lock);
1611 rl = ni->runlist.rl;
1612 }
1613 if (likely(rl != NULL)) {
1614 /* Seek to element containing target vcn. */
1615 while (rl->length && rl[1].vcn <= vcn)
1616 rl++;
1617 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1618 } else
1619 lcn = LCN_RL_NOT_MAPPED;
1620 if (unlikely(lcn < 0)) {
1621 /*
1622 * We extended the attribute allocation above.
1623 * If we hit an ENOENT here it means that the
1624 * allocation was insufficient which is a bug.
1625 */
1626 BUG_ON(lcn == LCN_ENOENT);
1627
1628 /* It is a hole, need to instantiate it. */
1629 if (lcn == LCN_HOLE) {
1630 // TODO: Instantiate the hole.
1631 // clear_buffer_new(bh);
1632 // unmap_underlying_metadata(bh->b_bdev,
1633 // bh->b_blocknr);
1634 // For non-uptodate buffers, need to
1635 // zero out the region outside the
1636 // request in this bh or all bhs,
1637 // depending on what we implemented
1638 // above.
1639 // Need to flush_dcache_page().
1640 // Or could use set_buffer_new()
1641 // instead?
1642 ntfs_error(vol->sb, "Writing into "
1643 "sparse regions is "
1644 "not supported yet. "
1645 "Sorry.");
1646 err = -EOPNOTSUPP;
1647 goto err_out;
1648 } else if (!is_retry &&
1649 lcn == LCN_RL_NOT_MAPPED) {
1650 is_retry = TRUE;
1651 /*
1652 * Attempt to map runlist, dropping
1653 * lock for the duration.
1654 */
1655 up_read(&ni->runlist.lock);
1656 err = ntfs_map_runlist(ni, vcn);
1657 if (likely(!err))
1658 goto lock_retry_remap;
1659 rl = NULL;
1660 lcn = err;
1661 }
1662 /*
1663 * Failed to map the buffer, even after
1664 * retrying.
1665 */
1666 bh->b_blocknr = -1;
1667 ntfs_error(vol->sb, "Failed to write to inode "
1668 "0x%lx, attribute type 0x%x, "
1669 "vcn 0x%llx, offset 0x%x "
1670 "because its location on disk "
1671 "could not be determined%s "
1672 "(error code %lli).",
1673 ni->mft_no, ni->type,
1674 (unsigned long long)vcn,
1675 vcn_ofs, is_retry ? " even "
1676 "after retrying" : "",
1677 (long long)lcn);
1678 if (!err)
1679 err = -EIO;
1680 goto err_out;
1681 }
1682 /* We now have a successful remap, i.e. lcn >= 0. */
1683
1684 /* Setup buffer head to correct block. */
1685 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
1686 + vcn_ofs) >> blocksize_bits;
1687 set_buffer_mapped(bh);
1688
1689 // FIXME: Something analogous to this is needed for
1690 // each newly allocated block, i.e. BH_New.
1691 // FIXME: Might need to take this out of the
1692 // if (!buffer_mapped(bh)) {}, depending on how we
1693 // implement things during the allocated_size and
1694 // initialized_size extension code above.
1695 if (buffer_new(bh)) {
1696 clear_buffer_new(bh);
1697 unmap_underlying_metadata(bh->b_bdev,
1698 bh->b_blocknr);
1699 if (PageUptodate(page)) {
1700 set_buffer_uptodate(bh);
1701 continue;
1702 }
1703 /*
1704 * Page is _not_ uptodate, zero surrounding
1705 * region. NOTE: This is how we decide if to
1706 * zero or not!
1707 */
1708 if (block_end > to || block_start < from) {
1709 void *kaddr;
1710
1711 kaddr = kmap_atomic(page, KM_USER0);
1712 if (block_end > to)
1713 memset(kaddr + to, 0,
1714 block_end - to);
1715 if (block_start < from)
1716 memset(kaddr + block_start, 0,
1717 from -
1718 block_start);
1719 flush_dcache_page(page);
1720 kunmap_atomic(kaddr, KM_USER0);
1721 }
1722 continue;
1723 }
1724 }
1725 /* @bh is mapped, set it uptodate if the page is uptodate. */
1726 if (PageUptodate(page)) {
1727 if (!buffer_uptodate(bh))
1728 set_buffer_uptodate(bh);
1729 continue;
1730 }
1731 /*
1732 * The page is not uptodate. The buffer is mapped. If it is not
1733 * uptodate, and it is only partially being written to, we need
1734 * to read the buffer in before the write, i.e. right now.
1735 */
1736 if (!buffer_uptodate(bh) &&
1737 (block_start < from || block_end > to)) {
1738 ll_rw_block(READ, 1, &bh);
1739 *wait_bh++ = bh;
1740 }
1741 } while (block++, block_start = block_end,
1742 (bh = bh->b_this_page) != head);
1743
1744 /* Release the lock if we took it. */
1745 if (rl) {
1746 up_read(&ni->runlist.lock);
1747 rl = NULL;
1748 }
1749
1750 /* If we issued read requests, let them complete. */
1751 while (wait_bh > wait) {
1752 wait_on_buffer(*--wait_bh);
1753 if (!buffer_uptodate(*wait_bh))
1754 return -EIO;
1755 }
1756
1757 ntfs_debug("Done.");
1758 return 0;
1759err_out:
1760 /*
1761 * Zero out any newly allocated blocks to avoid exposing stale data.
1762 * If BH_New is set, we know that the block was newly allocated in the
1763 * above loop.
1764 * FIXME: What about initialized_size increments? Have we done all the
1765 * required zeroing above? If not this error handling is broken, and
1766 * in particular the if (block_end <= from) check is completely bogus.
1767 */
1768 bh = head;
1769 block_start = 0;
1770 is_retry = FALSE;
1771 do {
1772 block_end = block_start + blocksize;
1773 if (block_end <= from)
1774 continue;
1775 if (block_start >= to)
1776 break;
1777 if (buffer_new(bh)) {
1778 void *kaddr;
1779
1780 clear_buffer_new(bh);
1781 kaddr = kmap_atomic(page, KM_USER0);
1782 memset(kaddr + block_start, 0, bh->b_size);
1783 kunmap_atomic(kaddr, KM_USER0);
1784 set_buffer_uptodate(bh);
1785 mark_buffer_dirty(bh);
1786 is_retry = TRUE;
1787 }
1788 } while (block_start = block_end, (bh = bh->b_this_page) != head);
1789 if (is_retry)
1790 flush_dcache_page(page);
1791 if (rl)
1792 up_read(&ni->runlist.lock);
1793 return err;
1794}
1795
1796/**
1797 * ntfs_prepare_write - prepare a page for receiving data
1798 *
1799 * This is called from generic_file_write() with i_sem held on the inode
1800 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
1801 * data has not yet been copied into the @page.
1802 *
1803 * Need to extend the attribute/fill in holes if necessary, create blocks and
1804 * make partially overwritten blocks uptodate,
1805 *
1806 * i_size is not to be modified yet.
1807 *
1808 * Return 0 on success or -errno on error.
1809 *
1810 * Should be using block_prepare_write() [support for sparse files] or
1811 * cont_prepare_write() [no support for sparse files]. Cannot do that due to
1812 * ntfs specifics but can look at them for implementation guidance.
1813 *
1814 * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
1815 * the first byte in the page that will be written to and @to is the first byte
1816 * after the last byte that will be written to.
1817 */
1818static int ntfs_prepare_write(struct file *file, struct page *page,
1819 unsigned from, unsigned to)
1820{
1821 s64 new_size;
1822 struct inode *vi = page->mapping->host;
1823 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1824 ntfs_volume *vol = ni->vol;
1825 ntfs_attr_search_ctx *ctx = NULL;
1826 MFT_RECORD *m = NULL;
1827 ATTR_RECORD *a;
1828 u8 *kaddr;
1829 u32 attr_len;
1830 int err;
1831
1832 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1833 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
1834 page->index, from, to);
1835 BUG_ON(!PageLocked(page));
1836 BUG_ON(from > PAGE_CACHE_SIZE);
1837 BUG_ON(to > PAGE_CACHE_SIZE);
1838 BUG_ON(from > to);
1839 BUG_ON(NInoMstProtected(ni));
1840 /*
1841 * If a previous ntfs_truncate() failed, repeat it and abort if it
1842 * fails again.
1843 */
1844 if (unlikely(NInoTruncateFailed(ni))) {
1845 down_write(&vi->i_alloc_sem);
1846 err = ntfs_truncate(vi);
1847 up_write(&vi->i_alloc_sem);
1848 if (err || NInoTruncateFailed(ni)) {
1849 if (!err)
1850 err = -EIO;
1851 goto err_out;
1852 }
1853 }
1854 /* If the attribute is not resident, deal with it elsewhere. */
1855 if (NInoNonResident(ni)) {
1856 /*
1857 * Only unnamed $DATA attributes can be compressed, encrypted,
1858 * and/or sparse.
1859 */
1860 if (ni->type == AT_DATA && !ni->name_len) {
1861 /* If file is encrypted, deny access, just like NT4. */
1862 if (NInoEncrypted(ni)) {
1863 ntfs_debug("Denying write access to encrypted "
1864 "file.");
1865 return -EACCES;
1866 }
1867 /* Compressed data streams are handled in compress.c. */
1868 if (NInoCompressed(ni)) {
1869 // TODO: Implement and replace this check with
1870 // return ntfs_write_compressed_block(page);
1871 ntfs_error(vi->i_sb, "Writing to compressed "
1872 "files is not supported yet. "
1873 "Sorry.");
1874 return -EOPNOTSUPP;
1875 }
1876 // TODO: Implement and remove this check.
1877 if (NInoSparse(ni)) {
1878 ntfs_error(vi->i_sb, "Writing to sparse files "
1879 "is not supported yet. Sorry.");
1880 return -EOPNOTSUPP;
1881 }
1882 }
1883 /* Normal data stream. */
1884 return ntfs_prepare_nonresident_write(page, from, to);
1885 }
1886 /*
1887 * Attribute is resident, implying it is not compressed, encrypted, or
1888 * sparse.
1889 */
1890 BUG_ON(page_has_buffers(page));
1891 new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
1892 /* If we do not need to resize the attribute allocation we are done. */
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +00001893 if (new_size <= i_size_read(vi))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001894 goto done;
1895
1896 // FIXME: We abort for now as this code is not safe.
1897 ntfs_error(vi->i_sb, "Changing the file size is not supported yet. "
1898 "Sorry.");
1899 return -EOPNOTSUPP;
1900
1901 /* Map, pin, and lock the (base) mft record. */
1902 if (!NInoAttr(ni))
1903 base_ni = ni;
1904 else
1905 base_ni = ni->ext.base_ntfs_ino;
1906 m = map_mft_record(base_ni);
1907 if (IS_ERR(m)) {
1908 err = PTR_ERR(m);
1909 m = NULL;
1910 ctx = NULL;
1911 goto err_out;
1912 }
1913 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1914 if (unlikely(!ctx)) {
1915 err = -ENOMEM;
1916 goto err_out;
1917 }
1918 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1919 CASE_SENSITIVE, 0, NULL, 0, ctx);
1920 if (unlikely(err)) {
1921 if (err == -ENOENT)
1922 err = -EIO;
1923 goto err_out;
1924 }
1925 m = ctx->mrec;
1926 a = ctx->attr;
1927 /* The total length of the attribute value. */
1928 attr_len = le32_to_cpu(a->data.resident.value_length);
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +00001929 BUG_ON(i_size_read(vi) != attr_len);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001930 /* Check if new size is allowed in $AttrDef. */
1931 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
1932 if (unlikely(err)) {
1933 if (err == -ERANGE) {
1934 ntfs_error(vol->sb, "Write would cause the inode "
1935 "0x%lx to exceed the maximum size for "
1936 "its attribute type (0x%x). Aborting "
1937 "write.", vi->i_ino,
1938 le32_to_cpu(ni->type));
1939 } else {
1940 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
1941 "attribute type 0x%x. Aborting "
1942 "write.", vi->i_ino,
1943 le32_to_cpu(ni->type));
1944 err = -EIO;
1945 }
1946 goto err_out2;
1947 }
1948 /*
1949 * Extend the attribute record to be able to store the new attribute
1950 * size.
1951 */
1952 if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a,
1953 le16_to_cpu(a->data.resident.value_offset) +
1954 new_size)) {
1955 /* Not enough space in the mft record. */
1956 ntfs_error(vol->sb, "Not enough space in the mft record for "
1957 "the resized attribute value. This is not "
1958 "supported yet. Aborting write.");
1959 err = -EOPNOTSUPP;
1960 goto err_out2;
1961 }
1962 /*
1963 * We have enough space in the mft record to fit the write. This
1964 * implies the attribute is smaller than the mft record and hence the
1965 * attribute must be in a single page and hence page->index must be 0.
1966 */
1967 BUG_ON(page->index);
1968 /*
1969 * If the beginning of the write is past the old size, enlarge the
1970 * attribute value up to the beginning of the write and fill it with
1971 * zeroes.
1972 */
1973 if (from > attr_len) {
1974 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
1975 attr_len, 0, from - attr_len);
1976 a->data.resident.value_length = cpu_to_le32(from);
1977 /* Zero the corresponding area in the page as well. */
1978 if (PageUptodate(page)) {
1979 kaddr = kmap_atomic(page, KM_USER0);
1980 memset(kaddr + attr_len, 0, from - attr_len);
1981 kunmap_atomic(kaddr, KM_USER0);
1982 flush_dcache_page(page);
1983 }
1984 }
1985 flush_dcache_mft_record_page(ctx->ntfs_ino);
1986 mark_mft_record_dirty(ctx->ntfs_ino);
1987 ntfs_attr_put_search_ctx(ctx);
1988 unmap_mft_record(base_ni);
1989 /*
1990 * Because resident attributes are handled by memcpy() to/from the
1991 * corresponding MFT record, and because this form of i/o is byte
1992 * aligned rather than block aligned, there is no need to bring the
1993 * page uptodate here as in the non-resident case where we need to
1994 * bring the buffers straddled by the write uptodate before
1995 * generic_file_write() does the copying from userspace.
1996 *
1997 * We thus defer the uptodate bringing of the page region outside the
1998 * region written to to ntfs_commit_write(), which makes the code
1999 * simpler and saves one atomic kmap which is good.
2000 */
2001done:
2002 ntfs_debug("Done.");
2003 return 0;
2004err_out:
2005 if (err == -ENOMEM)
2006 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2007 "prepare the write.");
2008 else {
2009 ntfs_error(vi->i_sb, "Resident attribute prepare write failed "
2010 "with error %i.", err);
2011 NVolSetErrors(vol);
2012 make_bad_inode(vi);
2013 }
2014err_out2:
2015 if (ctx)
2016 ntfs_attr_put_search_ctx(ctx);
2017 if (m)
2018 unmap_mft_record(base_ni);
2019 return err;
2020}
2021
2022/**
2023 * ntfs_commit_nonresident_write -
2024 *
2025 */
2026static int ntfs_commit_nonresident_write(struct page *page,
2027 unsigned from, unsigned to)
2028{
2029 s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
2030 struct inode *vi = page->mapping->host;
2031 struct buffer_head *bh, *head;
2032 unsigned int block_start, block_end, blocksize;
2033 BOOL partial;
2034
2035 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2036 "0x%lx, from = %u, to = %u.", vi->i_ino,
2037 NTFS_I(vi)->type, page->index, from, to);
2038 blocksize = 1 << vi->i_blkbits;
2039
2040 // FIXME: We need a whole slew of special cases in here for compressed
2041 // files for example...
2042 // For now, we know ntfs_prepare_write() would have failed so we can't
2043 // get here in any of the cases which we have to special case, so we
2044 // are just a ripped off, unrolled generic_commit_write().
2045
2046 bh = head = page_buffers(page);
2047 block_start = 0;
2048 partial = FALSE;
2049 do {
2050 block_end = block_start + blocksize;
2051 if (block_end <= from || block_start >= to) {
2052 if (!buffer_uptodate(bh))
2053 partial = TRUE;
2054 } else {
2055 set_buffer_uptodate(bh);
2056 mark_buffer_dirty(bh);
2057 }
2058 } while (block_start = block_end, (bh = bh->b_this_page) != head);
2059 /*
2060 * If this is a partial write which happened to make all buffers
2061 * uptodate then we can optimize away a bogus ->readpage() for the next
2062 * read(). Here we 'discover' whether the page went uptodate as a
2063 * result of this (potentially partial) write.
2064 */
2065 if (!partial)
2066 SetPageUptodate(page);
2067 /*
2068 * Not convinced about this at all. See disparity comment above. For
2069 * now we know ntfs_prepare_write() would have failed in the write
2070 * exceeds i_size case, so this will never trigger which is fine.
2071 */
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +00002072 if (pos > i_size_read(vi)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002073 ntfs_error(vi->i_sb, "Writing beyond the existing file size is "
2074 "not supported yet. Sorry.");
2075 return -EOPNOTSUPP;
2076 // vi->i_size = pos;
2077 // mark_inode_dirty(vi);
2078 }
2079 ntfs_debug("Done.");
2080 return 0;
2081}
2082
2083/**
2084 * ntfs_commit_write - commit the received data
2085 *
2086 * This is called from generic_file_write() with i_sem held on the inode
2087 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
2088 * data has already been copied into the @page. ntfs_prepare_write() has been
2089 * called before the data copied and it returned success so we can take the
2090 * results of various BUG checks and some error handling for granted.
2091 *
2092 * Need to mark modified blocks dirty so they get written out later when
2093 * ntfs_writepage() is invoked by the VM.
2094 *
2095 * Return 0 on success or -errno on error.
2096 *
2097 * Should be using generic_commit_write(). This marks buffers uptodate and
2098 * dirty, sets the page uptodate if all buffers in the page are uptodate, and
2099 * updates i_size if the end of io is beyond i_size. In that case, it also
2100 * marks the inode dirty.
2101 *
2102 * Cannot use generic_commit_write() due to ntfs specialities but can look at
2103 * it for implementation guidance.
2104 *
2105 * If things have gone as outlined in ntfs_prepare_write(), then we do not
2106 * need to do any page content modifications here at all, except in the write
2107 * to resident attribute case, where we need to do the uptodate bringing here
2108 * which we combine with the copying into the mft record which means we save
2109 * one atomic kmap.
2110 */
2111static int ntfs_commit_write(struct file *file, struct page *page,
2112 unsigned from, unsigned to)
2113{
2114 struct inode *vi = page->mapping->host;
2115 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2116 char *kaddr, *kattr;
2117 ntfs_attr_search_ctx *ctx;
2118 MFT_RECORD *m;
2119 ATTR_RECORD *a;
2120 u32 attr_len;
2121 int err;
2122
2123 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2124 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
2125 page->index, from, to);
2126 /* If the attribute is not resident, deal with it elsewhere. */
2127 if (NInoNonResident(ni)) {
2128 /* Only unnamed $DATA attributes can be compressed/encrypted. */
2129 if (ni->type == AT_DATA && !ni->name_len) {
2130 /* Encrypted files need separate handling. */
2131 if (NInoEncrypted(ni)) {
2132 // We never get here at present!
2133 BUG();
2134 }
2135 /* Compressed data streams are handled in compress.c. */
2136 if (NInoCompressed(ni)) {
2137 // TODO: Implement this!
2138 // return ntfs_write_compressed_block(page);
2139 // We never get here at present!
2140 BUG();
2141 }
2142 }
2143 /* Normal data stream. */
2144 return ntfs_commit_nonresident_write(page, from, to);
2145 }
2146 /*
2147 * Attribute is resident, implying it is not compressed, encrypted, or
2148 * sparse.
2149 */
2150 if (!NInoAttr(ni))
2151 base_ni = ni;
2152 else
2153 base_ni = ni->ext.base_ntfs_ino;
2154 /* Map, pin, and lock the mft record. */
2155 m = map_mft_record(base_ni);
2156 if (IS_ERR(m)) {
2157 err = PTR_ERR(m);
2158 m = NULL;
2159 ctx = NULL;
2160 goto err_out;
2161 }
2162 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2163 if (unlikely(!ctx)) {
2164 err = -ENOMEM;
2165 goto err_out;
2166 }
2167 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2168 CASE_SENSITIVE, 0, NULL, 0, ctx);
2169 if (unlikely(err)) {
2170 if (err == -ENOENT)
2171 err = -EIO;
2172 goto err_out;
2173 }
2174 a = ctx->attr;
2175 /* The total length of the attribute value. */
2176 attr_len = le32_to_cpu(a->data.resident.value_length);
2177 BUG_ON(from > attr_len);
2178 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
2179 kaddr = kmap_atomic(page, KM_USER0);
2180 /* Copy the received data from the page to the mft record. */
2181 memcpy(kattr + from, kaddr + from, to - from);
2182 /* Update the attribute length if necessary. */
2183 if (to > attr_len) {
2184 attr_len = to;
2185 a->data.resident.value_length = cpu_to_le32(attr_len);
2186 }
2187 /*
2188 * If the page is not uptodate, bring the out of bounds area(s)
2189 * uptodate by copying data from the mft record to the page.
2190 */
2191 if (!PageUptodate(page)) {
2192 if (from > 0)
2193 memcpy(kaddr, kattr, from);
2194 if (to < attr_len)
2195 memcpy(kaddr + to, kattr + to, attr_len - to);
2196 /* Zero the region outside the end of the attribute value. */
2197 if (attr_len < PAGE_CACHE_SIZE)
2198 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
2199 /*
2200 * The probability of not having done any of the above is
2201 * extremely small, so we just flush unconditionally.
2202 */
2203 flush_dcache_page(page);
2204 SetPageUptodate(page);
2205 }
2206 kunmap_atomic(kaddr, KM_USER0);
2207 /* Update i_size if necessary. */
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +00002208 if (i_size_read(vi) < attr_len) {
2209 unsigned long flags;
2210
2211 write_lock_irqsave(&ni->size_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002212 ni->allocated_size = ni->initialized_size = attr_len;
2213 i_size_write(vi, attr_len);
Anton Altaparmakov07a4e2d2005-01-12 13:08:26 +00002214 write_unlock_irqrestore(&ni->size_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002215 }
2216 /* Mark the mft record dirty, so it gets written back. */
2217 flush_dcache_mft_record_page(ctx->ntfs_ino);
2218 mark_mft_record_dirty(ctx->ntfs_ino);
2219 ntfs_attr_put_search_ctx(ctx);
2220 unmap_mft_record(base_ni);
2221 ntfs_debug("Done.");
2222 return 0;
2223err_out:
2224 if (err == -ENOMEM) {
2225 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2226 "commit the write.");
2227 if (PageUptodate(page)) {
2228 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
2229 "dirty so the write will be retried "
2230 "later on by the VM.");
2231 /*
2232 * Put the page on mapping->dirty_pages, but leave its
2233 * buffers' dirty state as-is.
2234 */
2235 __set_page_dirty_nobuffers(page);
2236 err = 0;
2237 } else
2238 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
2239 "data has been lost.");
2240 } else {
2241 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
2242 "with error %i.", err);
2243 NVolSetErrors(ni->vol);
2244 make_bad_inode(vi);
2245 }
2246 if (ctx)
2247 ntfs_attr_put_search_ctx(ctx);
2248 if (m)
2249 unmap_mft_record(base_ni);
2250 return err;
2251}
2252
2253#endif /* NTFS_RW */
2254
2255/**
2256 * ntfs_aops - general address space operations for inodes and attributes
2257 */
2258struct address_space_operations ntfs_aops = {
2259 .readpage = ntfs_readpage, /* Fill page with data. */
2260 .sync_page = block_sync_page, /* Currently, just unplugs the
2261 disk request queue. */
2262#ifdef NTFS_RW
2263 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2264 .prepare_write = ntfs_prepare_write, /* Prepare page and buffers
2265 ready to receive data. */
2266 .commit_write = ntfs_commit_write, /* Commit received data. */
2267#endif /* NTFS_RW */
2268};
2269
2270/**
2271 * ntfs_mst_aops - general address space operations for mst protecteed inodes
2272 * and attributes
2273 */
2274struct address_space_operations ntfs_mst_aops = {
2275 .readpage = ntfs_readpage, /* Fill page with data. */
2276 .sync_page = block_sync_page, /* Currently, just unplugs the
2277 disk request queue. */
2278#ifdef NTFS_RW
2279 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2280 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty
2281 without touching the buffers
2282 belonging to the page. */
2283#endif /* NTFS_RW */
2284};
2285
2286#ifdef NTFS_RW
2287
2288/**
2289 * mark_ntfs_record_dirty - mark an ntfs record dirty
2290 * @page: page containing the ntfs record to mark dirty
2291 * @ofs: byte offset within @page at which the ntfs record begins
2292 *
2293 * Set the buffers and the page in which the ntfs record is located dirty.
2294 *
2295 * The latter also marks the vfs inode the ntfs record belongs to dirty
2296 * (I_DIRTY_PAGES only).
2297 *
2298 * If the page does not have buffers, we create them and set them uptodate.
2299 * The page may not be locked which is why we need to handle the buffers under
2300 * the mapping->private_lock. Once the buffers are marked dirty we no longer
2301 * need the lock since try_to_free_buffers() does not free dirty buffers.
2302 */
2303void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
2304 struct address_space *mapping = page->mapping;
2305 ntfs_inode *ni = NTFS_I(mapping->host);
2306 struct buffer_head *bh, *head, *buffers_to_free = NULL;
2307 unsigned int end, bh_size, bh_ofs;
2308
2309 BUG_ON(!PageUptodate(page));
2310 end = ofs + ni->itype.index.block_size;
2311 bh_size = 1 << VFS_I(ni)->i_blkbits;
2312 spin_lock(&mapping->private_lock);
2313 if (unlikely(!page_has_buffers(page))) {
2314 spin_unlock(&mapping->private_lock);
2315 bh = head = alloc_page_buffers(page, bh_size, 1);
2316 spin_lock(&mapping->private_lock);
2317 if (likely(!page_has_buffers(page))) {
2318 struct buffer_head *tail;
2319
2320 do {
2321 set_buffer_uptodate(bh);
2322 tail = bh;
2323 bh = bh->b_this_page;
2324 } while (bh);
2325 tail->b_this_page = head;
2326 attach_page_buffers(page, head);
2327 } else
2328 buffers_to_free = bh;
2329 }
2330 bh = head = page_buffers(page);
2331 do {
2332 bh_ofs = bh_offset(bh);
2333 if (bh_ofs + bh_size <= ofs)
2334 continue;
2335 if (unlikely(bh_ofs >= end))
2336 break;
2337 set_buffer_dirty(bh);
2338 } while ((bh = bh->b_this_page) != head);
2339 spin_unlock(&mapping->private_lock);
2340 __set_page_dirty_nobuffers(page);
2341 if (unlikely(buffers_to_free)) {
2342 do {
2343 bh = buffers_to_free->b_this_page;
2344 free_buffer_head(buffers_to_free);
2345 buffers_to_free = bh;
2346 } while (buffers_to_free);
2347 }
2348}
2349
2350#endif /* NTFS_RW */